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This is a cryptanalysis work...

o Target: DRS — a NIST lattice-based signature proposal

@ Techniques: learning & lattice

o Statistical learning = secret key information leaks
o Lattice techniques = better use of leaks

@ They claim that Parameter Set-I offers at least 128-bits of security.
We show that it actually offers at most 80-bits of security!
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Lattice

3 Definition

* A lattice £ is a discrete subgroup
* of R™.
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Lattice

Definition

A lattice £ is a discrete subgroup
of R™.

A lattice is generated by its basis
G=(g1, - ,8n) ER™M eg.
L={xG|xeZ"}.

L has infinitely many bases
G is good, B is bad.
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Finding close vectors

Each basis defines a parallelepiped P.

6/42



Finding close vectors

Each basis defines a parallelepiped P.

Babai’s round-off algorithm outputs v € £ such that v—m € P.
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GGH & NTRUSign schemes

Public key: P, secret key: S

Sign
© Hash the message to a random vector m
@ Round m (using S) tove L

Verify
@ Check v € L (using P)

@ Check v is close to m
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GGH & NTRUSign are insecure!

v—m € P(S) = (v,m) leaks some information of S.
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GGH & NTRUSign are insecure!

v—m € P(S) = (v,m) leaks some information of S.

GGH and NTRUSign were broken by “learning the parallelepiped” [NR06].

Some countermeasures were also broken by a similar attack [DN12].
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Countermeasures

Let us focus on Hash-then-Sign approach!

Provably secure method [GPV08]
@ rounding based on Gaussian sampling

@ v —m is independent of S
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Countermeasures

Let us focus on Hash-then-Sign approach!

Provably secure method [GPV08]
@ rounding based on Gaussian sampling

@ v —m is independent of S

Heuristic method [PSWO08]
@ rounding based on CVP w.r.t £,,-norm

@ the support of v— m is independent of S

e DRS [PSDS17] is an instantiation, submitted to the NIST.
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DRS

DRS = Diagonal-dominant Reduction Signature
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DRS = Diagonal-dominant Reduction Signature

Parameters: (n, D, b, Np, Nq)
@ n : the dimension
D : the diagonal coefficient
b : the magnitude of the large coefficients (i.e. {xb})

°
°
@ N : the number of large coefficients per row vector
°

Ny : the number of small coefficients (i.e. {:tl} per row vector
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DRS

DRS = Diagonal-dominant Reduction Signature

Parameters: (n, D, b, Np, Nq)
@ n : the dimension
D : the diagonal coefficient
b : the magnitude of the large coefficients (i.e. {xb})

°
°
@ N : the number of large coefficients per row vector
°

Ny : the number of small coefficients (i.e. {:tl} per row vector

D
s D D> b- Np+ Ng;
o : absolute circulant
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Message reduction algorithm

Input: a message m € 7", the secret matrix S
Output: a reduced message w such that w — m € £ and ||w|jo < D
w<—m,i<+0
repeat
W <— W — L%J_)()'S,'
i< (i+1)modn
until ||w|. <D
return w

@ 9 > Wy =
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Message reduction algorithm

Input: a message m € Z", the
secret matrix S
Output: a reduced message w s.t.
w—mé€ L and ||w||e < D
w<+<m, i+ 0
repeat
wew—[HE] 05
i< (i+1)modn
until |lw|jec < D
return w

DD E

s; = (10,1),sp = (—1,10)
w = (—933,1208)
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Message reduction algorithm

/.W

Input: a message m € Z", the
secret matrix S
Output: a reduced message w s.t.
w—mé€ L and ||w||e < D
w<+<m, i+ 0
repeat
wew—[HE] 05
i< (i+1)modn
until ||w|jeoc < D
return w

DD E

s1 = (10,1),s0 = (~1,10)
w = (—933,1208)
w=w—(—93)-s; =(-3,1301)
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Message reduction algorithm

Input: a message m € Z", the
secret matrix S
Output: a reduced message w s.t.
w—mé€ L and ||w||e < D
w<+<m, i+ 0
repeat
wew—[HE] 05
i< (i+1)modn
until ||w|jeoc < D
! return w

DD E

(10,1),s; = (—1,10)
(—933,1208)

w — (—93) -'s; = (—3,1301)
w— 130 s, = (127,1)

® S1

gg¢g
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Message reduction algorithm

Input: a message m € Z", the
secret matrix S
Output: a reduced message w s.t.
w—mé€ L and ||w||e < D
w<+<m, i+ 0
repeat
wew—[HE] 05
i< (i+1)modn
until ||w|jeoc < D
return w

DD E

= (10,1),52 = (—1,10)

= (—933,1208)

w— (—93)-s; = (—3,1301)
=w—130-s; = (127,1)
=w-—12-5 = (7,-11)

|

gg¢g¢s
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Message reduction algorithm

Input: a message m € Z", the
secret matrix S
Output: a reduced message w s.t.
w—mé€ L and ||w||e < D
w<+<m, i+ 0
repeat
wew—[HE] 05
i< (i+1)modn
until |lw|jec < D
return w

DD E

(10,1),s5 = (~1,10)

= (—933,1208)

w— (—93)-s; = (—3,1301)
=w—130-s, = (127,1)
=w-—12-5 = (7,-11)
=w—(-1)-s=(6,-1)

w S1

ggsg¢g¢s
|

o—
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Message reduction algorithm

Intuition: use s; to reduce
@ w; decreases a lot

@ for j # i, w; increases a bit
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Message reduction algorithm

Intuition: use s; to reduce
@ w; decreases a lot

@ for j # i, w; increases a bit
A reduction at i :w —w —gs;, g = [F | -0

lw — gsills =Y |wi — gsix| + [wil —|ql- D (q-w; >0)

Kk£i

<> (Iwkl + [gsikl) + lwil = [q] - D
Kk£i

= wlls = lgl- (D= Isixl)

k#i
< |lw|l1  (diagonal dominance)
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Message reduction algorithm

Intuition: use s; to reduce
@ w; decreases a lot

@ for j # i, w; increases a bit
A reduction at i :w —w —gs;, g = [F | -0

lw — gsills =Y |wi — gsix| + [wil —|ql- D (q-w; >0)

Kk£i

<> (Iwkl + [gsikl) + lwil = [q] - D
Kk£i

= wlls = lgl- (D= Isixl)

k#i
< |lw|l1  (diagonal dominance)

= message reduction always terminates!

13/42



Resistance to NR attack

The support of w: (—D, D)"

°| DRS domain
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Resistance to NR attack

The support of w: (—D, D)"

°| DRS domain

P(S)

3

The support is “zero-knowledge”, but maybe the distribution is not!

3
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Intuition

(D,D)

(-D.-D) w;

(=D,~D)

(=D,=D)

(D.D)

(D.D)

(-D-D) w;
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Correlations

Two sources of correlations between (w;, w;)
@ reduction at i and S;; # 0
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Correlations

Two sources of correlations between (w;, w;)
@ reduction at i and S;; # 0 %
@ reduction at k and Sy ;,Sy; # 0

= S, should be strongly related to W;; (the distribution of (w;, w;)) !
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Figure out the model

Can we devise a formula S;; ~ f(W;;) ?
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Figure out the model

Can we devise a formula S;j ~ f(W; ;) 7 Seems complicated!

@ cascading phenomenon: a reduction triggers another one.

@ parasite correlations

= Search for the best linear fit f ?

Search space for all linear f: too large!

= choose some features {f;} and search in span({f;}), i.e. f =>_ x/f;

18/42



Training — feature selection

Lower degree moments:
(W) = E(w;w;) B(W) =E(w; - wil'/?-w;) (W) =E(w: - |wj| - w))

A
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Training — feature selection

Lower degree moments:

A(W) =E(wiw))  B(W) =E(wi- [wi'/2-w)) (W) =E(w - |wil - w))

Not enough!

A
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Training — feature selection

(D.D)

(-D.—D) w;

(D,D) (D,D) (D,D)

(-D,-D) w; (-D,~D) w; (=D,-D) w;
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Training — feature selection

Pay more attention to the central region (i.e. |w;| small).
fs = E(wi(w; — 1)(w; + 1)w;) fs = EQ2w;(2w; — 1)(2w; + 1)w; | [2w;| < 1)

fo = E(4w;(4w; — 1)(4w; + 1)w; | |[4w;| < 1) 7 = E(Bw;(8w; — 1)(8w; + 1)w; | [B8w;| < 1)
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Training — feature selection

Pay more attention to the central region (i.e. |w;| small).
fs = E(wi(w; — 1)(w; + 1)w;) fs = EQ2w;(2w; — 1)(2w; + 1)w; | [2w;| < 1)

fo = E(4w;(4w; — 1)(4w; + 1)w; | |[4w;| < 1) 7 = E(Bw;(8w; — 1)(8w; + 1)w; | [B8w;| < 1)

Together with transposes (i.e. ff(w;, wj) = f(w;, w;)), we finally selected

7 x 2 — 1 = 13 features in experiments. o



Training — model construction

S;j seems easier to learn when (i — j mod n) is smaller.
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Training — model construction

S;j seems easier to learn when (i — j mod n) is smaller.

o ft=>"xTf, f~ =3 xf; according to (i — j mod n).

Build models by least-square fit method
@ 30 instances and 400 000 samples per instances

@ 38 core-hours

Possible improvements
@ advanced machine learning techniques
@ more blocks

@ new features
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The models

f‘
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Learning

Let's learn a new S as S’ = f(W)!

— 5.0
030
— S,,=b
020 — §,,=1
os—1 0.25|
I — §,=0
0.15 0.20
0.15
0.0
0.0
0.05
0.05
0. 0.(
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Learning

Let's learn a new S as S’ = f(W)!

0.35

o
o n o n o n ﬂ.v.l_A
m N N - - < =3
o o o o o o o
Aususp Ayjigeqold
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F(W)!

10

0n
I

24/ 42

Let's learn a new S as S’

Learning

n o n o n o n ol

m Il I I ~ = = S

o o o o o o o o
Aususp Ayjigeqold



Learning — location

Q
S=D-I+ \ is “absolute circulant”

=- more confidence via diagonal amplification
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Learning — location

The weight of k-th diagonal Wy = ZSC-?H;(

1.4t — Large coefficient
— Wy

1.2r

1.0

0.8H

0.6

0.4

0.2

0.0
0

200 400 600 800
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Learning — location

#signatures  13/16 14/16 15/16 16/16
50000 5 3 6 6
100000 - - - 20
200000 - - - 20
400000 - - - 20

Table: Location accuracy. The column, labeled by K /16, shows the number of tested instances
in which the largest N, scaled weights corresponded to exactly K large coefficient diagonals.
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Learning — location

#signatures  13/16 14/16 15/16 16/16
50000 5 3 6 6
100 000 - - - 20
200000 - - - 20
400000 - - - 20

Table: Location accuracy. The column, labeled by K /16, shows the number of tested instances
in which the largest N, scaled weights corresponded to exactly K large coefficient diagonals.

We locate all large coefficients successfully!
but we are still missing the signs!
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sign

Learning

Sij € {£b,+1,0}

0.35

0.30]

=} n
N N —

n
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o
o

< 0.10

Aysusp Ajljigeqoud

0.05]
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Learning — sign

Sij € {£b}

0.35

0.301

probability density

o
o
ol

0.00

o
N
o

0.201

o
=
%

o
o
o

-10

10
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Learning — sign

#signatures pi Pu P Prow
400000 0.9975  0.9939  0.9956  0.9323
200 000 0.9920  0.9731 0.9826  0.7546
100 000 09722  0.9330  0.9536  0.4675

50000 0.9273  0.8589  0.8921 0.1608

Table: Experimental measures for p;, py, p and prow.

p = accuracy of guessing the sign of a large coefficient
pr = accuracy for a large coefficient in the lower triangle
pu = accuracy for a large coefficient in the upper triangle

Prow = P No
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Learning — sign

##signatures pi Pu p Prow
400000 09975 09939  0.9956  0.9323
200 000 0.9920 09731  0.9826  0.7546
100000 09722 09330 009536  0.4675
50000 0.9273  0.8589  0.8921  0.1608

Table: Experimental measures for p;, pu, p and prow.

p = accuracy of guessing the sign of a large coefficient
pi = accuracy for a large coefficient in the lower triangle
pu = accuracy for a large coefficient in the upper triangle

Prow = P Np

We can determine all large coefficients in one row!
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Learning — sign

#signatures Pi Pu P Prow
400000 0.9975 0.9939 0.9956 0.9323
200000 0.9920 0.9731 0.9826 0.7546
100000 0.9722 0.9330 0.9536 0.4675

50000 0.9273 0.8589 0.8921 0.1608

Table: Experimental measures for p;, py, p and prow.

p = accuracy of guessing the sign of a large coefficient
pi = accuracy for a large coefficient in the lower triangle
pu = accuracy for a large coefficient in the upper triangle
Prow = PNb

We can determine all large coefficients in one row!
However, it is still hard to learn small coefficients...
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BDD & uSVP

BDD (Bounded Distance Decoding)

Given a lattice £ and a target t “very close” to £, to find v € L
minimizing ||v — t||.

uSVP (Unique SVP)
Given a lattice £ with A\1(£) < X2(L), to find its shortest non-zero vector.
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BDD & uSVP

BDD (Bounded Distance Decoding)

Given a lattice £ and a target t “very close” to £, to find v € L
minimizing ||v — t||.

uSVP (Unique SVP)
Given a lattice £ with A\1(£) < X2(L), to find its shortest non-zero vector.

BDD = uSVP on £’ spanned by ( B 1 >

e \ (L) = /1+dist(t, £)?
e vol(L") = vol(L)

28/42



Solving uSVP by BKZ

Required blocksize 3
[ADPS16, AGVW17]: /B/d - M(L') < 6577 - vol(L')s

)} \ D
where d = dim(L'), dg = (”—) (8 > 50).

2me
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2me

)} \ D
where d = dim(L'), dg = <”—) (8 > 50).

Cost of BKZ-(

[Che13, A|b17]: CBKZ-B = 16d - CSVP-B

Cost of solving SVP-4

e Enum[APS15]: 10.2703 In 3—1.0195+16.10
@ Sieve [Ducl7]: 20:3965+84
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Solving uSVP by BKZ

Required blocksize 3
[ADPS16, AGVW17]: /B/d - M(L') < 6577 - vol(L')s

2me

w98\ T
where d = dim(L'), dg = <—) (8 > 50).

Cost of BKZ-(

[Che13, A|b17]2 CBKZ-B = 16d - Csvp_ﬁ

Cost of solving SVP-4

@ Enum[APS15]; 20-27081n f-1.0195+16.10
o Sieve [Ducl7]: 20-3965+8.4
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Leaks help a lot!

Attack without leaks

od=n+1M(L)=b2-Np+ Ny +1
@ cost: > 2128
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Leaks help a lot!

Attack without leaks

od=n+1M(L)= b2 Np+ Ny +1
2128

@ cost: >

v

Naive attack with leaks
ed=n-+1, )\1([/): vNi+1

@ cost: 278

.

Improved attack with leaks

ed=n—Np M(L)=+VN +1

@ cost: 273

30/42



Improved BDD-uSVP attack

Red: D,+b (known), Blue: 0,+1 (unknown)

=000 OjOMM --- 10|00
Sk=

31/42



Improved BDD-uSVP attack

* ¥ ¥
* ¥
-

Let H = be HNF(L), and s = cH
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Improved BDD-uSVP attack

* ¥ ¥
* ¥
-

Let H =

be HNF(L), and s = cH

0|00
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Improved BDD-uSVP attack

H/
Let M'HM = ( HY 1 > and

. H’
let L' be the lattice spanned by ( Vol 1 )
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Improved BDD-uSVP attack

H/
Let M'HM = ( HY 1 > and

. H’
let £’ be the lattice spanned by < —H 1 )

-] dlm(ﬁl) = n— Nb
e vol(L') = vol(L)
o (L) = (b, 1)) = VAT F T
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Improved BDD-uSVP attack

Once one s; is recovered exactly = all 0's in S are determined

dim=n— N,
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Improved BDD-uSVP attack

Once one s; is recovered exactly = all 0's in S are determined

M= (070

SkM:
cM=

dim=n— N, dim=N; + Np+1=n/2

Recovering secret matrix ~ recovering a first secret.
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Improved BDD-uSVP attack

Once one s; is recovered exactly = all 0's in S are determined

M= (070

SkM:
cM=

dim=n— N, dim=N; + Np+1=n/2
Recovering secret matrix ~ recovering a first secret.

Can we do better with the help of many t, close to s;? [KF17]
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Conclusion

We present a statistical attack against DRS:
@ given 100 000 signatures, security is below 80-bits;
@ even less with the current progress of lattice algorithms.
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Modified DRS

In DRS: S = D - | + E is diagonal-dominant

Version 1 [PSDS17]
@ absolute circulant, E;; =0

o three types of coefficients

({0}, {£1}, {£b}) with
fixed numbers

36 /42



Modified DRS

In DRS: S = D - | + E is diagonal-dominant

Version 1 [PSDS17] Version 2 [PSDS18]
@ absolute circulant, E;; =0 ee, e, s {v||v|. < D}
o three types of coefficients @ variable diagonal elements

({0}, {£1}, {£b}) with
fixed numbers

36 /42



Modified DRS

In DRS: S = D - | + E is diagonal-dominant

Version 1 [PSDS17] Version 2 [PSDS18]
@ absolute circulant, E;; =0 ee, e, <i {v||v|. < D}
o three types of coefficients @ variable diagonal elements

({0}, {£1}, {£b}) with
fixed numbers

Impact

@ no circulant structure = diagonal amplification doesn't work

36 /42



Modified DRS

In DRS: S = D - | + E is diagonal-dominant

Version 1 [PSDS17] Version 2 [PSDS18]
@ absolute circulant, E;; =0 ee, e, <i {v||v|. < D}
o three types of coefficients @ variable diagonal elements

({0}, {£1}, {£b}) with
fixed numbers

Impact
@ no circulant structure = diagonal amplification doesn't work

o coefficients are less sparsely distributed = less confidence of guessing
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Learning attack on modified DRS

We regard S;; as a random variable following the same distribution.
Let S’ be the guess of S and N be the sample size.
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Learning attack on modified DRS

We regard S;; as a random variable following the same distribution.

Let S’ be the guess of S and N be the sample size.

As N grows, we hope

e Var(S;; — S/ ) < Var(S;;) = more confidence of guessing

o |ls; —s!|| < ||si|| = guessing vector gets closer to the lattice
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Some experiments on modified DRS

We conducted some experiments on reduced parameters.
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Some experiments on modified DRS

We conducted some experiments on reduced parameters.

We re-used the same approach with same features.
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Some experiments on modified DRS

We also tried the case of n blocks and some new features.

PN -~V !
Var(S; i+ S/u/) lIsi—=s;l
Var(S; iy)) [Isill
— log(N) = 15 16 — log(N) =15
~—— log(N) = 16 — log(N) =16
4 — logiN) =17 — log(N) =17
— log(N) = 18 — log(N) = 18
— log(N) =19 14 — log(N) = 19
— log(N) = 20 — log(N) = 20
3 ..,W,
2

L] IRty

VWA
"""’V"'Mvw.v WA
0.8

39/42



Some experiments on modified DRS

We also tried the case of n blocks and some new features.
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Further study is ongoing...
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Conclusion

A leak still exists despite the new countermeasure.
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Conclusion

A leak still exists despite the new countermeasure.

Work in progress

@ use timing leakage to locate the endpoint of message reduction,
then to classify samples and to choose most relevant ones

Open question

o well-designed perturbation & statistical arguments
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