

Overview

 Part 1: Malicious QFactory

 Functionality

 Required assumptions

 Protocol description

 Security

 Protocol Extensions (e.g. verification)

 Part 2: Functions implementation

 QHBC QFactory functions

 Malicious QFactory functions

II. Classical delegation of secret qubits

against Malicious Adversaries

or

Malicious 4-states QFactory

Malicious 4-states QFactory functionality

|𝑂𝑢𝑡𝑝𝑢𝑡⟩ ՚
$

{|0⟩, |1⟩, |+⟩, |−⟩}

|𝑂𝑢𝑡𝑝𝑢𝑡⟩𝑂𝑢𝑡𝑝𝑢𝑡

Motivation

There exist protocols for

most of these applications

where quantum communication

only consists of

the qubits 0 , 1 , + , −

Motivation

There exist protocols for

most of these applications

where quantum communication

only consists of

the qubits 0 , 1 , + , −

Functionality of Malicious 4-

states QFactory ⇒ classical

delegation of quantum

computation (against

malicious adversaries)

Motivation

There exist protocols for

most of these applications

where quantum communication

only consists of

the qubits 0 , 1 , + , −

Functionality of Malicious 4-

states QFactory ⇒ classical

delegation of quantum

computation (against

malicious adversaries)

as long as the basis of qubits is

hidden from any adversary

Malicious 4-states QFactory Required Assumptions

except if you have the
trapdoor 𝑡𝑘 associated
to the index function 𝑘

This function is hard
to invert.

2 preimages for any
element in 𝐼𝑚 𝑓𝑘

Without the trapdoor 𝑡𝑘,
hard to find 𝑥 ≠ 𝑥’

such that 𝑓𝑘(𝑥) = 𝑓𝑘(𝑥′)

𝑔𝑘: 𝐷 → 𝑅 injective, homomorphic, quantum-safe,

trapdoor one-way;

Malicious 4-states QFactory Required Assumptions

This function is hard
to invert.

2 preimages for any
element in 𝐼𝑚 𝑓𝑘

Without the trapdoor 𝑡𝑘,
hard to find 𝑥 ≠ 𝑥’

such that 𝑓𝑘(𝑥) = 𝑓𝑘(𝑥′)

𝑓𝑘 𝑥, 𝑐 = ቊ
𝑔𝑘 𝑥 , 𝑖𝑓 𝑐 = 0

𝑔𝑘 𝑥 ⋆ 𝑔𝑘 𝑥0 = 𝑔𝑘 𝑥 + 𝑥0 , 𝑖𝑓 𝑐 = 1

𝑓𝑘 ∶ 𝐷 × 0, 1 → 𝑅

except if you have the
trapdoor 𝑡𝑘 associated
to the index function 𝑘

where 𝑥0 is chosen by the Client at random from the domain of 𝑔𝑘

𝑔𝑘: 𝐷 → 𝑅 injective, homomorphic, quantum-safe,

trapdoor one-way;
ℎ𝑙

Has the same domain as 𝑔𝑘

and outputs a single bit.

ℎ𝑙 𝑥1 ⊕ ℎ𝑙(𝑥2)
= ℎ𝑙(𝑥2 − 𝑥1)

When 𝑥 is sampled
uniformly at random,
it is hard to distinguish
ℎ𝑙 𝑥 from a random bit.

Malicious 4-states QFactory Required Assumptions

This function is hard
to invert.

2 preimages for any
element in 𝐼𝑚 𝑓𝑘

Without the trapdoor 𝑡𝑘,
hard to find 𝑥 ≠ 𝑥’

such that 𝑓𝑘(𝑥) = 𝑓𝑘(𝑥′)

𝑓𝑘 𝑥, 𝑐 = ቊ
𝑔𝑘 𝑥 , 𝑖𝑓 𝑐 = 0

𝑔𝑘 𝑥 ⋆ 𝑔𝑘 𝑥0 = 𝑔𝑘 𝑥 + 𝑥0 , 𝑖𝑓 𝑐 = 1

𝑓𝑘 ∶ 𝐷 × 0, 1 → 𝑅

except if you have the
trapdoor 𝑡𝑘 associated
to the index function 𝑘

where 𝑥0 is chosen by the Client at random from the domain of 𝑔𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙

Malicious 4-states QFactory Protocol

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

Malicious 4-states QFactory Protocol

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

0𝑛⟩ 0𝑚⟩

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

0𝑛⟩ 0𝑚⟩ → σ𝑥∈𝐷𝑜𝑚 𝑓𝑘
𝑥 |0𝑚⟩

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

0𝑛⟩ 0𝑚⟩ → σ𝑥∈𝐷𝑜𝑚 𝑓𝑘
𝑥 |0𝑚⟩ → σ𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 |𝑓 𝑥 ⟩

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

0𝑛⟩ 0𝑚⟩ → σ𝑥∈𝐷𝑜𝑚 𝑓𝑘
𝑥 |0𝑚⟩ → σ𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 = σ𝑦∈𝐼𝑚 𝑓𝑘
(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

0𝑛⟩ 0𝑚⟩ →

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 |0𝑚⟩ →

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩

𝑥 = (𝑧, 0) 𝑥’ = (𝑧′, 1)

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

0𝑛⟩ 0𝑚⟩ →

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 |0𝑚⟩ →

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩)

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 (𝑘, 𝑡𝑘)
𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩) → |𝑧⟩|0⟩|ℎ(𝑧)⟩ + |𝑧′⟩|1⟩|ℎ(𝑧′)⟩

𝑧 𝑐 0
෪𝑈ℎ

|𝑧⟩ |𝑐⟩ |ℎ(𝑧) ⟩

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑘, 𝑡𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩) → |𝑧⟩|0⟩|ℎ(𝑧)⟩ + |𝑧′⟩|1⟩|ℎ(𝑧′)⟩ ⇒ |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑧 𝑐 0
෪𝑈ℎ

|𝑧⟩ |𝑐⟩ |ℎ(𝑧) ⟩

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑘, 𝑡𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩) → |𝑧⟩|0⟩|ℎ(𝑧)⟩ + |𝑧′⟩|1⟩|ℎ(𝑧′)⟩ ⇒ |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑧 𝑐 0
෪𝑈ℎ

|𝑧⟩ |𝑐⟩ |ℎ(𝑧) ⟩

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑘, 𝑡𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩) → |𝑧⟩|0⟩|ℎ(𝑧)⟩ + |𝑧′⟩|1⟩|ℎ(𝑧′)⟩ ⇒ |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑧 𝑐 0
෪𝑈ℎ

|𝑧⟩ |𝑐⟩ |ℎ(𝑧) ⟩

Malicious 4-states QFactory Protocol

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

𝑥 = 𝑧, 0
𝑥′ = (𝑧′, 1)

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑘, 𝑡𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩) → |𝑧⟩|0⟩|ℎ(𝑧)⟩ + |𝑧′⟩|1⟩|ℎ(𝑧′)⟩ ⇒ |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑧 𝑐 0
෪𝑈ℎ

|𝑧⟩ |𝑐⟩ |ℎ(𝑧) ⟩

𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒔 |𝑶𝒖𝒕𝒑𝒖𝒕⟩

Malicious 4-states QFactory Protocol

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

𝑥 = 𝑧, 0
𝑥′ = (𝑧′, 1)

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑘, 𝑡𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩) → |𝑧⟩|0⟩|ℎ(𝑧)⟩ + |𝑧′⟩|1⟩|ℎ(𝑧′)⟩ ⇒ |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑧 𝑐 0
෪𝑈ℎ

|𝑧⟩ |𝑐⟩ |ℎ(𝑧) ⟩

𝑦, 𝑏
𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒔 |𝑶𝒖𝒕𝒑𝒖𝒕⟩

Malicious 4-states QFactory Protocol

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

𝑥 = 𝑧, 0
𝑥′ = (𝑧′, 1)

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑘, 𝑡𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩) → |𝑧⟩|0⟩|ℎ(𝑧)⟩ + |𝑧′⟩|1⟩|ℎ(𝑧′)⟩ ⇒ |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑧 𝑐 0
෪𝑈ℎ

|𝑧⟩ |𝑐⟩ |ℎ(𝑧) ⟩

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

𝑦, 𝑏

(𝑥, 𝑥’) = 𝐼𝑛𝑣(𝑡𝑘, 𝑦)

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐵1, 𝐵2

𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒔 |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑥 = 𝑧, 0
𝑥′ = (𝑧′, 1)

Malicious 4-states QFactory Protocol

𝑈ℎ𝑙

𝑈𝑓𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑘, 𝑡𝑘

𝐶ℎ𝑜𝑜𝑠𝑒 𝑙 𝑘, 𝑙

𝐶𝑜𝑚𝑝𝑢𝑡𝑒
𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝑥∈𝐷𝑜𝑚 𝑓𝑘

𝑥 𝑓 𝑥 =

𝑦∈𝐼𝑚 𝑓𝑘

(𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ → (𝑥 + |𝑥′⟩) ⊗ |𝑦⟩ = (|𝑧⟩|0⟩ + |𝑧′⟩|1⟩) ⊗ |𝑦⟩ → (|𝑧⟩|0⟩|0⟩ + |𝑧′⟩|1⟩|0⟩) → |𝑧⟩|0⟩|ℎ(𝑧)⟩ + |𝑧′⟩|1⟩|ℎ(𝑧′)⟩ ⇒ |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑧 𝑐 0
෪𝑈ℎ

|𝑧⟩ |𝑐⟩ |ℎ(𝑧) ⟩

𝑦, 𝑏

(𝑥, 𝑥’) = 𝐼𝑛𝑣(𝑡𝑘, 𝑦)

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐵1, 𝐵2

𝑷𝒓𝒐𝒅𝒖𝒄𝒆𝒔 |𝑶𝒖𝒕𝒑𝒖𝒕⟩

𝑮𝒆𝒕𝒔 𝑶𝒖𝒕𝒑𝒖𝒕

Malicious 4-states QFactory Protocol

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

𝑥 = 𝑧, 0
𝑥′ = (𝑧′, 1)

𝑈ℎ𝑙

𝑈𝑓𝑘

Security (in the quantum malicious setting)
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩
▪ 𝐵1 = the basis bit of 𝑂𝑢𝑡𝑝𝑢𝑡
▪ If 𝐵1 = 0 then 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩, |1⟩} and if 𝐵1 = 1 then 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|+⟩, |−⟩}

• Blindness of the basis 𝐵1 of |𝑂𝑢𝑡𝑝𝑢𝑡⟩
against malicious adversaries.

• Theorem: No matter what Bob does,

he cannot determine 𝐵1.

• Server cannot do better than a random guess:

𝐵1 is a hard-core predicate (wrt the function g);

Security (in the quantum malicious setting)

➢ 𝐵1 is a hard-core predicate ⟹ basis-blindness

➢ The basis-blindness is the “maximum” security:

➢ Even after an honest run we can at most guarantee basis blindness, but not full

blindness about the output state:

➢ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

➢ Then the Adversary can determine 𝐵2 with probability at least
3

4
:

➢ Makes a random guess ෪𝐵1 and then measures 𝑂𝑢𝑡𝑝𝑢𝑡 in the ෪𝐵1 basis, obtaining

measurement outcome ෪𝐵2 : if ෪𝐵1 = 𝐵1 then ෪𝐵2 = 𝐵2 with probability 1, otherwise

෪𝐵2 = 𝐵2 with probability
1

2
;

➢ Basis-blindness is proven to be sufficient for many secure computation protocols,

e.g. blind quantum computation (UBQC protocol);

➢ Basis-blindness is required for classical verification of QFactory;

⟹ classical verification of quantum computations

Security (in the quantum malicious setting)

Recall:

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖 ′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

Security (in the quantum malicious setting)

𝐵1 = the basis bit of 𝑂𝑢𝑡𝑝𝑢𝑡
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩, |1⟩} ⇔ 𝐵1 = 0
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|+⟩, |−⟩} ⇔ 𝐵1 = 1

⇒ 𝐻𝑖𝑑𝑖𝑛𝑔 the basis equivalent to hiding
𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

Recall:

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖 ′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

Security (in the quantum malicious setting)

𝐵1 = the basis bit of 𝑂𝑢𝑡𝑝𝑢𝑡
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩, |1⟩} ⇔ 𝐵1 = 0
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|+⟩, |−⟩} ⇔ 𝐵1 = 1

⇒ 𝐻𝑖𝑑𝑖𝑛𝑔 the basis equivalent to hiding
𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

Recall:

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖 ′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

• Using the definition of 𝑓:

𝑓 𝑧, 𝑐 = 𝑔 𝑧 + 𝑐 ⋅ 𝑔 𝑧0 =
ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐

𝑔 𝑧 + 𝑐 ⋅ 𝑧0

Security (in the quantum malicious setting)

𝐵1 = the basis bit of 𝑂𝑢𝑡𝑝𝑢𝑡
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩, |1⟩} ⇔ 𝐵1 = 0
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|+⟩, |−⟩} ⇔ 𝐵1 = 1

⇒ 𝐻𝑖𝑑𝑖𝑛𝑔 the basis equivalent to hiding
𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

Recall:

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖 ′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

• Using the definition of 𝑓:

𝑓 𝑧, 𝑐 = 𝑔 𝑧 + 𝑐 ⋅ 𝑔 𝑧0 =
ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐

𝑔 𝑧 + 𝑐 ⋅ 𝑧0

• 𝑔 is injective, the 2 preimages of 𝑓 are:

𝑥 = 𝑧, 0 𝑎𝑛𝑑 𝑥’ = 𝑧 + 𝑧0, 1 ⇒ 𝑧’ = 𝑧 + 𝑧0

Security (in the quantum malicious setting)

𝐵1 = the basis bit of 𝑂𝑢𝑡𝑝𝑢𝑡
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩, |1⟩} ⇔ 𝐵1 = 0
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|+⟩, |−⟩} ⇔ 𝐵1 = 1

⇒ 𝐻𝑖𝑑𝑖𝑛𝑔 the basis equivalent to hiding
𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

Recall:

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖 ′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

• Using the definition of 𝑓:

𝑓 𝑧, 𝑐 = 𝑔 𝑧 + 𝑐 ⋅ 𝑔 𝑧0 =
ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐

𝑔 𝑧 + 𝑐 ⋅ 𝑧0

• 𝑔 is injective, the 2 preimages of 𝑓 are:

𝑥 = 𝑧, 0 𝑎𝑛𝑑 𝑥’ = 𝑧 + 𝑧0, 1 ⇒ 𝑧’ = 𝑧 + 𝑧0

• ℎ is homomorphic:

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧′ = ℎ 𝑧′ − 𝑧 = ℎ(𝑧0)

Recall:

• Using the definition of 𝑓:

𝑓 𝑧, 𝑐 = 𝑔 𝑧 + 𝑐 ⋅ 𝑔 𝑧0 =
ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐

𝑔 𝑧 + 𝑐 ⋅ 𝑧0

• 𝑔 is injective, the 2 preimages of 𝑓 are:

𝑥 = 𝑧, 0 𝑎𝑛𝑑 𝑥’ = 𝑧 + 𝑧0, 1 ⇒ 𝑧’ = 𝑧 + 𝑧0

• ℎ is homomorphic:

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧′ = ℎ 𝑧′ − 𝑧 = ℎ(𝑧0)

• ℎ is hardcore predicate:

𝐵1 = ℎ 𝑧0 𝑖𝑠 ℎ𝑖𝑑𝑑𝑒𝑛

𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩}

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐻𝐵1𝑋𝐵2|0⟩

𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

𝐵2 = σ 𝑥𝑖 ⊕ 𝑥𝑖 ′ ⋅ 𝑏𝑖 𝑚𝑜𝑑 2 ⋅ 𝐵1 ⊕
[ℎ 𝑧 ⋅ 1 ⊕ 𝐵1]

Security (in the quantum malicious setting)

𝐵1 = the basis bit of 𝑂𝑢𝑡𝑝𝑢𝑡
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|0⟩, |1⟩} ⇔ 𝐵1 = 0
▪ 𝑂𝑢𝑡𝑝𝑢𝑡 ∈ {|+⟩, |−⟩} ⇔ 𝐵1 = 1

⇒ 𝐻𝑖𝑑𝑖𝑛𝑔 the basis equivalent to hiding
𝐵1 = ℎ 𝑧 ⊕ ℎ 𝑧’

 The client picks at random 𝑧0 and then sends 𝐾′ = 𝐾, 𝑔𝐾 𝑧0 to the Server

(as the public description of 𝑓)

 As the basis of the output qubit is 𝐵1 = ℎ(𝑧0), then the basis is basically fixed

by the Client at the very beginning of the protocol.

 The output basis depends only on the Client’s random choice of 𝑧0 and is

independent of the Server’s communication.

 Then, no matter how the Server deviates and no matter what are the

messages (𝑦, 𝑏) sent by Server, to prove that the basis 𝐵1 = ℎ(𝑧0) is

completely hidden from the Server, is sufficient to use that ℎ is a hardcore

predicate.

Security (in the quantum malicious setting)

Overview

Extensions of QFactory

Malicious 8-states QFactory

 To use Malicious 4-states QFactory for applications where communication consists

of |+𝜃⟩, with 𝜃 ∈ {0,
𝜋

4
, … ,

7𝜋

4
}, we provide a gadget that achieves such a state from

2 outputs of Malicious 4-states QFactory.

Malicious 8-states QFactory

 To use Malicious 4-states QFactory for applications where communication consists

of |+𝜃⟩, with 𝜃 ∈ {0,
𝜋

4
, … ,

7𝜋

4
}, we provide a gadget that achieves such a state from

2 outputs of Malicious 4-states QFactory.

𝑜𝑢𝑡 = 𝑅 𝐿1𝜋 + 𝐿2

𝜋

2
+ 𝐿3

𝜋

4
+

𝐿3 = 𝐵1

𝐿2 = 𝐵1
′ ⊕ [𝐵2 ⊕ 𝑠2 ⋅ 𝐵1]

𝐿1 = 𝐵2
′ ⊕ 𝐵2 ⊕ [𝐵1 ⋅ (𝑠1 ⊕ 𝑠2)]

Malicious 8-states QFactory

 To use Malicious 4-states QFactory for applications where communication consists of

|+𝜃⟩, with 𝜃 ∈ {0,
𝜋

4
, … ,

7𝜋

4
}, we provide a gadget that achieves such a state from 2

outputs of Malicious 4-states QFactory.

 No information about the bases (𝐿2, 𝐿3) of the new output state |𝑜𝑢𝑡⟩ is leaked:

 We prove the basis blindness of the output of the gadget by a reduction to the

basis-blindness of 1 of the 2 outputs of Malicious 4-states QFactory;

If you could determine 𝐿2 and 𝐿3, then you would determine 𝐵1 or 𝐵1′.

𝑜𝑢𝑡 = 𝑅 𝐿1𝜋 + 𝐿2

𝜋

2
+ 𝐿3

𝜋

4
+

𝐿3 = 𝐵1

𝐿2 = 𝐵1
′ ⊕ [𝐵2 ⊕ 𝑠2 ⋅ 𝐵1]

𝐿1 = 𝐵2
′ ⊕ 𝐵2 ⊕ [𝐵1 ⋅ (𝑠1 ⊕ 𝑠2)]

Blind Measurements

 Perform a measurement on a first qubit of an arbitrary state |𝜓⟩ in such a way

that the adversary is oblivious whether he is performing a measurement in 1

out of 2 possible basis (e.g. 𝑋 or 𝑍 basis).

 Useful for classical verification of quantum computations;

 Achieved using the following gadget:

Blind Measurements

 Perform a measurement on a first qubit of an arbitrary state |𝜓⟩ in such a way

that the adversary is oblivious whether he is performing a measurement in 1

out of 2 possible basis (e.g. 𝑋 or 𝑍 basis).

 Useful for classical verification of quantum computations (Mahadev FOCS18);

 Achieved using the following gadget:

Blind Measurements

 Perform a measurement on an arbitrary state |𝜓⟩ in such a way that the
adversary is oblivious whether he is performing a measurement in 1 out of 2
possible basis (e.g. 𝑋 or 𝑍 basis).

 Useful for classical verification of quantum computations (Mahadev FOCS18);

 Achieved using the following gadget:

 No information about the basis of the measurement is leaked;

 We prove the measurement blindness of the output of the gadget by a reduction to

the basis-blindness of Malicious 4-states QFactory;

Classical verification of quantum computations

 Basis-blindness is not sufficient for verifiable blind quantum computation;

 To achieve verification, we combine Basis Blindness and Self-Testing;

Classical verification of quantum computations

 Basis-blindness is not sufficient for verifiable blind quantum computation;

 To achieve verification, we combine Basis Blindness and Self-Testing;

 Self-Testing

 Given measurement statistics, classical parties are certain that some untrusted

quantum states, that 2 non-communicating quantum parties share, are the states

that the classical parties believe to have;

 In our case, we replace the non-communication property with the basis-blindness

condition;

{ 0 , 1 , + , − }

8 states hidden bases Self-Testing

|+𝜃⟩, 𝜃 ∈ {0,
𝜋

4
, … ,

7𝜋

4
}

4 states hidden bases

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8-states QFactory multiple times – independent runs;

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8-states QFactory multiple times – independent runs;

2. The Client chooses and announces a random fraction of the output qubits of these

runs to use them for a test;

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8-states QFactory multiple times – independent runs;

2. The Client chooses and announces a random fraction of the output qubits of these

runs to use them for a test;

3. The Server is instructed by the Client to measure the test qubits in random angles

and sends the measurement results to the Client;

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8-states QFactory multiple times – independent runs;

2. The Client chooses and announces a random fraction of the output qubits of these

runs to use them for a test;

3. The Server is instructed by the Client to measure the test qubits in random angles

and sends the measurement results to the Client;

4. With the measurement results, the client knowing the basis of the test qubits and

the measurement angles, he can check their statistics;

Classical verification of quantum computations

Verification Protocol

1. We repeat Malicious 8-states QFactory multiple times – independent runs;

2. The Client chooses and announces a random fraction of the output qubits of these

runs to use them for a test;

3. The Server is instructed by the Client to measure the test qubits in random angles

and sends the measurement results to the Client;

4. With the measurement results, the client knowing the basis of the test qubits and

the measurement angles, he can check their statistics;

5. Since the server does not know the basis bits of these test states, he is unlikely to

succeed in guessing the correct statistics unless he is honest.

Classical verification of quantum computations

QHBC QFactory

Function Construction

QHBC QFactory
Required Assumptions:

I. Function Constructions

 We propose 2 generic constructions, using:

 A) A bijective, quantum-safe, trapdoor one-way function 𝑔𝑘: 𝐷 → 𝑅

I. Function Constructions

 We propose 2 generic constructions, using:

 A) A bijective, quantum-safe, trapdoor one-way function 𝑔𝑘: 𝐷 → 𝑅

 B) An injective, homomorphic, quantum-safe, trapdoor one-way function 𝑔𝑘: 𝐷 → 𝑅

where 𝑥0 is chosen by the Client at random from the domain of 𝑔𝑘

Injective, homomorphic, quantum-safe, trapdoor one-way function

Construction based on the Micciancio and Peikert trapdoor function – derived

from the Learning With Errors problem:

𝑔𝐾 ∶ ℤq
n × 𝜒𝑚 → ℤq

m

𝑔𝐾 𝑠, 𝑒 = 𝐾𝑠 + 𝑒 𝑚𝑜𝑑 𝑞

𝑤ℎ𝑒𝑟𝑒 𝐾 ՚ ℤq
𝑚×𝑛 and 𝑒𝑖 ∈ 𝜒 𝑖𝑓 𝑒𝑖 ≤ 𝜇 =

𝑞

4

Homomorphic property

 𝑔𝐾(𝑠, 𝑒) + 𝑔𝐾(𝑠0, 𝑒0) 𝑚𝑜𝑑 𝑞 = (𝐾𝑠 + 𝑒 + 𝐾𝑠0 + 𝑒0) 𝑚𝑜𝑑 𝑞 = 𝑔𝐾 𝑠 + 𝑠0 𝑚𝑜𝑑 𝑞, 𝑒 + 𝑒0

Homomorphic property

 𝑔𝐾(𝑠, 𝑒) + 𝑔𝐾(𝑠0, 𝑒0) 𝑚𝑜𝑑 𝑞 = (𝐾𝑠 + 𝑒 + 𝐾𝑠0 + 𝑒0) 𝑚𝑜𝑑 𝑞 = 𝑔𝐾 𝑠 + 𝑠0 𝑚𝑜𝑑 𝑞, 𝑒 + 𝑒0

 Issue: domain of 𝑔𝐾 imposes that each component of 𝑒 + 𝑒0 must be bounded by 𝜇 !

 Otherwise, we will just have 1 preimage;

Homomorphic property

 𝑔𝐾(𝑠, 𝑒) + 𝑔𝐾(𝑠0, 𝑒0) 𝑚𝑜𝑑 𝑞 = (𝐾𝑠 + 𝑒 + 𝐾𝑠0 + 𝑒0) 𝑚𝑜𝑑 𝑞 = 𝑔𝐾 𝑠 + 𝑠0 𝑚𝑜𝑑 𝑞, 𝑒 + 𝑒0

 Issue: domain of 𝑔𝐾 imposes that each component of 𝑒 + 𝑒0 must be bounded by 𝜇 !

 Otherwise, we will just have 1 preimage;

 To solve this:

 We are sampling 𝑒0 from a smaller set, such that when added with a random input 𝑒, the total

noise 𝑒 + 𝑒0 is bounded by 𝜇 with high probability;

 We showed that if 𝑒0 is sampled such that it is bounded by 𝜇’ =
𝜇

𝑚
, then 𝑒 + 𝑒0 lies in the domain

of the function with constant probability 𝑓 is 2-regular with constant probability

 However, what we must show is that when 𝑒0 is restricted to this smaller domain 𝑔𝐾(𝑠0, 𝑒0) is still

hard to invert.

Homomorphic property

 𝑔𝐾(𝑠, 𝑒) + 𝑔𝐾(𝑠0, 𝑒0) 𝑚𝑜𝑑 𝑞 = (𝐾𝑠 + 𝑒 + 𝐾𝑠0 + 𝑒0) 𝑚𝑜𝑑 𝑞 = 𝑔𝐾 𝑠 + 𝑠0 𝑚𝑜𝑑 𝑞, 𝑒 + 𝑒0

 Issue: domain of 𝑔𝐾 imposes that each component of 𝑒 + 𝑒0 must be bounded by 𝜇 !

 Otherwise, we will just have 1 preimage;

 To solve this:

 We are sampling 𝑒0 from a smaller set, such that when added with a random input 𝑒, the total

noise 𝑒 + 𝑒0 is bounded by 𝜇 with high probability;

 We showed that if 𝑒0 is sampled such that it is bounded by 𝜇’ =
𝜇

𝑚
, then 𝑒 + 𝑒0 lies in the domain

of the function with constant probability 𝑓 is 2-regular with constant probability

 However, what we must show is that when 𝑒0 is restricted to this smaller domain 𝑔𝐾(𝑠0, 𝑒0) is still

hard to invert.

 Finally, we show there exists an explicit choice of parameters such that both 𝑔 and the

restriction of 𝑔 to the domain of 𝑒0 are one-way functions and such that all the other

properties of 𝑔 are preserved.

Malicious QFactory

Function Construction

𝑔𝑘: 𝐷 → 𝑅 injective, homomorphic, quantum-safe,

trapdoor one-way;
ℎ𝑙

Has the same domain as 𝑔𝑘

and outputs a single bit.

ℎ𝑙 𝑥1 ⊕ ℎ𝑙(𝑥2)
= ℎ𝑙(𝑥2 − 𝑥1)

When 𝑥 is sampled
uniformly at random,
it is hard to distinguish
ℎ𝑙 𝑥 from a random bit.

Malicious QFactory Required Assumptions

This function is hard
to invert.

2 preimages for any
element in 𝐼𝑚 𝑓𝑘

Without the trapdoor 𝑡𝑘,
hard to find 𝑥 ≠ 𝑥’

such that 𝑓𝑘(𝑥) = 𝑓𝑘(𝑥′)

𝑓𝑘 𝑥, 𝑐 = ቊ
𝑔𝑘 𝑥 , 𝑖𝑓 𝑐 = 0

𝑔𝑘 𝑥 ⋆ 𝑔𝑘 𝑥0 = 𝑔𝑘 𝑥 + 𝑥0 , 𝑖𝑓 𝑐 = 1

𝑓𝑘 ∶ 𝐷 × 0, 1 → 𝑅

except if you have the
trapdoor 𝑡𝑘 associated
to the index function 𝑘

Malicious QFactory functions

 “QHBC” functions:

ത𝑔𝐾 ∶ ℤq
n × 𝜒𝑚 → ℤq

m ҧ𝑓𝐾′ ∶ ℤq
n × 𝜒𝑚 × 0, 1 → ℤq

m

𝐾 ՚
$

ℤq
𝑚×𝑛 𝐾′ = 𝐾, ത𝑔𝐾 𝑠0, 𝑒0

ത𝑔𝐾 𝑠, 𝑒 = 𝐾𝑠 + 𝑒 𝑚𝑜𝑑 𝑞 ҧ𝑓𝐾′ 𝑠, 𝑒, 𝑐 = ത𝑔𝐾 𝑠, 𝑒 + 𝑐 ⋅ ത𝑔𝐾 𝑠0, 𝑒0

Malicious QFactory functions

 “QHBC” functions:

ҧ𝑔𝐾 ∶ ℤq
n × 𝜒𝑚 → ℤq

m ҧ𝑓𝐾′ ∶ ℤq
n × 𝜒𝑚 × 0, 1 → ℤq

m

𝐾 ՚
$

ℤq
𝑚×𝑛 𝐾′ = 𝐾, ҧ𝑔𝐾 𝑠0, 𝑒0

ҧ𝑔𝐾 𝑠, 𝑒 = 𝐾𝑠 + 𝑒 𝑚𝑜𝑑 𝑞 ҧ𝑓𝐾′ 𝑠, 𝑒, 𝑐 = ҧ𝑔𝐾 𝑠, 𝑒 + 𝑐 ⋅ ҧ𝑔𝐾 𝑠0, 𝑒0

 “Malicious” functions:

𝑔𝐾 ∶ ℤq
n × 𝜒𝑚 × 0, 1 → ℤq

m 𝑓𝐾′ ∶ ℤq
n × 𝜒𝑚 × 0, 1 × 0, 1 → ℤq

m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ҧ𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 𝑓𝐾′ 𝑠, 𝑒, 𝑑, 𝑐 = 𝑔𝐾 𝑠, 𝑒, 𝑑 + 𝑐 ⋅ 𝑔𝐾 𝑠0, 𝑒0, 𝑑0

where 𝑣 =

𝑞

2

0
…
0

∈ ℤm.

Construction of the function ℎ
 𝑔𝐾 ∶ ℤq

n × 𝜒𝑚 × 0, 1 → ℤq
m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ത𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = 𝐾𝑠 + 𝑒 + 𝑑 ⋅

𝑞

2
0
…
0

𝑚𝑜𝑑 𝑞

Construction of the function ℎ
 𝑔𝐾 ∶ ℤq

n × 𝜒𝑚 × 0, 1 → ℤq
m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ത𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = 𝐾𝑠 + 𝑒 + 𝑑 ⋅

𝑞

2
0
…
0

𝑚𝑜𝑑 𝑞

 ℎ ∶ ℤq
n × 𝜒𝑚 × 0, 1 → {0, 1}

ℎ 𝑠, 𝑒, 𝑑 = 𝑑

Construction of the function ℎ
 𝑔𝐾 ∶ ℤq

n × 𝜒𝑚 × 0, 1 → ℤq
m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ത𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = 𝐾𝑠 + 𝑒 + 𝑑 ⋅

𝑞

2
0
…
0

𝑚𝑜𝑑 𝑞

 ℎ ∶ ℤq
n × 𝜒𝑚 × 0, 1 → {0, 1}

ℎ 𝑠, 𝑒, 𝑑 = 𝑑

1. Homomorphic:

➢ 𝑔𝐾 𝑠1, 𝑒1, 𝑑1 + 𝑔𝐾 𝑠2, 𝑒2, 𝑑2 = ҧ𝑔𝐾 𝑠1, 𝑒1 + 𝑑1 ⋅ 𝑣 + ҧ𝑔𝐾 𝑠2, 𝑒2 + 𝑑2 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 =
ҧ𝑔𝐾 𝑠1 + 𝑠2 𝑚𝑜𝑑 𝑞 , 𝑒1 + 𝑒2 + 𝑑1 + 𝑑2 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = ҧ𝑔𝐾 𝑠1 + 𝑠2 𝑚𝑜𝑑 𝑞 , 𝑒1 + 𝑒2, 𝑑1 ⊕ 𝑑2

Properties of 𝑔

Construction of the function ℎ
 𝑔𝐾 ∶ ℤq

n × 𝜒𝑚 × 0, 1 → ℤq
m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ത𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = 𝐾𝑠 + 𝑒 + 𝑑 ⋅

𝑞

2
0
…
0

𝑚𝑜𝑑 𝑞

 ℎ ∶ ℤq
n × 𝜒𝑚 × 0, 1 → {0, 1}

ℎ 𝑠, 𝑒, 𝑑 = 𝑑

1. Homomorphic:

➢ 𝑔𝐾 𝑠1, 𝑒1, 𝑑1 + 𝑔𝐾 𝑠2, 𝑒2, 𝑑2 = ҧ𝑔𝐾 𝑠1, 𝑒1 + 𝑑1 ⋅ 𝑣 + ҧ𝑔𝐾 𝑠2, 𝑒2 + 𝑑2 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 =
ҧ𝑔𝐾 𝑠1 + 𝑠2 𝑚𝑜𝑑 𝑞 , 𝑒1 + 𝑒2 + 𝑑1 + 𝑑2 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = ҧ𝑔𝐾 𝑠1 + 𝑠2 𝑚𝑜𝑑 𝑞 , 𝑒1 + 𝑒2, 𝑑1 ⊕ 𝑑2

2. One-way:

➢ 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑛𝑒 − 𝑤𝑎𝑦𝑛𝑒𝑠𝑠 𝑜𝑓 ҧ𝑔𝐾:

𝑇𝑜 𝑖𝑛𝑣𝑒𝑟𝑡 𝑦 = ҧ𝑔𝐾(𝑠, 𝑒) :

𝑑 ՚
$

0, 1
𝑦′ ՚ 𝑦 + 𝑑 ⋅ 𝑣

𝑠′, 𝑒′, 𝑑′ ՚ 𝐴𝐾 𝑦′

𝑟𝑒𝑡𝑢𝑟𝑛 (𝑠′, 𝑒′)

Properties of 𝑔

Construction of the function ℎ
 𝑔𝐾 ∶ ℤq

n × 𝜒𝑚 × 0, 1 → ℤq
m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ҧ𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = 𝐾𝑠 + 𝑒 + 𝑑 ⋅

𝑞

2
0
…
0

𝑚𝑜𝑑 𝑞

3. Injective:

➢ 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 ∃ 𝑠1, 𝑒1, 𝑑1 , 𝑠2, 𝑒2, 𝑑2 𝑠. 𝑡. 𝑔𝐾 𝑠1, 𝑒1, 𝑑1 = 𝑔𝐾 𝑠2, 𝑒2, 𝑑2

➢ ത𝑔𝐾 𝑠1, 𝑒1 − ത𝑔𝐾 𝑠2, 𝑒2 + 𝑑1 − 𝑑2 ⋅ 𝑣 = 0 𝑚𝑜𝑑 𝑞

➢ 𝐼𝑓 𝑑1 = 𝑑2 𝑡ℎ𝑒𝑛 ത𝑔𝐾 𝑠1, 𝑒1 = ത𝑔𝐾 𝑠2, 𝑒2 ⇒ 𝑠1 = 𝑠2 , 𝑒1 = 𝑒2

Properties of 𝑔

Construction of the function ℎ
 𝑔𝐾 ∶ ℤq

n × 𝜒𝑚 × 0, 1 → ℤq
m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ҧ𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = 𝐾𝑠 + 𝑒 + 𝑑 ⋅

𝑞

2
0
…
0

𝑚𝑜𝑑 𝑞

3. Injective:

➢ 𝑆𝑢𝑝𝑝𝑜𝑠𝑒 ∃ 𝑠1, 𝑒1, 𝑑1 , 𝑠2, 𝑒2, 𝑑2 𝑠. 𝑡. 𝑔𝐾 𝑠1, 𝑒1, 𝑑1 = 𝑔𝐾 𝑠2, 𝑒2, 𝑑2

➢ ҧ𝑔𝐾 𝑠1, 𝑒1 − ҧ𝑔𝐾 𝑠2, 𝑒2 + 𝑑1 − 𝑑2 ⋅ 𝑣 = 0 𝑚𝑜𝑑 𝑞

➢ 𝐼𝑓 𝑑1 = 𝑑2 𝑡ℎ𝑒𝑛 ҧ𝑔𝐾 𝑠1, 𝑒1 = ҧ𝑔𝐾 𝑠2, 𝑒2 ⇒ 𝑠1 = 𝑠2 , 𝑒1 = 𝑒2

➢ 𝐼𝑓 𝑑1 ≠ 𝑑2 ⇒ ҧ𝑔𝐾 𝑠1, 𝑒1 − ҧ𝑔𝐾 𝑠2, 𝑒2 = 𝑣 ⟺ 𝐾 𝑠1 − 𝑠2 + 𝑒1 − 𝑒2 =

𝑞

2

0
…
0

𝑚𝑜𝑑 𝑞 ∗

➢ 𝐾 =
𝐾1

ഥ𝐾
, 𝑒1 − 𝑒2 = 𝑒 =

𝑒′

ҧ𝑒

∗
ቐ

𝐾1, 𝑠1 − 𝑠2 + 𝑒′ =
𝑞

2
(1)

ഥ𝐾 𝑠1 − 𝑠2 + ҧ𝑒 = 0 (2)

➢ 𝐵𝑢𝑡 ҧ𝑔 ഥ𝐾 𝑖𝑠 𝑎𝑙𝑠𝑜 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (ҧ𝑔 𝑖𝑠 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ∀ 𝑚 = Ω 𝑛)
2

𝑠1 = 𝑠2

1
𝑒′ =

𝑞

2
. 𝐵𝑢𝑡 𝑒′ = 𝑒1,1 − 𝑒2,1 ≤ 𝑒1,1| + |𝑒2,1 <

𝑞

2
.

𝐶𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Properties of 𝑔

Construction of the function ℎ
 𝑔𝐾 ∶ ℤq

n × 𝜒𝑚 × 0, 1 → ℤq
m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ത𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = 𝐾𝑠 + 𝑒 + 𝑑 ⋅

𝑞

2
0
…
0

𝑚𝑜𝑑 𝑞

 ℎ ∶ ℤq
n × 𝜒𝑚 × 0, 1 → {0, 1}

ℎ 𝑠, 𝑒, 𝑑 = 𝑑

1. 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 ℎ 𝑥1 ⊕ ℎ(𝑥2) = ℎ(𝑥2 − 𝑥1)

➢ ℎ 𝑠1, 𝑒1, 𝑑1 ⊕ ℎ 𝑠2, 𝑒2, 𝑑2 = 𝑑1 ⊕ 𝑑2 = ℎ(𝑠2 − 𝑠1 𝑚𝑜𝑑 𝑞, 𝑒2 − 𝑒1, 𝑑2 ⊕ 𝑑1)

Properties of ℎ

Construction of the function ℎ
 𝑔𝐾 ∶ ℤq

n × 𝜒𝑚 × 0, 1 → ℤq
m

𝑔𝐾 𝑠, 𝑒, 𝑑 = ത𝑔𝐾 𝑠, 𝑒 + 𝑑 ⋅ 𝑣 𝑚𝑜𝑑 𝑞 = 𝐾𝑠 + 𝑒 + 𝑑 ⋅

𝑞

2
0
…
0

𝑚𝑜𝑑 𝑞

 ℎ ∶ ℤq
n × 𝜒𝑚 × 0, 1 → {0, 1}

ℎ 𝑠, 𝑒, 𝑑 = 𝑑

1. 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 ℎ 𝑥1 ⊕ ℎ(𝑥2) = ℎ(𝑥2 − 𝑥1)

➢ ℎ 𝑠1, 𝑒1, 𝑑1 ⊕ ℎ 𝑠2, 𝑒2, 𝑑2 = 𝑑1 ⊕ 𝑑2 = ℎ(𝑠2 − 𝑠1 𝑚𝑜𝑑 𝑞, 𝑒2 − 𝑒1, 𝑑2 ⊕ 𝑑1)

2. 𝐻𝑎𝑟𝑑𝑐𝑜𝑟𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (𝑤𝑟𝑡 𝑔):

➢ 𝐺𝑖𝑣𝑒𝑛 (𝐾, 𝑔𝐾 𝑠, 𝑒, 𝑑) 𝑖𝑠 ℎ𝑎𝑟𝑑 𝑡𝑜 𝑔𝑢𝑒𝑠𝑠 𝑑

➢ 𝐻𝑎𝑟𝑑 𝑡𝑜 𝑑𝑖𝑠𝑡𝑖𝑛𝑔𝑢𝑖𝑠ℎ: 𝐷1 = 𝐾, 𝐾𝑠 + 𝑒 𝑎𝑛𝑑 𝐷2 = {𝐾, 𝐾𝑠 + 𝑒 + 𝑣}

➢ 𝐹𝑟𝑜𝑚 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑙 𝐿𝑊𝐸: 𝐷1 ≈
𝑐

𝐾, 𝑢 , 𝑢 ՚
𝑢

ℤq
m

➢ 𝑣 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟: 𝐷2 ≈
𝑐

𝐾, 𝑢 ≈
𝑐

𝐷1

Properties of ℎ

Summary and Future work

 QFactory: simulates quantum channel from classical channel;

 Solve blind delegated quantum computations using quantum client → classical

client;

 Protocol is secure in the malicious setting;

 Several extensions of the protocol can be achieved, including classical verification

of quantum computations;

Summary and Future work

 QFactory: simulates quantum channel from classical channel;

 Solve blind delegated quantum computations using quantum client → classical
client;

 Protocol is secure in the malicious setting;

 Several extensions of the protocol can be achieved, including classical verification
of quantum computations;

Next:

 Improve the efficiency of the QFactory protocol, by looking at other post-quantum
solutions;

 Prove the security of the QFactory module in the composable setting;

 Explore new possible applications (e.g. multiparty quantum computation).

Thank you!

1) “On the possibility of classical client blind quantum computing” (Cojocaru, Colisson, Kashefi, Wallden)

 https://arxiv.org/abs/1802.08759

2) “QFactory: classically-instructed remote secret qubits preparation”(Cojocaru, Colisson, Kashefi, Wallden)

 https://arxiv.org/abs/1904.06303

https://arxiv.org/abs/1802.08759
https://arxiv.org/abs/1904.06303

MP Trapdoor function

 𝑞 = 2𝑘

 𝑔𝑡 = 20 21 … 2𝑘 −1 ∈ ℤq
k

 𝐺 = 𝐼𝑛 ⊗ 𝑔𝑡 ∈ ℤq
n×𝑛k

MP Trapdoor function

 I) Invert ത𝑏 = 𝑔𝑔𝑡 𝑠, 𝑒 = 𝑠 ⋅ 𝑔𝑡 + 𝑒𝑡,

where 𝑒 ∈ ℤ𝑘 , 𝑠 = 𝑠𝑘 −1𝑠𝑘 −2 … 𝑠1𝑠0 ∈ ℤq , 𝑠𝑖 ∈ {0,1} and 𝑒𝑖 ∈ −
𝑞

4
,

𝑞

4

MP Trapdoor function

 I) Invert ത𝑏 = 𝑔𝑔𝑡 𝑠, 𝑒 = 𝑠 ⋅ 𝑔𝑡 + 𝑒𝑡,

where 𝑒 ∈ ℤ𝑘 , 𝑠 = 𝑠𝑘 −1𝑠𝑘 −2 … 𝑠1𝑠0 ∈ ℤq , 𝑠𝑖 ∈ {0,1} and 𝑒𝑖 ∈ −
𝑞

4
,

𝑞

4

ത𝑏 = 20 ⋅ 𝑠 + 𝑒0 , 21 ⋅ 𝑠 + 𝑒1 , … , 2𝑘 −1 ⋅ 𝑠 + 𝑒𝑘 −1

ത𝑏𝑘 −1 = 2𝑘 −1 ⋅ 𝑠 + 𝑒𝑘 −1 = 2𝑘 −1 ⋅ 𝑠0 + 2𝑠1 + … + 2𝑘 −1𝑠𝑘 −1 + 𝑒𝑘 −1

ത𝑏𝑘 −1 = 2𝑘 −1 ⋅ 𝑠0 + 𝑒𝑘 −1 𝑚𝑜𝑑 𝑞 =

𝑞

2
⋅ 𝑠0 + 𝑒𝑘 −1 𝑚𝑜𝑑 𝑞

MP Trapdoor function

 I) Invert ത𝑏 = 𝑔𝑔𝑡 𝑠, 𝑒 = 𝑠 ⋅ 𝑔𝑡 + 𝑒𝑡,

where 𝑒 ∈ ℤ𝑘 , 𝑠 = 𝑠𝑘 −1𝑠𝑘 −2 … 𝑠1𝑠0 ∈ ℤq , 𝑠𝑖 ∈ {0,1} and 𝑒𝑖 ∈ −
𝑞

4
,

𝑞

4

ത𝑏 = 20 ⋅ 𝑠 + 𝑒0 , 21 ⋅ 𝑠 + 𝑒1 , … , 2𝑘 −1 ⋅ 𝑠 + 𝑒𝑘 −1

ത𝑏𝑘 −1 = 2𝑘 −1 ⋅ 𝑠 + 𝑒𝑘 −1 = 2𝑘 −1 ⋅ 𝑠0 + 2𝑠1 + … + 2𝑘 −1𝑠𝑘 −1 + 𝑒𝑘 −1

ത𝑏𝑘 −1 = 2𝑘 −1 ⋅ 𝑠0 + 𝑒𝑘 −1 𝑚𝑜𝑑 𝑞 =

𝑞

2
⋅ 𝑠0 + 𝑒𝑘 −1 𝑚𝑜𝑑 𝑞

 If ത𝑏𝑘 −1 is closer to
𝑞

2
than to 0, then 𝑠0 = 1, otherwise 𝑠0 = 0.

MP Trapdoor function

 I) Invert ത𝑏 = 𝑔𝑔𝑡 𝑠, 𝑒 = 𝑠 ⋅ 𝑔𝑡 + 𝑒𝑡,

where 𝑒 ∈ ℤ𝑘 , 𝑠 = 𝑠𝑘 −1𝑠𝑘 −2 … 𝑠1𝑠0 ∈ ℤq , 𝑠𝑖 ∈ {0,1} and 𝑒𝑖 ∈ −
𝑞

4
,

𝑞

4

ത𝑏 = 20 ⋅ 𝑠 + 𝑒0 , 21 ⋅ 𝑠 + 𝑒1 , … , 2𝑘 −1 ⋅ 𝑠 + 𝑒𝑘 −1

ത𝑏𝑘 −1 = 2𝑘 −1 ⋅ 𝑠 + 𝑒𝑘 −1 = 2𝑘 −1 ⋅ 𝑠0 + 2𝑠1 + … + 2𝑘 −1𝑠𝑘 −1 + 𝑒𝑘 −1

ത𝑏𝑘 −1 = 2𝑘 −1 ⋅ 𝑠0 + 𝑒𝑘 −1 𝑚𝑜𝑑 𝑞 =

𝑞

2
⋅ 𝑠0 + 𝑒𝑘 −1 𝑚𝑜𝑑 𝑞

 If ത𝑏𝑘 −1 is closer to
𝑞

2
than to 0, then 𝑠0 = 1, otherwise 𝑠0 = 0.

ത𝑏𝑘 −2 = 2𝑘 −2 ⋅ 𝑠0 + 2𝑠1 + ⋯ + 2𝑘 −1𝑠𝑘 −1 + 𝑒𝑘 −2

ത𝑏𝑘 −2 = 2𝑘 −2𝑠0 + 2𝑘 −1𝑠1 + 𝑒𝑘 −2 𝑚𝑜𝑑 𝑞

ത𝑏𝑘 −2 − 2𝑘 −2𝑠0 =

𝑞

2
𝑠1 + 𝑒𝑘 −2 𝑚𝑜𝑑 𝑞

 If ത𝑏𝑘 −2 − 2𝑘 −2𝑠0 is closer to
𝑞

2
than to 0, then 𝑠1 = 1, otherwise 𝑠1 = 0.

 And so on …

MP Trapdoor function

 II) Invert ധ𝑏 = 𝑔𝐺 𝑠, 𝑒 = 𝑠𝑡 ⋅ 𝐺 + 𝑒𝑡

where 𝑠 = 𝑠0 𝑠1 … 𝑠𝑛 −1 ∈ ℤq
𝑛 and 𝑒 = 𝑒0 … 𝑒𝑛𝑘 − 1 ∈ ℤ𝑛𝑘

ധ𝑏 = 𝑠0 ⋅ 𝑔𝑡 , 𝑠1 ⋅ 𝑔𝑡 , … , 𝑠𝑛 −1 ⋅ 𝑔𝑡 + 𝑒0 … 𝑒𝑛𝑘 − 1

ധ𝑏 = 𝑔𝑔𝑡 𝑠0, 𝑒 1 , 𝑔𝑔𝑡 𝑠1, 𝑒 2 , … , 𝑔𝑔𝑡 𝑠𝑛−1, 𝑒 𝑛 ,

 where 𝑒(1) are the first 𝑛 elements of 𝑒, 𝑒(2) - the next 𝑛 elements of 𝑒 and so on;

 Then, we run Invert 𝑔𝑔𝑡 𝑠, 𝑒 𝑛 times for each component of ധ𝑏

MP Trapdoor function

 III) Generate Key & Trapdoor

 Idea: For an arbitrary index 𝐾, the trapdoor 𝑡𝐾 is such that 𝐾 ⋅
𝑅
𝐼

= 𝐺

MP Trapdoor function

 III) Generate Key & Trapdoor

 Idea: For an arbitrary index 𝐾, the trapdoor 𝑡𝐾 is such that 𝐾 ⋅
𝑅
𝐼

= 𝐺

 1) 𝑅 ՚
$

ℤ 𝑚 −𝑛𝑘 ×𝑛𝑘

 2) 𝑇 =
𝐼𝑚 −𝑛𝑘 𝑅

0 𝐼𝑛𝑘
⟹ 𝑇−1 =

𝐼𝑚 −𝑛𝑘 −𝑅
0 𝐼𝑛𝑘

 3) ҧ𝐴 ՚
$

ℤq
𝑛×(𝑚 − 𝑛𝑘)

 4) 𝐴′ = ҧ𝐴 𝐺] ∈ ℤq
𝑛×(𝑛𝑘 + 𝑚 − 𝑛𝑘)

 5) 𝐾 = 𝐴′ ⋅ 𝑇−1 ∈ ℤq
𝑛×𝑚

 6) 𝐾 = ҧ𝐴 𝐺] ⋅
𝐼𝑚 −𝑛𝑘 −𝑅

0 𝐼𝑛𝑘
= ҧ𝐴 𝐺 − ҧ𝐴𝑅]

 𝐾 is close to uniform as long as ҧ𝐴 ҧ𝐴𝑅] is close to uniform;

 7) 𝐾 ⋅
𝑅
𝐼

= ҧ𝐴 𝐺 − ҧ𝐴𝑅] ⋅
𝑅
𝐼

= ҧ𝐴𝑅 + 𝐺 − ҧ𝐴𝑅 = 𝐺

 Output 𝐾 , 𝑡𝐾 = 𝑅

MP Trapdoor function

 IV) Invert 𝑏 = 𝑔𝐾 𝑠, 𝑒 , 𝑡𝐾

 𝑏 = 𝑠𝑡 ⋅ 𝐾 + 𝑒𝑡

 𝑏′ ՚ 𝑏 ⋅
𝑡𝐾

𝐼
= 𝑠𝑡 ⋅ 𝐾 ⋅

𝑡𝐾

𝐼
+ 𝑒𝑡 ⋅

𝑡𝐾

𝐼
= 𝑠𝑡 ⋅ 𝐺 + 𝑒𝑡 ⋅

𝑡𝐾

𝐼
= 𝑔𝐺 𝑠, 𝑒𝑡 ⋅

𝑡𝐾

𝐼

 Run 𝐼𝑛𝑣𝑒𝑟𝑡𝐺 𝑏′ ⟹ 𝑠 , 𝑒 = 𝑏 − 𝑠𝑡 ⋅ 𝐾

