QFactory from Learning With Errors

Lattice Coding and Crypto theecin
3 3 May 2019

Alexandru Cojocaru
Untiversity of Edimnonargh

Overview

- Part 1: Malicious QFactory
- Functionality
- Required assumptions
- Protocol description
- Security
- Protocol Extensions (e.g. verification)
- Part 2: Functions implementation
- QHBC QFactory functions
- Malicious QFactory functions
II. Classical delegation of secret qubits against Malicious Adversaries or
Malicious 4-states QFactory

Malicious 4-states QFactory functionality

Motivation

There exist protocols for most of these applications where quantum communication only consists of the qubits $|0\rangle,|1\rangle,|+\rangle,|-\rangle$

Motivation

There exist protocols for most of these applications where quantum communication only consists of the qubits $|0\rangle,|1\rangle,|+\rangle,|-\rangle$

Functionality of Malicious 4states QFactory \Rightarrow classical delegation of quantum computation (against malicious adversaries)

Motivation

There exist protocols for most of these applications where quantum communication only consists of the qubits $|0\rangle,|1\rangle,|+\rangle,|-\rangle$

Functionality of Malicious 4states QFactory \Rightarrow classical delegation of quantum computation (against malicious adversaries) as long as the basis of qubits is hidden from any adversary

Malicious 4-states QFactory Required Assumptions

Malicious 4-states QFactory Required Assumptions

One-way
$g_{k}: D \rightarrow R$ injective, homomorphic, quantum-safe, trapdoor one-way;

$$
\begin{gathered}
f_{k}: D \times\{0,1\} \rightarrow R \\
f_{k}(x, c)=\left\{\begin{array}{l}
\text { if } c=0 \\
g_{k}(x), \\
g_{k}(x) \star g_{k}\left(x_{0}\right)=g_{k}\left(x+x_{0}\right), \text { if } c=1
\end{array}\right.
\end{gathered}
$$

where x_{0} is chosen by the Client at random from the domain of g_{k}

Malicious 4-states QFactory Required Assumptions

One-way
This function is hard to invert.

2-Regular
2 preimages for any element in $\operatorname{Im}\left(f_{k}\right)$

Trapdoor
except if you have the trapdoor t_{k} associated to the index function k

$g_{k}: D \rightarrow R$ injective, homomorphic, quantum-safe, trapdoor one-way;

$$
\begin{gathered}
f_{k}: D \times\{0,1\} \rightarrow R \\
f_{k}(x, c)= \begin{cases}g_{k}(x), & \text { if } c=0 \\
g_{k}(x) \star g_{k}\left(x_{0}\right)=g_{k}\left(x+x_{0}\right), & \text { if } c=1\end{cases}
\end{gathered}
$$

where x_{0} is chosen by the Client at random from the domain of g_{k}

Malicious 4-states QFactory Protocol

Choose (k, t_{k})
Choose l

Malicious 4-states QFactory Protocol

Choose (k, t_{k})
Choose l

Malicious 4-states QFactory Protocol

Choose (k, t_{k}) Choose l \qquad

Compute the circuit

Malicious 4-states QFactory Protocol

$\left|0^{n}\right\rangle\left|0^{m}\right\rangle$

Choose (k, t_{k}) Choose l \qquad
Compute the circuit

Malicious 4-states QFactory Protocol

$\left|0^{n}\right\rangle\left|0^{m}\right\rangle \rightarrow \sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle\left|0^{m}\right\rangle$

Choose (k, t_{k}) Choose l

Compute the circuit

Malicious 4-states QFactory Protocol

$\left|0^{n}\right\rangle\left|0^{m}\right\rangle \rightarrow \sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle\left|0^{m}\right\rangle \rightarrow \sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle|f(x)\rangle$

Choose (k, t_{k}) Choose l

Compute the circuit

Malicious 4-states QFactory Protocol

$\left|0^{n}\right\rangle\left|0^{m}\right\rangle \rightarrow \sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle\left|0^{m}\right\rangle \rightarrow \sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle|f(x)\rangle=\sum_{y \in I m\left(f_{k}\right)}\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle$

Choose (k, t_{k}) Choose l

Compute the circuit

Malicious 4-states QFactory Protocol

$\left|0^{n}\right\rangle\left|0^{m}\right\rangle \rightarrow \sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle\left|0^{m}\right\rangle \rightarrow \sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle|f(x)\rangle=\sum_{y \in \operatorname{Im}\left(f_{k}\right)}\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle \rightarrow\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle=\left(|z\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle\right) \otimes|y\rangle$

Malicious 4-states QFactory Protocol

```
|\mp@subsup{0}{}{n}\rangle|\mp@subsup{0}{}{m}\rangle->\mp@subsup{\sum}{x\in\operatorname{Dom}(\mp@subsup{f}{k}{})}{}|x\rangle|\mp@subsup{0}{}{m}\rangle->\mp@subsup{\sum}{x\in\operatorname{Dom}(\mp@subsup{f}{k}{})}{}|x\rangle|f(x)\rangle=\mp@subsup{\sum}{y\in\operatorname{Im}(\mp@subsup{f}{k}{})}{}(|x\rangle+|\mp@subsup{x}{}{\prime}\rangle)\otimes|y\rangle->(|x\rangle+|\mp@subsup{x}{}{\prime}\rangle)\otimes|y\rangle=(|z\rangle|0\rangle+|\mp@subsup{z}{}{\prime}\rangle|1\rangle)\otimes|y\rangle->(|z\rangle|0\rangle|0\rangle+|\mp@subsup{z}{}{\prime}\rangle|1\rangle|0\rangle)
```


Choose (k, t_{k}) Choose l \qquad

Compute the circuit

Malicious 4-states QFactory Protocol

Malicious 4-states QFactory Protocol

$\left.\left.\left.|x\rangle|f(x)\rangle=\quad \sum\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle \rightarrow\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle=\left(|z\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle\right) \otimes|y\rangle \rightarrow\left(|z\rangle|0\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle|0\rangle\right) \rightarrow|z\rangle|0\rangle| | h(z)\right\rangle+\left|z^{\prime}\right\rangle|1\rangle| | z^{\prime}\right\rangle\right\rangle \Rightarrow \mid$ Output \rangle

Choose (k, t_{k}) Choose l \qquad
$|z\rangle|c\rangle|0\rangle \xrightarrow{\widetilde{U}_{h}}|z\rangle|c\rangle|h(z)\rangle$

Malicious 4-states QFactory Protocol

$|x\rangle|f(x)\rangle=\quad \sum\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle \rightarrow\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle=\left(|z\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle\right) \otimes|y\rangle \rightarrow\left(|z\rangle|0\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle|0\rangle\right) \rightarrow|z\rangle|0\rangle|h(z)\rangle+\left|z^{\prime}\right\rangle|1\rangle\left|h\left(z^{\prime}\right)\right\rangle \Rightarrow \mid$ Output \rangle

Choose (k, t_{k}) Choose l \qquad
$|z\rangle|c\rangle|0\rangle \xrightarrow{\widetilde{\sigma_{h}}}|z\rangle|c\rangle|h(z)\rangle$

Malicious 4-states QFactory Protocol

$|x\rangle|f(x)\rangle=\sum\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle \rightarrow\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle=\left(|z\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle\right) \otimes|y\rangle \rightarrow\left(|z\rangle|0\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle|0\rangle\right) \rightarrow|z\rangle|0\rangle|h(z)\rangle+\left|z^{\prime}\right\rangle|1\rangle\left|h\left(z^{\prime}\right)\right\rangle \Rightarrow \mid$ Output \rangle $\sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle|f(x)\rangle=\sum_{y \in \operatorname{Im}\left(f_{k}\right)}$

Choose (k, t_{k}) Choose l \qquad
$|z\rangle|c\rangle|0\rangle \xrightarrow{\widetilde{\sigma_{h}}}|z\rangle|c\rangle|h(z)\rangle$

Malicious 4-states QFactory Protocol

$\left.|x\rangle|f(x)\rangle=\quad \sum\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle \rightarrow\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle=\left(|z\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle\right) \otimes|y\rangle \rightarrow\left(|z\rangle|0\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle|0\rangle\right) \rightarrow|z\rangle|0\rangle| | h(z)\right\rangle+\left|z^{\prime}\right\rangle|1\rangle\left|h\left(z^{\prime}\right\rangle\right\rangle \Rightarrow \mid$ Output \rangle $\sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle|(x)\rangle=\sum_{y \in \operatorname{lm}\left(f_{k}\right)}$

Choose (k, t_{k}) Choose l \qquad
$|z\rangle|c\rangle|0\rangle \xrightarrow{\widetilde{\sigma_{h}}}|z\rangle|c\rangle|h(z)\rangle$

Malicious 4-states QFactory Protocol

$|x\rangle|f(x)\rangle=\quad \sum\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle \rightarrow\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle=\left(|z\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle\right) \otimes|y\rangle \rightarrow\left(|z\rangle|0\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle|0\rangle\right) \rightarrow|z\rangle|0\rangle|h(z)\rangle+\left|z^{\prime}\right\rangle|1\rangle\left|h\left(z^{\prime}\right)\right\rangle \Rightarrow \mid$ Output \rangle $\sum_{x \in \operatorname{Dom}\left(f_{k}\right)}|x\rangle|f(x)\rangle-\sum_{y \in \operatorname{Im}\left(f_{k}\right)}$

Choose (k, t_{k}) Choose l \qquad

Compute the circuit

$$
y, b
$$

Malicious 4-states QFactory Protocol

$|x\rangle|f(x)\rangle=\quad \sum\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle \rightarrow\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle=\left(|z\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle\right) \otimes|y\rangle \rightarrow\left(|z\rangle|0\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle|0\rangle\right) \rightarrow|z\rangle|0\rangle|h(z)\rangle+\left|z^{\prime}\right\rangle|1\rangle\left|h\left(z^{\prime}\right)\right\rangle \Rightarrow \mid$ Output \rangle

$\sum_{x \in \operatorname{Dom}\left(f_{k}\right)} \quad \sum_{y \in \operatorname{Im}\left(f_{k}\right)}$

Choose (k, t_{k}) Choose l \qquad

Compute the circuit

$$
y, b
$$

$|z\rangle|c\rangle|0\rangle \xrightarrow{\widetilde{U_{h}}}|z\rangle|c\rangle|h(z)\rangle$

$$
\left(x, x^{\prime}\right)=\operatorname{Inv}\left(t_{k}, y\right)
$$

$$
\text { Compute } B_{1}, B_{2}
$$

Malicious 4-states QFactory Protocol

$|x\rangle|f(x)\rangle=\sum\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle \rightarrow\left(|x\rangle+\left|x^{\prime}\right\rangle\right) \otimes|y\rangle=\left(|z\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle\right) \otimes|y\rangle \rightarrow\left(|z\rangle|0\rangle|0\rangle+\left|z^{\prime}\right\rangle|1\rangle|0\rangle\right) \rightarrow|z\rangle|0\rangle|h(z)\rangle+\left|z^{\prime}\right\rangle|1\rangle\left|h\left(z^{\prime}\right)\right\rangle \Rightarrow \mid$ Output \rangle

$\sum_{x \in \operatorname{Dom}\left(f_{k}\right)} \sum_{y \in \operatorname{Im}\left(f_{k}\right)}$

Choose (k, t_{k}) Choose l \qquad
Compute the circuit

$$
y, b
$$

$$
\begin{gathered}
\left(x, x^{\prime}\right)=\operatorname{Inv}\left(t_{k}, y\right) \\
\text { Compute } B_{1}, B_{2}
\end{gathered}
$$

Gets Output

Security (in the quantum malicious setting)

- $\quad \mid$ Output $\rangle=H^{B_{1}} X^{B_{2}}|0\rangle$
- $B_{1}=$ the basis bit of $|O u t p u t\rangle$
- If $B_{1}=0$ then $|O u t p u t\rangle \in\{|0\rangle,|1\rangle\}$ and if $B_{1}=1$ then $|O u t p u t\rangle \in\{|+\rangle,|-\rangle\}$

Security

- Blindness of the basis B_{1} of $|O u t p u t\rangle$ against malicious adversaries.
- Theorem: No matter what Bob does, he cannot determine B_{1}.
- Server cannot do better than a random guess: B_{1} is a hard-core predicate (wrt the function g);

Security (in the quantum malicious setting)

$>B_{1}$ is a hard-core predicate \Rightarrow basis-blindness
> The basis-blindness is the "maximum" security:
> Even after an honest run we can at most guarantee basis blindness, but not full blindness about the output state:
$>|O u t p u t\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}$
> Then the Adversary can determine B_{2} with probability at least $\frac{3}{4}$:
$>$ Makes a random guess $\widetilde{B_{1}}$ and then measures $|O u t p u t\rangle$ in the $\widetilde{B_{1}}$ basis, obtaining measurement outcome $\widetilde{B_{2}}$: if $\widetilde{B_{1}}=B_{1}$ then $\widetilde{B_{2}}=B_{2}$ with probability 1 , otherwise $\widetilde{B_{2}}=B_{2}$ with probability $\frac{1}{2}$;

Basis-blindness is proven to be sufficient for many secure computation protocols, e.g. blind quantum computation (UBQC protocol);

Basis-blindness is required for classical verification of QFactory; \Rightarrow classical verification of quantum computations

Security (in the quantum malicious setting)

Recall:

$$
\begin{gathered}
\mid \text { Output }\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\} \\
\mid \text { Output }\rangle=H^{B_{1} X^{B_{2}}|0\rangle} \\
B_{1}=h(z) \oplus h\left(z^{\prime}\right) \\
B_{2}=\left\{\left[\Sigma\left(x_{i} \oplus x_{i}^{\prime}\right) \cdot b_{i}\right] \bmod 2 \cdot B_{1}\right\} \oplus \\
{\left[h(z) \cdot\left(1 \oplus B_{1}\right)\right]}
\end{gathered}
$$

Security (in the quantum malicious setting)

Recall:

```
|Output\rangle\in{|0\rangle,|1\rangle,|+\rangle,|-\rangle}
    |Output }\rangle=\mp@subsup{H}{}{\mp@subsup{B}{1}{}}\mp@subsup{X}{}{\mp@subsup{B}{2}{}}|0
    B1}=h(z)\oplush(\mp@subsup{z}{}{\prime}
    B2}={[\Sigma(\mp@subsup{x}{i}{}\oplus\mp@subsup{x}{i}{\prime})\cdot\mp@subsup{b}{i}{}]\operatorname{mod}2\cdot\mp@subsup{B}{1}{}}
    [h(z)\cdot(1\oplus\mp@subsup{B}{1}{})]
```

$B_{1}=$ the basis bit of \mid Output \rangle

- \mid Output $\rangle \in\{|0\rangle,|1\rangle\} \Leftrightarrow B_{1}=0$
- \mid Output $\rangle \in\{|+\rangle,|-\rangle\} \Leftrightarrow B_{1}=1$
\Rightarrow Hiding the basis equivalent to hiding

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)
$$

Security (in the quantum malicious setting)

Recall:

```
|Output\rangle\in{|0\rangle,|1\rangle, | | , |->}
\[
\mid \text { Output }\rangle=H^{B_{1}} X^{B_{2}}|0\rangle
\]
```

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)
$$

$$
B_{2}=\left\{\left[\Sigma\left(x_{i} \oplus x_{i}{ }^{\prime}\right) \cdot b_{i}\right] \bmod 2 \cdot B_{1}\right\} \oplus
$$

$B_{1}=$ the basis bit of \mid Output \rangle

- \mid Output $\rangle \in\{|0\rangle,|1\rangle\} \Leftrightarrow B_{1}=0$
- \mid Output $\rangle \in\{|+\rangle,|-\rangle\} \Leftrightarrow B_{1}=1$
\Rightarrow Hiding the basis equivalent to hiding

$$
\left[h(z) \cdot\left(1 \oplus B_{1}\right)\right]
$$

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)
$$

- Using the definition of f :

$$
f(z, c)=g(z)+c \cdot g\left(z_{0}\right) \stackrel{\text { homomorphic }}{=} g\left(z+c \cdot z_{0}\right)
$$

Security (in the quantum malicious setting)

Recall:

$$
\begin{gathered}
\mid \text { Output }\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\} \\
\mid \text { Output }\rangle=H^{B_{1} X^{B_{2}}|0\rangle} \\
B_{1}=h(z) \oplus h\left(z^{\prime}\right) \\
B_{2}=\left\{\left[\Sigma\left(x_{i} \oplus x_{i}{ }^{\prime}\right) \cdot b_{i}\right] \bmod 2 \cdot B_{1}\right\} \oplus
\end{gathered}
$$

$B_{1}=$ the basis bit of \mid Output \rangle

- \mid Output $\rangle \in\{|0\rangle,|1\rangle\} \Leftrightarrow B_{1}=0$
- \mid Output $\rangle \in\{|+\rangle,|-\rangle\} \Leftrightarrow B_{1}=1$
\Rightarrow Hiding the basis equivalent to hiding

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)
$$

- Using the definition of f :

$$
f(z, c)=g(z)+c \cdot g\left(z_{0}\right) \stackrel{\text { homomorphic }}{=} g\left(z+c \cdot z_{0}\right)
$$

- g is injective, the 2 preimages of f are:

$$
x=(z, 0) \text { and } x^{\prime}=\left(z+z_{0}, 1\right) \Rightarrow z^{\prime}=z+z_{0}
$$

Security (in the quantum malicious setting)

Recall:

```
|Output \(\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\}\)
\[
\mid \text { Output }\rangle=H^{B_{1}} X^{B_{2}}|0\rangle
\]
```

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)
$$

$$
B_{2}=\left\{\left[\Sigma\left(x_{i} \oplus x_{i}{ }^{\prime}\right) \cdot b_{i}\right] \bmod 2 \cdot B_{1}\right\} \oplus
$$

$B_{1}=$ the basis bit of \mid Output \rangle

- \mid Output $\rangle \in\{|0\rangle,|1\rangle\} \Leftrightarrow B_{1}=0$
- \mid Output $\rangle \in\{|+\rangle,|-\rangle\} \Leftrightarrow B_{1}=1$

$$
\Rightarrow \text { Hiding the basis equivalent to hiding }
$$

$$
\begin{aligned}
& \left.x_{i} \oplus x_{i} \cdot\left(1 \oplus B_{1}\right)\right] \\
& {\left[h(z) \cdot\left(1 \oplus b_{1}\right)\right.}
\end{aligned}
$$

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)
$$

- Using the definition of f :

$$
f(z, c)=g(z)+c \cdot g\left(z_{0}\right) \stackrel{\text { homomorphic }}{=} g\left(z+c \cdot z_{0}\right)
$$

- g is injective, the 2 preimages of f are:

$$
x=(z, 0) \text { and } x^{\prime}=\left(z+z_{0}, 1\right) \Rightarrow z^{\prime}=z+z_{0}
$$

- h is homomorphic:

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)=h\left(z^{\prime}-z\right)=h\left(z_{0}\right)
$$

Security (in the quantum malicious setting)

Recall:

$$
\begin{gathered}
\mid \text { Output }\rangle \in\{|0\rangle,|1\rangle,|+\rangle,|-\rangle\} \\
\mid \text { Output }\rangle=H^{B_{1} X^{B_{2}}|0\rangle}
\end{gathered}
$$

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)
$$

$B_{1}=$ the basis bit of \mid Output \rangle

- \mid Output $\rangle \in\{|0\rangle,|1\rangle\} \Leftrightarrow B_{1}=0$
- \mid Output $\rangle \in\{|+\rangle,|-\rangle\} \Leftrightarrow B_{1}=1$

$$
B_{2}=\left\{\left[\Sigma\left(x_{i} \oplus x_{i}{ }^{\prime}\right) \cdot b_{i}\right] \bmod 2 \cdot B_{1}\right\} \oplus
$$

\Rightarrow Hiding the basis equivalent to hiding

$$
\left[h(z) \cdot\left(1 \oplus B_{1}\right)\right]
$$

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)
$$

- Using the definition of f :

$$
f(z, c)=g(z)+c \cdot g\left(z_{0}\right) \stackrel{\text { homomorphic }}{=} g\left(z+c \cdot z_{0}\right)
$$

- g is injective, the 2 preimages of f are:

$$
x=(z, 0) \text { and } x^{\prime}=\left(z+z_{0}, 1\right) \Rightarrow z^{\prime}=z+z_{0}
$$

- h is homomorphic:

$$
B_{1}=h(z) \oplus h\left(z^{\prime}\right)=h\left(z^{\prime}-z\right)=h\left(z_{0}\right)
$$

- h is hardcore predicate:

$$
B_{1}=h\left(z_{0}\right) \text { is hidden }
$$

Security (in the quantum malicious setting)

Overview

- The client picks at random z_{0} and then sends $K^{\prime}=\left(K, g_{K}\left(z_{0}\right)\right)$ to the Server (as the public description of f)
- As the basis of the output qubit is $B_{1}=h\left(z_{0}\right)$, then the basis is basically fixed by the Client at the very beginning of the protocol.
- The output basis depends only on the Client's random choice of z_{0} and is independent of the Server's communication.
- Then, no matter how the Server deviates and no matter what are the messages (y, b) sent by Server, to prove that the basis $B_{1}=h\left(z_{0}\right)$ is completely hidden from the Server, is sufficient to use that h is a hardcore predicate.

Extensions of QFactory

Malicious 8-states QFactory

- To use Malicious 4-states QFactory for applications where communication consists of $\left|+{ }_{\theta}\right\rangle$, with $\theta \in\left\{0, \frac{\pi}{4}, \ldots, \frac{7 \pi}{4}\right\}$, we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory.

Malicious 8-states QFactory

- To use Malicious 4-states QFactory for applications where communication consists of $\left|+{ }_{\theta}\right\rangle$, with $\theta \in\left\{0, \frac{\pi}{4}, \ldots, \frac{7 \pi}{4}\right\}$, we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory.

$$
\begin{gathered}
\mid \text { out }\rangle=R\left[L_{1} \pi+L_{2} \frac{\pi}{2}+L_{3} \frac{\pi}{4}\right]|+\rangle \\
L_{3}=B_{1} \\
L_{2}=B_{1}^{\prime} \oplus\left[\left(B_{2} \oplus s_{2}\right) \cdot B_{1}\right] \\
L_{1}=B_{2}^{\prime} \oplus B_{2} \oplus\left[B_{1} \cdot\left(s_{1} \oplus s_{2}\right)\right]
\end{gathered}
$$

Malicious 8-states QFactory

- To use Malicious 4-states QFactory for applications where communication consists of $\left|+_{\theta}\right\rangle$, with $\theta \in\left\{0, \frac{\pi}{4}, \ldots, \frac{7 \pi}{4}\right\}$, we provide a gadget that achieves such a state from 2 outputs of Malicious 4-states QFactory.

$$
\begin{gathered}
\mid \text { out }\rangle=R\left[L_{1} \pi+L_{2} \frac{\pi}{2}+L_{3} \frac{\pi}{4}\right]|+\rangle \\
L_{3}=B_{1} \\
L_{2}=B_{1}^{\prime} \oplus\left[\left(B_{2} \oplus s_{2}\right) \cdot B_{1}\right] \\
L_{1}=B_{2}^{\prime} \oplus B_{2} \oplus\left[B_{1} \cdot\left(s_{1} \oplus s_{2}\right)\right]
\end{gathered}
$$

- No information about the bases $\left(L_{2}, L_{3}\right)$ of the new output state $|o u t\rangle$ is leaked:
- We prove the basis blindness of the output of the gadget by a reduction to the basis-blindness of 1 of the 2 outputs of Malicious 4 -states QFactory;

If you could determine L_{2} and L_{3}, then you would determine B_{1} or $B_{1}{ }^{\prime}$.

Blind Measurements

- Perform a measurement on a first qubit of an arbitrary state $|\psi\rangle$ in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. X or Z basis).
- Useful for classical verification of quantum computations;
- Achieved using the following gadget:

Blind Measurements

- Perform a measurement on a first qubit of an arbitrary state $|\psi\rangle$ in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. X or Z basis).
- Useful for classical verification of quantum computations (Mahadev FOCS18);
- Achieved using the following gadget:

Blind Measurements

- Perform a measurement on an arbitrary state $|\psi\rangle$ in such a way that the adversary is oblivious whether he is performing a measurement in 1 out of 2 possible basis (e.g. X or Z basis).
- Useful for classical verification of quantum computations (Mahadev FOCS18);
- Achieved using the following gadget:

- No information about the basis of the measurement is leaked;
- We prove the measurement blindness of the output of the gadget by a reduction to the basis-blindness of Malicious 4-states QFactory;

Classical verification of quantum computations

- Basis-blindness is not sufficient for verifiable blind quantum computation;
- To achieve verification, we combine Basis Blindness and Self-Testing;

Classical verification of quantum computations

- Basis-blindness is not sufficient for verifiable blind quantum computation;
- To achieve verification, we combine Basis Blindness and Self-Testing;
- Self-Testing
- Given measurement statistics, classical parties are certain that some untrusted quantum states, that 2 non-communicating quantum parties share, are the states that the classical parties believe to have;
- In our case, we replace the non-communication property with the basis-blindness condition;

Classical verification of quantum computations

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8 -states QFactory multiple times - independent runs;

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8 -states QFactory multiple times - independent runs;
2. The Client chooses and announces a random fraction of the output qubits of these runs to use them for a test;

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8 -states QFactory multiple times - independent runs;
2. The Client chooses and announces a random fraction of the output qubits of these runs to use them for a test;
3. The Server is instructed by the Client to measure the test qubits in random angles and sends the measurement results to the Client;

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8 -states QFactory multiple times - independent runs;
2. The Client chooses and announces a random fraction of the output qubits of these runs to use them for a test;
3. The Server is instructed by the Client to measure the test qubits in random angles and sends the measurement results to the Client;
4. With the measurement results, the client knowing the basis of the test qubits and the measurement angles, he can check their statistics;

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8 -states QFactory multiple times - independent runs;
2. The Client chooses and announces a random fraction of the output qubits of these runs to use them for a test;
3. The Server is instructed by the Client to measure the test qubits in random angles and sends the measurement results to the Client;
4. With the measurement results, the client knowing the basis of the test qubits and the measurement angles, he can check their statistics;
5. Since the server does not know the basis bits of these test states, he is unlikely to succeed in guessing the correct statistics unless he is honest.

QHBC QFactory
 Function Construction

QHBC QFactory

Required Assumptions:

I. Function Constructions

- We propose 2 generic constructions, using:
- A) A bijective, quantum-safe, trapdoor one-way function $g_{k}: D \rightarrow R$

$$
\begin{aligned}
& f_{k^{\prime}}: D \times\{0,1\} \rightarrow R \\
& f_{k^{\prime}}(x, c)= \begin{cases}g_{k_{1}}(x), & \text { if } c=0 \\
g_{k_{2}}(x), & \text { if } c=1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \left(k_{1}, t_{k_{1}}\right) \leftarrow \operatorname{Gen}_{\mathcal{G}}\left(1^{n}\right) \\
& \left(k_{2}, t_{k_{2}}\right) \leftarrow \operatorname{Gen}_{\mathcal{G}}\left(1^{n}\right) \\
& k^{\prime}:=\left(k_{1}, k_{2}\right) \\
& t_{k}^{\prime}:=\left(t_{k_{1}}, t_{k_{2}}\right)
\end{aligned}
$$

I. Function Constructions

- We propose 2 generic constructions, using:
- A) A bijective, quantum-safe, trapdoor one-way function $g_{k}: D \rightarrow R$

$$
\begin{aligned}
& f_{k^{\prime}}: D \times\{0,1\} \rightarrow R \\
& f_{k^{\prime}}(x, c)= \begin{cases}g_{k_{1}}(x), & \text { if } c=0 \\
g_{k_{2}}(x), & \text { if } c=1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \left(k_{1}, t_{k_{1}}\right) \leftarrow{ }_{\$} \operatorname{Gen}_{\mathcal{G}}\left(1^{n}\right) \\
& \left(k_{2}, t_{k_{2}}\right) \leftarrow{ }_{\$} \operatorname{Gen}_{\mathcal{G}}\left(1^{n}\right) \\
& k^{\prime}:=\left(k_{1}, k_{2}\right) \\
& t_{k}^{\prime}:=\left(t_{k_{1}}, t_{k_{2}}\right)
\end{aligned}
$$

- B) An injective, homomorphic, quantum-safe, trapdoor one-way function $g_{k}: D \rightarrow R$

$$
\begin{aligned}
& f_{k^{\prime}}: D \times\{0,1\} \rightarrow R \\
& f_{k^{\prime}}(x, c)=\left\{\begin{array}{ll}
g_{k}(x), & \text { if } c=0 \\
g_{k}(x) \star g_{k}\left(x_{0}\right)=g_{k}\left(x+x_{0}\right) & \text { if } c=1
\end{array} \begin{array}{l}
\left(k, t_{k}\right) \leftarrow \& \operatorname{Gen}_{\mathcal{G}}\left(1^{n}\right) \\
x_{0} \leftarrow D \backslash\{0\} \\
k^{\prime}:=\left(k, g_{k}\left(x_{0}\right)\right) \\
t_{k}^{\prime}:=\left(t_{k}, x_{0}\right)
\end{array}\right.
\end{aligned}
$$

where x_{0} is chosen by the Client at random from the domain of g_{k}

Injective, homomorphic, quantum-safe, trapdoor one-way function

Construction based on the Micciancio and Peikert trapdoor function - derived from the Learning With Errors problem:

$$
\begin{gathered}
g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}} \\
g_{K}(s, e)=K s+e \bmod q
\end{gathered}
$$

$$
\text { where } K \leftarrow \mathbb{Z}_{\mathrm{q}}^{m \times n} \text { and } e_{i} \in \chi \text { if }\left|e_{i}\right| \leq \mu=\frac{q}{4}
$$

Homomorphic property

$\triangleright g_{K}(s, e)+g_{K}\left(s_{0}, e_{0}\right) \bmod q=\left(K s+e+K s_{0}+e_{0}\right) \bmod q=g_{K}\left(\left(s+s_{0}\right) \bmod q, e+e_{0}\right)$

Homomorphic property

$>g_{K}(s, e)+g_{K}\left(s_{0}, e_{0}\right) \bmod q=\left(K s+e+K s_{0}+e_{0}\right) \bmod q=g_{K}\left(\left(s+s_{0}\right) \bmod q, e+e_{0}\right)$

- Issue: domain of g_{K} imposes that each component of $e+e_{0}$ must be bounded by μ !
- Otherwise, we will just have 1 preimage;

Homomorphic property

$>g_{K}(s, e)+g_{K}\left(s_{0}, e_{0}\right) \bmod q=\left(K s+e+K s_{0}+e_{0}\right) \bmod q=g_{K}\left(\left(s+s_{0}\right) \bmod q, e+e_{0}\right)$

- Issue: domain of g_{K} imposes that each component of $e+e_{0}$ must be bounded by μ !
- Otherwise, we will just have 1 preimage;
- To solve this:
- We are sampling e_{0} from a smaller set, such that when added with a random input e, the total noise $e+e_{0}$ is bounded by μ with high probability;
- We showed that if e_{0} is sampled such that it is bounded by $\mu^{\prime}=\frac{\mu}{m}$, then $e+e_{0}$ lies in the domain of the function with constant probability $\square f$ is 2 -regular with constant probability
- However, what we must show is that when e_{0} is restricted to this smaller domain $g_{K}\left(s_{0}, e_{0}\right)$ is still hard to invert.

Homomorphic property

$>g_{K}(s, e)+g_{K}\left(s_{0}, e_{0}\right) \bmod q=\left(K s+e+K s_{0}+e_{0}\right) \bmod q=g_{K}\left(\left(s+s_{0}\right) \bmod q, e+e_{0}\right)$

- Issue: domain of g_{K} imposes that each component of $e+e_{0}$ must be bounded by μ !
- Otherwise, we will just have 1 preimage;
- To solve this:
- We are sampling e_{0} from a smaller set, such that when added with a random input e, the total noise $e+e_{0}$ is bounded by μ with high probability;
- We showed that if e_{0} is sampled such that it is bounded by $\mu^{\prime}=\frac{\mu}{m}$, then $e+e_{0}$ lies in the domain of the function with constant probability $\Rightarrow f$ is 2 -regular with constant probability
- However, what we must show is that when e_{0} is restricted to this smaller domain $g_{K}\left(s_{0}, e_{0}\right)$ is still hard to invert.

Finally, we show there exists an explicit choice of parameters such that both g and the restriction of g to the domain of e_{0} are one-way functions and such that all the other properties of g are preserved.

Malicious QFactory

Function Construction

Malicious QFactory Required Assumptions

One-way
This function is hard
to invert.

2-Regular
2 preimages for any element in $\operatorname{Im}\left(f_{k}\right)$

Trapdoor
except if you have the trapdoor t_{k} associated to the index function k

$g_{k}: D \rightarrow R$ injective, homomorphic, quantum-safe, trapdoor one-way;

$$
\begin{gathered}
f_{k}: D \times\{0,1\} \rightarrow R \\
f_{k}(x, c)= \begin{cases}g_{k}(x), & \text { if } c=0 \\
g_{k}(x) \star g_{k}\left(x_{0}\right)=g_{k}\left(x+x_{0}\right), & \text { if } c=1\end{cases}
\end{gathered}
$$

Domain
Has the same domain as g and outputs a single bit.

Homomorphic
$h_{l}\left(x_{1}\right) \oplus h_{l}\left(x_{2}\right)$ $=h_{l}\left(x_{2}-x_{1}\right)$

Functions $\left\{h_{l}\right\}$

Hardcore Predicate
When x is sampled uniformly at random, it is hard to distinguish $h_{l}(x)$ from a random bit

Malicious QFactory functions

- "QHBC" functions:

$$
\begin{array}{ll}
\bar{g}_{K}: \mathbb{Z}_{\mathbf{q}}^{\mathrm{n}} \times \chi^{m} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}} & \bar{f}_{K^{\prime}}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}} \\
K \stackrel{\$}{\mathbb{Z}_{\mathbf{q}}^{m \times n}} & K^{\prime}=\left(K, \bar{g}_{K}\left(s_{0}, e_{0}\right)\right) \\
\bar{g}_{K}(s, e)=K s+e \bmod q & \bar{f}_{K^{\prime}}(s, e, c)=\bar{g}_{K}(s, e)+c \cdot \bar{g}_{K}\left(s_{0}, e_{0}\right)
\end{array}
$$

Malicious QFactory functions

- "QHBC" functions:

$$
\begin{array}{ll}
\bar{g}_{K}: \mathbb{Z}_{\mathbf{q}}^{\mathrm{n}} \times \chi^{m} \rightarrow \mathbb{Z}_{\mathbf{q}}^{\mathrm{m}} & \bar{f}_{K^{\prime}}: \mathbb{Z}_{\mathbf{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathbf{q}}^{\mathrm{m}} \\
K \stackrel{\$ \mathbb{Z}_{\mathrm{q}}^{m \times n}}{ } & K^{\prime}=\left(K, \bar{g}_{K}\left(s_{0}, e_{0}\right)\right) \\
\bar{g}_{K}(s, e)=K s+e \bmod q & \bar{f}_{K^{\prime}}(s, e, c)=\bar{g}_{K}(s, e)+c \cdot \bar{g}_{K}\left(s_{0}, e_{0}\right)
\end{array}
$$

- "Malicious" functions:

$$
\begin{array}{cl}
g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}} & f_{K^{\prime}}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}} \\
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q & f_{K^{\prime}}(s, e, d, c)=g_{K}(s, e, d)+c \cdot g_{K}\left(s_{0}, e_{0}, d_{0}\right)
\end{array}
$$

where $v=\left(\begin{array}{c}\frac{q}{2} \\ 0 \\ \ldots \\ 0\end{array}\right) \in \mathbb{Z}^{\mathrm{m}}$.

Construction of the function h

$\Rightarrow g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}}$

$$
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q=K s+e+d \cdot\left(\begin{array}{c}
\frac{q}{2} \\
0 \\
\ldots \\
0
\end{array}\right) \bmod q
$$

Construction of the function h

$\Rightarrow g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}}$

$$
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q=K s+e+d \cdot\left(\begin{array}{c}
\frac{q}{2} \\
0 \\
\ldots \\
0
\end{array}\right) \bmod q
$$

- $h: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow\{0,1\}$

$$
h(s, e, d)=d
$$

Construction of the function h

$\Rightarrow g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}}$

$$
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q=K s+e+d \cdot\left(\begin{array}{c}
\frac{q}{2} \\
0 \\
\ldots \\
0
\end{array}\right) \bmod q
$$

$\Rightarrow h: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow\{0,1\}$

$$
h(s, e, d)=d
$$

Properties of g

1. Homomorphic:

$$
\begin{aligned}
& g_{K}\left(s_{1}, e_{1}, d_{1}\right)+g_{K}\left(s_{2}, e_{2}, d_{2}\right)=\bar{g}_{K}\left(s_{1}, e_{1}\right)+d_{1} \cdot v+\bar{g}_{K}\left(s_{2}, e_{2}\right)+d_{2} \cdot v \bmod q= \\
& \bar{g}_{K}\left(s_{1}+s_{2} \bmod q, e_{1}+e_{2}\right)+\left(d_{1}+d_{2}\right) \cdot v \bmod q=\bar{g}_{K}\left(s_{1}+s_{2} \bmod q, e_{1}+e_{2}, d_{1} \oplus d_{2}\right)
\end{aligned}
$$

Construction of the function h

$\Rightarrow \quad g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}}$

$$
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q=K s+e+d \cdot\left(\begin{array}{c}
\frac{q}{2} \\
0 \\
\ldots \\
0
\end{array}\right) \bmod q
$$

$\Rightarrow h: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow\{0,1\}$

$$
h(s, e, d)=d
$$

Properties of g

1. Homomorphic:

$$
\begin{aligned}
& g_{K}\left(s_{1}, e_{1}, d_{1}\right)+g_{K}\left(s_{2}, e_{2}, d_{2}\right)=\bar{g}_{K}\left(s_{1}, e_{1}\right)+d_{1} \cdot v+\bar{g}_{K}\left(s_{2}, e_{2}\right)+d_{2} \cdot v \bmod q= \\
& \bar{g}_{K}\left(s_{1}+s_{2} \bmod q, e_{1}+e_{2}\right)+\left(d_{1}+d_{2}\right) \cdot v \bmod q=\bar{g}_{K}\left(s_{1}+s_{2} \bmod q, e_{1}+e_{2}, d_{1} \oplus d_{2}\right)
\end{aligned}
$$

2. One-way:
$>\quad$ Reduction to the one - wayness of \bar{g}_{K} :
To invert $y=\bar{g}_{K}(s, e)$:

$$
\begin{gathered}
d \stackrel{\$}{\leftarrow}\{0,1\} \\
y^{\prime} \leftarrow y+d \cdot v \\
\left(s^{\prime}, e^{\prime}, d^{\prime}\right) \leftarrow A_{K}\left(y^{\prime}\right) \\
\text { return }\left(s^{\prime}, e^{\prime}\right)
\end{gathered}
$$

Construction of the function h

$\Rightarrow \quad g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}}$

Properties of g

$$
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q=K s+e+d \cdot\left(\begin{array}{c}
\frac{q}{2} \\
0 \\
\ldots \\
0
\end{array}\right) \bmod q
$$

3. Injective:
>Suppose $\exists\left(s_{1}, e_{1}, d_{1}\right),\left(s_{2}, e_{2}, d_{2}\right)$ s.t. $g_{K}\left(s_{1}, e_{1}, d_{1}\right)=g_{K}\left(s_{2}, e_{2}, d_{2}\right)$
$>\bar{g}_{K}\left(s_{1}, e_{1}\right)-\bar{g}_{K}\left(s_{2}, e_{2}\right)+\left(d_{1}-d_{2}\right) \cdot v=0 \bmod q$
$>$ If $d_{1}=d_{2}$ then $\bar{g}_{K}\left(s_{1}, e_{1}\right)=\bar{g}_{K}\left(s_{2}, e_{2}\right) \Rightarrow s_{1}=s_{2}, e_{1}=e_{2}$

Construction of the function h

$\Rightarrow g_{K}: \mathbb{Z}_{\mathbf{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathbf{q}}^{\mathrm{m}}$

Properties of g

$$
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q=K s+e+d \cdot\left(\begin{array}{c}
\frac{q}{2} \\
0 \\
\ldots \\
0
\end{array}\right) \bmod q
$$

3. Injective:
> Suppose $\exists\left(s_{1}, e_{1}, d_{1}\right),\left(s_{2}, e_{2}, d_{2}\right)$ s.t. $g_{K}\left(s_{1}, e_{1}, d_{1}\right)=g_{K}\left(s_{2}, e_{2}, d_{2}\right)$
$>\bar{g}_{K}\left(s_{1}, e_{1}\right)-\bar{g}_{K}\left(s_{2}, e_{2}\right)+\left(d_{1}-d_{2}\right) \cdot v=0 \bmod q$
$>$ If $d_{1}=d_{2}$ then $\bar{g}_{K}\left(s_{1}, e_{1}\right)=\bar{g}_{K}\left(s_{2}, e_{2}\right) \Rightarrow s_{1}=s_{2}, e_{1}=e_{2}$

- If $d_{1} \neq d_{2} \Rightarrow \bar{g}_{K}\left(s_{1}, e_{1}\right)-\bar{g}_{K}\left(s_{2}, e_{2}\right)=v \quad \Leftrightarrow K\left(s_{1}-s_{2}\right)+\left(e_{1}-e_{2}\right)=\left(\begin{array}{c}\frac{q}{2} \\ 0 \\ \ldots \\ 0\end{array}\right) \bmod q$

$$
>K=\binom{K_{1}}{\bar{K}}, e_{1}-e_{2}=e=\binom{e^{\prime}}{\bar{e}} \quad \stackrel{(*)}{\Rightarrow} \quad\left\{\begin{array}{l}
\left\langle K_{1}, s_{1}-s_{2}\right\rangle+e^{\prime}=\frac{q}{2} \tag{1}\\
\bar{K}\left(s_{1}-s_{2}\right)+\bar{e}=0
\end{array}\right.
$$

$>$ But $\bar{g}_{\bar{K}}$ is also injective (\bar{g} is injective $\forall m=\Omega(n)$)

$$
\stackrel{(2)}{\Rightarrow} s_{1}=s_{2}
$$

$$
\begin{gathered}
\stackrel{(1)}{\Rightarrow} e^{\prime}=\frac{q}{2} . \text { But }\left|e^{\prime}\right|=\left|e_{1,1}-e_{2,1}\right| \leq\left|e_{1,1}\right|+\left|e_{2,1}\right|<\frac{q}{2} . \\
\text { Contradiction }
\end{gathered}
$$

Construction of the function h

$\Rightarrow g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}}$

$$
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q=K s+e+d \cdot\left(\begin{array}{c}
\frac{q}{2} \\
0 \\
\ldots \\
0
\end{array}\right) \bmod q
$$

$\Rightarrow h: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow\{0,1\}$

$$
h(s, e, d)=d
$$

Properties of h

1. Homomorphic $h\left(x_{1}\right) \oplus h\left(x_{2}\right)=h\left(x_{2}-x_{1}\right)$
$>h\left(s_{1}, e_{1}, d_{1}\right) \oplus h\left(s_{2}, e_{2}, d_{2}\right)=d_{1} \oplus d_{2}=h\left(s_{2}-s_{1} \bmod q, e_{2}-e_{1}, d_{2} \oplus d_{1}\right)$

Construction of the function h

$\Rightarrow g_{K}: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}}$

$$
g_{K}(s, e, d)=\bar{g}_{K}(s, e)+d \cdot v \bmod q=K s+e+d \cdot\left(\begin{array}{c}
\frac{q}{2} \\
0 \\
\ldots \\
0
\end{array}\right) \bmod q
$$

$>h: \mathbb{Z}_{\mathrm{q}}^{\mathrm{n}} \times \chi^{m} \times\{0,1\} \rightarrow\{0,1\}$

$$
h(s, e, d)=d
$$

Properties of h

1. Homomorphic $h\left(x_{1}\right) \oplus h\left(x_{2}\right)=h\left(x_{2}-x_{1}\right)$
$>h\left(s_{1}, e_{1}, d_{1}\right) \oplus h\left(s_{2}, e_{2}, d_{2}\right)=d_{1} \oplus d_{2}=h\left(s_{2}-s_{1} \bmod q, e_{2}-e_{1}, d_{2} \oplus d_{1}\right)$
2. Hardcore predicate (wrt g):
> Given $\left(K, g_{K}(s, e, d)\right)$ is hard to guess d
$>\quad$ Hard to distinguish: $D_{1}=\{K, K s+e\}$ and $D_{2}=\{K, K s+e+v\}$
> From decisional LWE: $D_{1} \stackrel{c}{\approx}\{K, u\}, u \stackrel{u}{\leftarrow} \mathbb{Z}_{\mathrm{q}}^{\mathrm{m}}$
> vis a fixed vector: $D_{2} \stackrel{c}{\approx}\{K, u\} \stackrel{c}{\approx} D_{1}$

Summary and Future work

- QFactory: simulates quantum channel from classical channel;
- Solve blind delegated quantum computations using quan \rightarrow classical client;
- Protocol is secure in the malicious setting;
- Several extensions of the protocol can be achieved, including classical verification of quantum computations;

Summary and Future work

- QFactory: simulates quantum channel from classical channel;
- Solve blind delegated quantum computations using quanternt \rightarrow classical client;
- Protocol is secure in the malicious setting;
- Several extensions of the protocol can be achieved, including classical verification of quantum computations;

Next:

- Improve the efficiency of the QFactory protocol, by looking at other post-quantum solutions;
- Prove the security of the QFactory module in the composable setting;
- Explore new possible applications (e.g. multiparty quantum computation).

1) "On the possibility of classical client blind quantum computing" (Cojocaru, Colisson, Kashefi, Wallden)

- https://arxiv.org/abs/1802.08759

2) "QFactory: classically-instructed remote secret qubits preparation"(Cojocaru, Colisson, Kashefi, Wallden)

- https://arxiv.org/abs/1904.06303

Thank you!

MP Trapdoor function

- $q=2^{k}$
$-g^{t}=\left[2^{0} 2^{1} \ldots 2^{k-1}\right] \in \mathbb{Z}_{\mathbf{q}}^{k}$
- $G=I_{n} \otimes g^{t} \in \mathbb{Z}_{\mathrm{q}}^{\mathrm{n} \times n \mathrm{k}}$

MP Trapdoor function

- 1) Invert $\bar{b}=g_{g^{t}}(s, e)=s \cdot g^{t}+e^{t}$,
where $e \in \mathbb{Z}^{k}, s=s_{k-1} s_{k-2} \ldots s_{1} s_{0} \in \mathbb{Z}_{\mathrm{q}}, s_{i} \in\{0,1\}$ and $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right]$

MP Trapdoor function

- I) Invert $\bar{b}=g_{g^{t}}(s, e)=s \cdot g^{t}+e^{t}$,
where $e \in \mathbb{Z}^{k}, s=s_{k-1} s_{k-2} \ldots s_{1} s_{0} \in \mathbb{Z}_{\mathrm{q}}, s_{i} \in\{0,1\}$ and $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right]$
$>\bar{b}=\left[2^{0} \cdot s+e_{0}, 2^{1} \cdot s+e_{1}, \ldots, 2^{k-1} \cdot s+e_{k-1}\right]$
$\Rightarrow \bar{b}_{k-1}=2^{k-1} \cdot s+e_{k-1}=2^{k-1} \cdot\left(s_{0}+2 s_{1}+\ldots+2^{k-1} s_{k-1}\right)+e_{k-1}$
- $\bar{b}_{k-1}=2^{k-1} \cdot s_{0}+e_{k-1} \bmod q=\frac{q}{2} \cdot s_{0}+e_{k-1} \bmod q$

MP Trapdoor function

- I) Invert $\bar{b}=g_{g^{t}}(s, e)=s \cdot g^{t}+e^{t}$,
where $e \in \mathbb{Z}^{k}, s=s_{k-1} s_{k-2} \ldots s_{1} s_{0} \in \mathbb{Z}_{\mathrm{q}}, s_{i} \in\{0,1\}$ and $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right]$
$>\bar{b}=\left[2^{0} \cdot s+e_{0}, 2^{1} \cdot s+e_{1}, \ldots, 2^{k-1} \cdot s+e_{k-1}\right]$
$\downarrow \bar{b}_{k-1}=2^{k-1} \cdot s+e_{k-1}=2^{k-1} \cdot\left(s_{0}+2 s_{1}+\ldots+2^{k-1} s_{k-1}\right)+e_{k-1}$
- $\bar{b}_{k-1}=2^{k-1} \cdot s_{0}+e_{k-1} \bmod q=\frac{q}{2} \cdot s_{0}+e_{k-1} \bmod q$
- If \bar{b}_{k-1} is closer to $\frac{q}{2}$ than to 0 , then $s_{0}=1$, otherwise $s_{0}=0$.

MP Trapdoor function

- I) Invert $\bar{b}=g_{g^{t}}(s, e)=s \cdot g^{t}+e^{t}$, where $e \in \mathbb{Z}^{k}, s=s_{k-1} s_{k-2} \ldots s_{1} s_{0} \in \mathbb{Z}_{\mathrm{q}}, s_{i} \in\{0,1\}$ and $e_{i} \in\left[-\frac{q}{4}, \frac{q}{4}\right]$
$>\bar{b}=\left[2^{0} \cdot s+e_{0}, 2^{1} \cdot s+e_{1}, \ldots, 2^{k-1} \cdot s+e_{k-1}\right]$
$\Rightarrow \bar{b}_{k-1}=2^{k-1} \cdot s+e_{k-1}=2^{k-1} \cdot\left(s_{0}+2 s_{1}+\ldots+2^{k-1} s_{k-1}\right)+e_{k-1}$
- $\bar{b}_{k-1}=2^{k-1} \cdot s_{0}+e_{k-1} \bmod q=\frac{q}{2} \cdot s_{0}+e_{k-1} \bmod q$
- If \bar{b}_{k-1} is closer to $\frac{q}{2}$ than to 0 , then $s_{0}=1$, otherwise $s_{0}=0$.
$\Rightarrow \bar{b}_{k-2}=2^{k-2} \cdot\left(s_{0}+2 s_{1}+\cdots+2^{k-1} s_{k-1}\right)+e_{k-2}$
- $\bar{b}_{k-2}=2^{k-2} s_{0}+2^{k-1} s_{1}+e_{k-2} \bmod q$
- $\bar{b}_{k-2}-2^{k-2} s_{0}=\frac{q}{2} s_{1}+e_{k-2} \bmod q$
- If $\bar{b}_{k-2}-2^{k-2} s_{0}$ is closer to $\frac{q}{2}$ than to 0 , then $s_{1}=1$, otherwise $s_{1}=0$.
- And so on ...

MP Trapdoor function

- II) Invert $\overline{\bar{b}}=g_{G}(s, e)=s^{t} \cdot G+e^{t}$
where $s=\left[\begin{array}{lll}s_{0} & s_{1} & \ldots s_{n-1}\end{array}\right] \in \mathbb{Z}_{\mathrm{q}}^{n}$ and $e=\left[e_{0} \ldots e_{n k-1}\right] \in \mathbb{Z}^{n k}$
> $\overline{\bar{b}}=\left[s_{0} \cdot g^{t}, s_{1} \cdot g^{t}, \ldots, s_{n-1} \cdot g^{t}\right]+\left[e_{0} \ldots e_{n k-1}\right]$
$>\overline{\bar{b}}=\left[g_{g^{t}}\left(s_{0}, e^{(1)}\right), g_{g^{t}}\left(s_{1}, e^{(2)}\right), \ldots, g_{g^{t}}\left(s_{n-1}, e^{(n)}\right)\right]$,
\downarrow where $e^{(1)}$ are the first n elements of $e, e^{(2)}$ - the next n elements of e and so on;
- Then, we run Invert $g_{g^{t}}(s, e) n$ times for each component of $\overline{\bar{b}}$

MP Trapdoor function

- III) Generate Key \& Trapdoor
- Idea: For an arbitrary index K, the trapdoor t_{K} is such that $K \cdot\left[\begin{array}{c}R \\ I\end{array}\right]=G$

MP Trapdoor function

- III) Generate Key \& Trapdoor
- Idea: For an arbitrary index K, the trapdoor t_{K} is such that $K \cdot\left[\begin{array}{c}R \\ I\end{array}\right]=G$
- 1) $R \stackrel{\$}{\leftarrow} \mathbb{Z}^{(m-n k) \times n k}$
- 2) $T=\left[\begin{array}{cc}I_{m-n k} & R \\ 0 & I_{n k}\end{array}\right] \Rightarrow T^{-1}=\left[\begin{array}{cc}I_{m-n k} & -R \\ 0 & I_{n k}\end{array}\right]$
- 3) $\bar{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_{\mathrm{q}}^{n \times(m-n k)}$
- 4) $A^{\prime}=[\bar{A} \mid G] \in \mathbb{Z}_{\mathrm{q}}^{n \times(n k+m-n k)}$
- 5) $K=A^{\prime} \cdot T^{-1} \in \mathbb{Z}_{\mathrm{q}}^{n \times m}$
- 6) $K=[\bar{A} \mid G] \cdot\left[\begin{array}{cc}I_{m-n k} & -R \\ 0 & I_{n k}\end{array}\right]=[\bar{A} \mid G-\bar{A} R]$
- K is close to uniform as long as $[\bar{A} \mid \bar{A} R]$ is close to uniform;
- 7) $K \cdot\left[\begin{array}{l}R \\ I\end{array}\right]=[\bar{A} \mid G-\bar{A} R] \cdot\left[\begin{array}{l}R \\ I\end{array}\right]=\bar{A} R+G-\bar{A} R=G$
- Output $K, t_{K}=R$

MP Trapdoor function

$$
\begin{aligned}
& \mathrm{IV}) \text { Invert }\left(b=g_{K}(s, e), t_{K}\right) \\
& > \\
& >s^{t} \cdot K+e^{t} \\
& > \\
& b^{\prime} \leftarrow b \cdot\left[\begin{array}{c}
t_{K} \\
I
\end{array}\right]=s^{t} \cdot K \cdot\left[\begin{array}{c}
t_{K} \\
I
\end{array}\right]+e^{t} \cdot\left[\begin{array}{c}
t_{K} \\
I
\end{array}\right]=s^{t} \cdot G+e^{t} \cdot\left[\begin{array}{c}
t_{K} \\
I
\end{array}\right]=g_{G}\left(s, e^{t} \cdot\left[\begin{array}{c}
t_{K} \\
I
\end{array}\right]\right) \\
& \quad \text { Run } \text { Invert }_{G}\left(b^{\prime}\right) \Rightarrow s, e=b-s^{t} \cdot K
\end{aligned}
$$

