Learning Strikes Again: the Case of the DRS Signature Scheme

Yang Yu¹ Léo Ducas²

¹Tsinghua University

²Centrum Wiskunde & Informatica

January 2019, London

This is a cryptanalysis work...

• Target: DRS — a NIST lattice-based signature proposal

- Target: DRS a NIST lattice-based signature proposal
- Techniques: learning & lattice

- Target: DRS a NIST lattice-based signature proposal
- Techniques: learning & lattice
 - Statistical learning \Rightarrow secret key information leaks

- Target: DRS a NIST lattice-based signature proposal
- Techniques: learning & lattice
 - Statistical learning \Rightarrow secret key information leaks
 - Lattice techniques \Rightarrow better use of leaks

- Target: DRS a NIST lattice-based signature proposal
- Techniques: learning & lattice
 - Statistical learning \Rightarrow secret key information leaks
 - Lattice techniques \Rightarrow better use of leaks
- They claim that Parameter Set-I offers at least 128-bits of security. We show that it actually offers at most 80-bits of security!

Outline

- Background
- ORS signature
- Learning secret key coefficients
- Exploiting the leaks
- Ountermeasures

Outline

Background

- ORS signature
- Searning secret key coefficients
- Exploiting the leaks
- Ountermeasures

Lattice

Definition

A lattice \mathcal{L} is a discrete subgroup of \mathbb{R}^m .

Lattice

Definition

A lattice \mathcal{L} is a discrete subgroup of \mathbb{R}^m .

A lattice is generated by its basis $\mathbf{G} = (\mathbf{g}_1, \cdots, \mathbf{g}_n) \in \mathbb{R}^{n \times m}, \text{ e.g.}$ $\mathcal{L} = \{\mathbf{xG} \mid \mathbf{x} \in \mathbb{Z}^n\}.$

Lattice

Definition

A lattice \mathcal{L} is a discrete subgroup of \mathbb{R}^m .

A lattice is generated by its basis $\mathbf{G} = (\mathbf{g}_1, \cdots, \mathbf{g}_n) \in \mathbb{R}^{n \times m}, \text{ e.g.}$ $\mathcal{L} = \{\mathbf{xG} \mid \mathbf{x} \in \mathbb{Z}^n\}.$

 \mathcal{L} has infinitely many bases **G** is good, **B** is bad.

Finding close vectors

Each basis defines a parallelepiped \mathcal{P} .

Finding close vectors

Each basis defines a parallelepiped \mathcal{P} .

Babai's round-off algorithm outputs $\mathbf{v} \in \mathcal{L}$ such that $\mathbf{v} - \mathbf{m} \in \mathcal{P}$.

GGH & NTRUSign schemes

Public key: P, secret key: S

Sign

- Hash the message to a random vector m
- **2** Round m (using S) to $v \in \mathcal{L}$

Verify

- Check $\mathbf{v} \in \mathcal{L}$ (using P)
- 2 Check v is close to m

GGH & NTRUSign are insecure!

 $\mathbf{v} - \mathbf{m} \in \mathcal{P}(\mathbf{S}) \Rightarrow (\mathbf{v}, \mathbf{m})$ leaks some information of \mathbf{S} .

GGH & NTRUSign are insecure!

 $\mathbf{v} - \mathbf{m} \in \mathcal{P}(\mathbf{S}) \Rightarrow (\mathbf{v}, \mathbf{m})$ leaks some information of \mathbf{S} .

GGH and NTRUSign were broken by "learning the parallelepiped" [NR06].

Some countermeasures were also broken by a similar attack [DN12].

Let us focus on Hash-then-Sign approach!

Provably secure method [GPV08]

- rounding based on Gaussian sampling
- $\mathbf{v} \mathbf{m}$ is independent of **S**

Let us focus on Hash-then-Sign approach!

Provably secure method [GPV08]

- rounding based on Gaussian sampling
- $\mathbf{v} \mathbf{m}$ is independent of **S**

Heuristic method [PSW08]

- \bullet rounding based on CVP w.r.t $\ell_\infty\text{-norm}$
- the support of $\mathbf{v}-\mathbf{m}$ is independent of \mathbf{S}
- DRS [PSDS17] is an instantiation, submitted to the NIST.

Outline

- ORS signature
- Searning secret key coefficients
- Exploiting the leaks
- Ountermeasures

 $\mathsf{DRS} = \mathsf{D}iagonal\text{-}dominant\ \mathsf{Reduction}\ \mathsf{S}ignature$

DRS

$\mathsf{DRS} = \mathbf{D}iagonal\text{-}dominant\ \mathbf{R}eduction\ \mathbf{S}ignature$

Parameters: (n, D, b, N_b, N_1)

- n : the dimension
- D : the diagonal coefficient
- *b* : the magnitude of the large coefficients (*i.e.* {±*b*})
- N_b : the number of large coefficients per row vector
- N_1 : the number of small coefficients (*i.e.* $\{\pm 1\}$) per row vector

DRS

$\mathsf{DRS} = \mathbf{D}iagonal\text{-}dominant\ \mathbf{R}eduction\ \mathbf{S}ignature$

Parameters: (n, D, b, N_b, N_1)

- n : the dimension
- D : the diagonal coefficient
- *b* : the magnitude of the large coefficients (*i.e.* {±*b*})
- N_b : the number of large coefficients per row vector
- N_1 : the number of small coefficients (*i.e.* $\{\pm 1\}$) per row vector

Input: a message $\mathbf{m} \in \mathbb{Z}^n$, the secret matrix **S Output:** a reduced message \mathbf{w} such that $\mathbf{w} - \mathbf{m} \in \mathcal{L}$ and $\|\mathbf{w}\|_{\infty} < D$ 1: $\mathbf{w} \leftarrow \mathbf{m}, i \leftarrow 0$ 2: repeat 3: $\mathbf{w} \leftarrow \mathbf{w} - \lfloor \frac{w_i}{D} \rfloor_{\to 0} \cdot \mathbf{s}_i$ 4: $i \leftarrow (i+1) \mod n$ 5: until $\|\mathbf{w}\|_{\infty} < D$ 6: return \mathbf{w}

Input: a message
$$\mathbf{m} \in \mathbb{Z}^n$$
, the
secret matrix **S**
Output: a reduced message \mathbf{w} s.t.
 $\mathbf{w} - \mathbf{m} \in \mathcal{L}$ and $\|\mathbf{w}\|_{\infty} < D$
1: $\mathbf{w} \leftarrow \mathbf{m}, i \leftarrow 0$
2: repeat
3: $\mathbf{w} \leftarrow \mathbf{w} - \lfloor \frac{w_i}{D} \rfloor_{\rightarrow 0} \cdot \mathbf{s}_i$
4: $i \leftarrow (i+1) \mod n$
5: until $\|\mathbf{w}\|_{\infty} < D$
6: return \mathbf{w}

$$s_1 = (10, 1), s_2 = (-1, 10)$$

 $w = (-933, 1208)$

Input: a message
$$\mathbf{m} \in \mathbb{Z}^n$$
, the
secret matrix **S**
Output: a reduced message \mathbf{w} s.t.
 $\mathbf{w} - \mathbf{m} \in \mathcal{L}$ and $\|\mathbf{w}\|_{\infty} < D$
1: $\mathbf{w} \leftarrow \mathbf{m}, i \leftarrow 0$
2: repeat
3: $\mathbf{w} \leftarrow \mathbf{w} - \lfloor \frac{w_i}{D} \rfloor_{\rightarrow 0} \cdot \mathbf{s}_i$
4: $i \leftarrow (i+1) \mod n$
5: until $\|\mathbf{w}\|_{\infty} < D$
6: return \mathbf{w}

Input: a message
$$\mathbf{m} \in \mathbb{Z}^n$$
, the
secret matrix **S**
Output: a reduced message \mathbf{w} s.t.
 $\mathbf{w} - \mathbf{m} \in \mathcal{L}$ and $\|\mathbf{w}\|_{\infty} < D$
1: $\mathbf{w} \leftarrow \mathbf{m}, i \leftarrow 0$
2: repeat
3: $\mathbf{w} \leftarrow \mathbf{w} - \lfloor \frac{w_i}{D} \rfloor_{\rightarrow 0} \cdot \mathbf{s}_i$
4: $i \leftarrow (i+1) \mod n$
5: until $\|\mathbf{w}\|_{\infty} < D$
6: return \mathbf{w}

Input: a message
$$\mathbf{m} \in \mathbb{Z}^n$$
, the
secret matrix **S**
Output: a reduced message \mathbf{w} s.t.
 $\mathbf{w} - \mathbf{m} \in \mathcal{L}$ and $\|\mathbf{w}\|_{\infty} < D$
1: $\mathbf{w} \leftarrow \mathbf{m}, i \leftarrow 0$
2: repeat
3: $\mathbf{w} \leftarrow \mathbf{w} - \lfloor \frac{w_i}{D} \rfloor_{\rightarrow 0} \cdot \mathbf{s}_i$
4: $i \leftarrow (i+1) \mod n$
5: until $\|\mathbf{w}\|_{\infty} < D$
6: return \mathbf{w}

$$\begin{split} \mathbf{s}_1 &= (10,1), \mathbf{s}_2 = (-1,10) \\ \mathbf{w} &= (-933,1208) \\ \mathbf{w} &= \mathbf{w} - (-93) \cdot \mathbf{s}_1 = (-3,1301) \\ \mathbf{w} &= \mathbf{w} - 130 \cdot \mathbf{s}_2 = (127,1) \\ \mathbf{w} &= \mathbf{w} - 12 \cdot \mathbf{s}_1 = (7,-11) \end{split}$$

Input: a message
$$\mathbf{m} \in \mathbb{Z}^n$$
, the
secret matrix **S**
Output: a reduced message \mathbf{w} s.t.
 $\mathbf{w} - \mathbf{m} \in \mathcal{L}$ and $\|\mathbf{w}\|_{\infty} < D$
1: $\mathbf{w} \leftarrow \mathbf{m}, i \leftarrow 0$
2: repeat
3: $\mathbf{w} \leftarrow \mathbf{w} - \lfloor \frac{w_i}{D} \rfloor_{\rightarrow 0} \cdot \mathbf{s}_i$
4: $i \leftarrow (i+1) \mod n$
5: until $\|\mathbf{w}\|_{\infty} < D$
6: return \mathbf{w}

$$\begin{split} \mathbf{s}_1 &= (10,1), \, \mathbf{s}_2 = (-1,10) \\ \mathbf{w} &= (-933,1208) \\ \mathbf{w} &= \mathbf{w} - (-93) \cdot \mathbf{s}_1 = (-3,1301) \\ \mathbf{w} &= \mathbf{w} - 130 \cdot \mathbf{s}_2 = (127,1) \\ \mathbf{w} &= \mathbf{w} - 12 \cdot \mathbf{s}_1 = (7,-11) \\ \mathbf{w} &= \mathbf{w} - (-1) \cdot \mathbf{s}_2 = (6,-1) \end{split}$$

Intuition: use s_i to reduce

- wi decreases a lot
- for $j \neq i$, w_j increases a bit

Intuition: use s_i to reduce

- wi decreases a lot
- for $j \neq i$, w_j increases a bit

A reduction at $i: \mathbf{w} \to \mathbf{w} - q\mathbf{s}_i, \ q = \lfloor \frac{w_i}{D} \rfloor_{\to 0}$

$$\begin{aligned} |\mathbf{w} - q\mathbf{s}_{i}||_{1} &= \sum_{k \neq i} |w_{k} - q\mathbf{s}_{i,k}| + |w_{i}| - |q| \cdot D \quad (q \cdot w_{i} > 0) \\ &\leq \sum_{k \neq i} (|w_{k}| + |q\mathbf{s}_{i,k}|) + |w_{i}| - |q| \cdot D \\ &= ||\mathbf{w}||_{1} - |q| \cdot (D - \sum_{k \neq i} |s_{i,k}|) \\ &< ||\mathbf{w}||_{1} \quad (\text{diagonal dominance}) \end{aligned}$$

Intuition: use s_i to reduce

- wi decreases a lot
- for $j \neq i$, w_j increases a bit

A reduction at $i: \mathbf{w} \to \mathbf{w} - q\mathbf{s}_i, \ q = \lfloor \frac{w_i}{D} \rfloor_{\to 0}$

$$\begin{split} \|\mathbf{w} - q\mathbf{s}_{i}\|_{1} &= \sum_{k \neq i} |w_{k} - q\mathbf{s}_{i,k}| + |w_{i}| - |q| \cdot D \quad (q \cdot w_{i} > 0) \\ &\leq \sum_{k \neq i} (|w_{k}| + |q\mathbf{s}_{i,k}|) + |w_{i}| - |q| \cdot D \\ &= \|\mathbf{w}\|_{1} - |q| \cdot (D - \sum_{k \neq i} |s_{i,k}|) \\ &< \|\mathbf{w}\|_{1} \quad (\text{diagonal dominance}) \end{split}$$

 \Rightarrow message reduction always terminates!

Resistance to NR attack

Resistance to NR attack

The support is "zero-knowledge"

Resistance to NR attack

The support is "zero-knowledge", but maybe the distribution is not!

Outline

- ORS signature
- Learning secret key coefficients
- Exploiting the leaks
- Ountermeasures

Intuition

• reduction at *i* and $S_{i,j} \neq 0$

- reduction at *i* and $S_{i,j} \neq 0$
- reduction at k and $S_{k,i}, S_{k,j} \neq 0$

- reduction at *i* and $S_{i,j} \neq 0 \bigstar$
- reduction at k and $\mathbf{S}_{k,i}, \mathbf{S}_{k,j} \neq 0$

- reduction at *i* and $S_{i,j} \neq 0 \bigstar$
- reduction at k and $S_{k,i}, S_{k,j} \neq 0$

 \Rightarrow **S**_{*i*,*j*} should be strongly related to $W_{i,j}$ (the distribution of (w_i, w_j)) !

Can we devise a formula $S_{i,j} \approx f(W_{i,j})$?

- cascading phenomenon: a reduction triggers another one.
- parasite correlations

- cascading phenomenon: a reduction triggers another one.
- parasite correlations
- \Rightarrow Search for the best linear fit f ?

- cascading phenomenon: a reduction triggers another one.
- parasite correlations
- \Rightarrow Search for the best linear fit f ?

Search space for all linear f: too large!

- cascading phenomenon: a reduction triggers another one.
- parasite correlations
- \Rightarrow Search for the best linear fit f ?

Search space for all linear f: too large! \Rightarrow choose some features $\{f_i\}$ and search in span $(\{f_i\})$, i.e. $f = \sum x_\ell f_\ell$

Lower degree moments:

 $f_1(W) = \mathbb{E}(w_i w_j) \qquad f_2(W) = \mathbb{E}(w_i \cdot |w_i|^{1/2} \cdot w_j) \qquad f_3(W) = \mathbb{E}(w_i \cdot |w_i| \cdot w_j)$

Lower degree moments:

 $f_1(W) = \mathbb{E}(w_i w_j) \qquad f_2(W) = \mathbb{E}(w_i \cdot |w_i|^{1/2} \cdot w_j) \qquad f_3(W) = \mathbb{E}(w_i \cdot |w_i| \cdot w_j)$

Not enough!

20 / 42

Pay more attention to the central region (i.e. $|w_i|$ small).

 $f_4 = \mathbb{E}(w_i(w_i - 1)(w_i + 1)w_j) \qquad f_5 = \mathbb{E}(2w_i(2w_i - 1)(2w_i + 1)w_j \mid |2w_i| \le 1)$

 $f_6 = \mathbb{E}(4w_i(4w_i - 1)(4w_i + 1)w_j \mid |4w_i| \le 1) \quad f_7 = \mathbb{E}(8w_i(8w_i - 1)(8w_i + 1)w_j \mid |8w_i| \le 1)$

Pay more attention to the central region (i.e. $|w_i|$ small).

 $f_4 = \mathbb{E}(w_i(w_i - 1)(w_i + 1)w_j)$ $f_5 = \mathbb{E}(2w_i(2w_i - 1)(2w_i + 1)w_j \mid |2w_i| \le 1)$

 $f_6 = \mathbb{E}(4w_i(4w_i - 1)(4w_i + 1)w_j \mid |4w_i| \le 1) \quad f_7 = \mathbb{E}(8w_i(8w_i - 1)(8w_i + 1)w_j \mid |8w_i| \le 1)$

Together with transposes (i.e. $f^t(w_i, w_j) = f(w_j, w_i)$), we finally selected $7 \times 2 - 1 = 13$ features in experiments.

 $S_{i,j}$ seems easier to learn when $(i - j \mod n)$ is smaller.

 $S_{i,j}$ seems easier to learn when $(i - j \mod n)$ is smaller.

• $f^+ = \sum x^+ f_\ell$, $f^- = \sum x^- f_\ell$ according to $(i - j \mod n)$.

 $S_{i,j}$ seems easier to learn when $(i - j \mod n)$ is smaller.

•
$$f^+ = \sum x^+ f_\ell$$
, $f^- = \sum x^- f_\ell$ according to $(i - j \mod n)$.

S_{i,j} seems easier to learn when (i − j mod n) is smaller.
f⁺ = ∑x⁺f_ℓ, f⁻ = ∑x⁻f_ℓ according to (i − j mod n).

Build models by least-square fit method

- 30 instances and 400 000 samples per instances
- 38 core-hours

S_{i,j} seems easier to learn when (i − j mod n) is smaller.
f⁺ = ∑x⁺f_ℓ, f⁻ = ∑x⁻f_ℓ according to (i − j mod n).

Build models by least-square fit method

- 30 instances and 400 000 samples per instances
- 38 core-hours

Possible improvements

• advanced machine learning techniques

S_{*i*,*j*} seems easier to learn when
$$(i - j \mod n)$$
 is smaller.
• $f^+ = \sum x^+ f_\ell$, $f^- = \sum x^- f_\ell$ according to $(i - j \mod n)$.

Build models by least-square fit method

- 30 instances and 400 000 samples per instances
- 38 core-hours

Possible improvements

- advanced machine learning techniques
- more blocks

S_{*i*,*j*} seems easier to learn when
$$(i - j \mod n)$$
 is smaller.
• $f^+ = \sum x^+ f_\ell$, $f^- = \sum x^- f_\ell$ according to $(i - j \mod n)$.

Build models by least-square fit method

- 30 instances and 400 000 samples per instances
- 38 core-hours

Possible improvements

- advanced machine learning techniques
- more blocks
- new features

The models

0.75 0.5 0.25 > 0.0 -0.25 -0.5 -0.75 -1 -0.75 -0.5 -0.25 0.0 X 0.25 0.5 -1 0.75

 f^{-}

 f^+

Learning

Let's learn a new **S** as $\mathbf{S}' = f(W)!$

Learning

Let's learn a new **S** as $\mathbf{S}' = f(W)!$

Learning

Let's learn a new **S** as $\mathbf{S}' = f(W)!$

Learning — location

is "absolute circulant"

 \Rightarrow more confidence via diagonal amplification

Learning — location

The weight of k-th diagonal $\mathcal{W}_k = \sum \mathbf{S}'_{i,i+k}^2$

#signatures	13/16	14/16	15/16	16/16
50 000	5	3	6	6
100 000	-	-	-	20
200 000	-	-	-	20
400 000	-	-	-	20

Table: Location accuracy. The column, labeled by K/16, shows the number of tested instances in which the largest N_b scaled weights corresponded to exactly K large coefficient diagonals.

#signatures	13/16	14/16	15/16	16/16
50 000	5	3	6	6
100 000	-	-	-	20
200 000	-	-	-	20
400 000	-	-	-	20

Table: Location accuracy. The column, labeled by K/16, shows the number of tested instances in which the largest N_b scaled weights corresponded to exactly K large coefficient diagonals.

We locate all large coefficients successfully!

#signatures	13/16	14/16	15/16	16/16
50 000	5	3	6	6
100 000	-	-	-	20
200 000	-	-	-	20
400 000	-	-	-	20

Table: Location accuracy. The column, labeled by K/16, shows the number of tested instances in which the largest N_b scaled weights corresponded to exactly K large coefficient diagonals.

We locate all large coefficients successfully!

but we are still missing the signs!

Learning — sign

 $\textbf{S}_{i,j} \in \{\pm b, \pm 1, 0\}$

Learning — sign

 $\mathbf{S}_{i,j} \in \{\pm b\}$

#signatures	<i>p</i> 1	p_u	р	<i>p</i> _{row}
400 000	0.9975	0.9939	0.9956	0.9323
200 000	0.9920	0.9731	0.9826	0.7546
100 000	0.9722	0.9330	0.9536	0.4675
50 000	0.9273	0.8589	0.8921	0.1608

Table: Experimental measures for p_l, p_u, p and p_{row} .

p = accuracy of guessing the sign of a large coefficient $p_l =$ accuracy for a large coefficient in the lower triangle $p_u =$ accuracy for a large coefficient in the upper triangle $p_{row} = p^{N_b}$

#signatures	p _l	p_u	р	<i>p</i> _{row}
400 000	0.9975	0.9939	0.9956	0.9323
200 000	0.9920	0.9731	0.9826	0.7546
100 000	0.9722	0.9330	0.9536	0.4675
50 000	0.9273	0.8589	0.8921	0.1608

Table: Experimental measures for p_l, p_u, p and p_{row} .

p = accuracy of guessing the sign of a large coefficient $p_l =$ accuracy for a large coefficient in the lower triangle $p_u =$ accuracy for a large coefficient in the upper triangle $p_{row} = p^{N_b}$

We can determine all large coefficients in one row!

#signatures	p _l	<i>p</i> _u	р	<i>p</i> _{row}
400 000	0.9975	0.9939	0.9956	0.9323
200 000	0.9920	0.9731	0.9826	0.7546
100 000	0.9722	0.9330	0.9536	0.4675
50 000	0.9273	0.8589	0.8921	0.1608

Table: Experimental measures for p_l, p_u, p and p_{row} .

p = accuracy of guessing the sign of a large coefficient $p_l =$ accuracy for a large coefficient in the lower triangle $p_u =$ accuracy for a large coefficient in the upper triangle $p_{row} = p^{N_b}$

We can determine all large coefficients in one row! However, it is still hard to learn small coefficients...

Outline

- ORS signature
- Searning secret key coefficients
- Exploiting the leaks
- Ountermeasures
BDD & uSVP

BDD (Bounded Distance Decoding)

Given a lattice \mathcal{L} and a target \mathbf{t} "very close" to \mathcal{L} , to find $\mathbf{v} \in \mathcal{L}$ minimizing $\|\mathbf{v} - \mathbf{t}\|$.

uSVP (Unique SVP)

Given a lattice \mathcal{L} with $\lambda_1(\mathcal{L}) \ll \lambda_2(\mathcal{L})$, to find its shortest non-zero vector.

BDD & uSVP

BDD (Bounded Distance Decoding)

Given a lattice \mathcal{L} and a target \mathbf{t} "very close" to \mathcal{L} , to find $\mathbf{v} \in \mathcal{L}$ minimizing $\|\mathbf{v} - \mathbf{t}\|$.

uSVP (Unique SVP)

Given a lattice \mathcal{L} with $\lambda_1(\mathcal{L}) \ll \lambda_2(\mathcal{L})$, to find its shortest non-zero vector.

 $\mathsf{BDD} \Rightarrow \mathsf{uSVP} \text{ on } \mathcal{L}' \text{ spanned by } \left(\begin{array}{c} \mathsf{B} \\ \mathsf{t} & 1 \end{array}\right)$

BDD & uSVP

BDD (Bounded Distance Decoding)

Given a lattice \mathcal{L} and a target \mathbf{t} "very close" to \mathcal{L} , to find $\mathbf{v} \in \mathcal{L}$ minimizing $\|\mathbf{v} - \mathbf{t}\|$.

uSVP (Unique SVP)

Given a lattice \mathcal{L} with $\lambda_1(\mathcal{L}) \ll \lambda_2(\mathcal{L})$, to find its shortest non-zero vector.

 $\mathsf{BDD} \Rightarrow \mathsf{uSVP} \text{ on } \mathcal{L}' \text{ spanned by } \left(\begin{array}{c} \mathsf{B} \\ \mathsf{+} \end{array}\right)$

$$\begin{pmatrix} \mathbf{D} \\ \mathbf{t} & 1 \end{pmatrix}$$

\

•
$$\lambda_1(\mathcal{L}') = \sqrt{1 + \mathsf{dist}(\mathsf{t}, \mathcal{L})^2}$$

• $\operatorname{vol}(\mathcal{L}') = \operatorname{vol}(\mathcal{L})$

Solving uSVP by BKZ

Required blocksize β

[ADPS16, AGVW17]:
$$\sqrt{\beta/d} \cdot \lambda_1(\mathcal{L}') \leq \delta_{\beta}^{2\beta-d} \cdot \operatorname{vol}(\mathcal{L}')^{\frac{1}{d}}$$

where $d = \dim(\mathcal{L}')$, $\delta_{\beta} \approx \left(\frac{(\pi\beta)^{\frac{1}{\beta}}\beta}{2\pi e}\right)^{\frac{1}{2(\beta-1)}} (\beta > 50).$

Required blocksize β

[ADPS16, AGVW17]:
$$\sqrt{\beta/d} \cdot \lambda_1(\mathcal{L}') \leq \delta_{\beta}^{2\beta-d} \cdot \operatorname{vol}(\mathcal{L}')^{\frac{1}{d}}$$

where $d = \dim(\mathcal{L}')$, $\delta_{\beta} \approx \left(\frac{(\pi\beta)^{\frac{1}{\beta}}\beta}{2\pi e}\right)^{\frac{1}{2(\beta-1)}} (\beta > 50).$

Cost of BKZ- β

[Che13, Alb17]: $C_{BKZ-\beta} = 16d \cdot C_{SVP-\beta}$

Required blocksize β

[ADPS16, AGVW17]:
$$\sqrt{\beta/d} \cdot \lambda_1(\mathcal{L}') \leq \delta_{\beta}^{2\beta-d} \cdot \operatorname{vol}(\mathcal{L}')^{\frac{1}{d}}$$

where $d = \dim(\mathcal{L}')$, $\delta_{\beta} \approx \left(\frac{(\pi\beta)^{\frac{1}{\beta}}\beta}{2\pi e}\right)^{\frac{1}{2(\beta-1)}} (\beta > 50).$

Cost of BKZ- β

[Che13, Alb17]: $C_{BKZ-\beta} = 16d \cdot C_{SVP-\beta}$

Cost of solving SVP- β

• Enum[APS15]: $2^{0.270\beta \ln \beta - 1.019\beta + 16.10}$

Required blocksize β

[ADPS16, AGVW17]:
$$\sqrt{\beta/d} \cdot \lambda_1(\mathcal{L}') \leq \delta_{\beta}^{2\beta-d} \cdot \operatorname{vol}(\mathcal{L}')^{\frac{1}{d}}$$

where $d = \dim(\mathcal{L}')$, $\delta_{\beta} \approx \left(\frac{(\pi\beta)^{\frac{1}{\beta}}\beta}{2\pi e}\right)^{\frac{1}{2(\beta-1)}} (\beta > 50).$

Cost of BKZ- β

[Che13, Alb17]: $C_{BKZ-\beta} = 16d \cdot C_{SVP-\beta}$

Cost of solving SVP- β

- Enum[APS15]: $2^{0.270\beta \ln \beta 1.019\beta + 16.10}$
- Sieve [Duc17]: 2^{0.396β+8.4}

Required blocksize β

[ADPS16, AGVW17]:
$$\sqrt{\beta/d} \cdot \lambda_1(\mathcal{L}') \leq \delta_{\beta}^{2\beta-d} \cdot \operatorname{vol}(\mathcal{L}')^{\frac{1}{d}}$$

where $d = \dim(\mathcal{L}')$, $\delta_{\beta} \approx \left(\frac{(\pi\beta)^{\frac{1}{\beta}}\beta}{2\pi e}\right)^{\frac{1}{2(\beta-1)}} (\beta > 50).$

Cost of BKZ- β

[Che13, Alb17]: $C_{BKZ-\beta} = 16d \cdot C_{SVP-\beta}$

Cost of solving SVP- β

- Enum[APS15]: $2^{0.270\beta \ln \beta 1.019\beta + 16.10} \star$
- Sieve [Duc17]: 2^{0.396β+8.4}

Leaks help a lot!

Attack without leaks

•
$$d = n + 1$$
, $\lambda_1(\mathcal{L}') = \sqrt{b^2 \cdot N_b + N_1 + 1}$
• cost: $> 2^{128}$

Leaks help a lot!

Attack without leaks

- d = n + 1, $\lambda_1(\mathcal{L}') = \sqrt{\mathbf{b}^2 \cdot \mathbf{N_b} + \mathbf{N_1} + 1}$
- cost: $> 2^{128}$

Naive attack with leaks

•
$$d = n + 1$$
, $\lambda_1(\mathcal{L}') = \sqrt{N_1 + 1}$

Leaks help a lot!

Attack without leaks

•
$$d = n + 1$$
, $\lambda_1(\mathcal{L}') = \sqrt{b^2 \cdot N_b + N_1 + 1}$
• cost: $> 2^{128}$

Naive attack with leaks

•
$$\mathbf{d} = \mathbf{n} + \mathbf{1}, \ \lambda_1(\mathcal{L}') = \sqrt{N_1 + 1}$$

• cost: 2^{78}

Improved attack with leaks

•
$$\mathbf{d} = \mathbf{n} - \mathbf{N}_{\mathbf{b}}, \ \lambda_1(\mathcal{L}') = \sqrt{N_1 + 1}$$

• cost: 2⁷³

Red: $D, \pm b$ (known), **Blue:** $0, \pm 1$ (unknown)

t=	0	0	0	0	0	• • •	0	0	0
$\mathbf{s}_k =$						• • •			

Let ${\boldsymbol{\mathsf{M}}}$ such that

$$\begin{array}{c|ccccc} \mathbf{t}\mathsf{M} = & 0 & 0 & \cdots & 0 \\ \mathbf{s}_k \mathsf{M} = & & = (\mathbf{b}, \mathbf{r}) \\ \mathbf{c}\mathsf{M} = & & = (\mathbf{p}, \mathbf{r}) \end{array}$$

Let
$$\mathbf{M}^t \mathbf{H} \mathbf{M} = \begin{pmatrix} \mathbf{H}' \\ \mathbf{H}'' & \mathbf{I} \end{pmatrix}$$
 and
let \mathcal{L}' be the lattice spanned by $\begin{pmatrix} \mathbf{H}' \\ \mathbf{t}' = \mathbf{r} \mathbf{H}'' & \mathbf{I} \end{pmatrix}$

Let
$$\mathbf{M}^{t}\mathbf{H}\mathbf{M} = \begin{pmatrix} \mathbf{H}' \\ \mathbf{H}'' & \mathbf{I} \end{pmatrix}$$
 and
let \mathcal{L}' be the lattice spanned by $\begin{pmatrix} \mathbf{H}' \\ \mathbf{t}' = \mathbf{r}\mathbf{H}'' & \mathbf{I} \end{pmatrix}$
 $\bullet \dim(\mathcal{L}') = n - N_{b}$

•
$$\operatorname{vol}(\mathcal{L}') = \operatorname{vol}(\mathcal{L})$$

•
$$\lambda_1(\mathcal{L}') = \|(\mathbf{b}, 1)\| = \sqrt{N_1 + 1}$$

Once one s_i is recovered exactly \Rightarrow all 0's in S are determined

 $\dim = n - N_b$

Once one s_i is recovered exactly \Rightarrow all 0's in S are determined

 $\dim = n - N_b$

 $\dim = N_1 + N_b + 1 \approx n/2$

Once one s_i is recovered exactly \Rightarrow all 0's in S are determined

Recovering secret matrix \approx recovering a first secret.

Once one s_i is recovered exactly \Rightarrow all 0's in S are determined

Recovering secret matrix \approx recovering a first secret.

Can we do better with the help of many t_k close to s_k ? [KF17]

We present a statistical attack against DRS:

- given 100 000 signatures, security is below 80-bits;
- even less with the current progress of lattice algorithms.

Outline

- ORS signature
- Searning secret key coefficients
- Exploiting the leaks
- Ountermeasures

In DRS: $S = D \cdot I + E$ is diagonal-dominant

Version 1 [PSDS17]

- absolute circulant, $\mathbf{E}_{i,i} = 0$
- three types of coefficients ({0}, {±1}, {±b}) with fixed numbers

In DRS: $S = D \cdot I + E$ is diagonal-dominant

Version 1 [PSDS17]

- absolute circulant, $E_{i,i} = 0$
- three types of coefficients ({0}, {±1}, {±b}) with fixed numbers

Version 2 [PSDS18]

•
$$\mathbf{e}_1, \cdots, \mathbf{e}_n \stackrel{\$}{\leftarrow} \{\mathbf{v} \mid \|\mathbf{v}\|_1 < D\}$$

• variable diagonal elements

In DRS: $S = D \cdot I + E$ is diagonal-dominant

Version 1 [PSDS17]

- absolute circulant, $E_{i,i} = 0$
- three types of coefficients ({0}, {±1}, {±b}) with fixed numbers

Version 2 [PSDS18]

•
$$\mathbf{e}_1, \cdots, \mathbf{e}_n \stackrel{\$}{\leftarrow} \{\mathbf{v} \mid \|\mathbf{v}\|_1 < D\}$$

• variable diagonal elements

Impact

 $\bullet\,$ no circulant structure \Rightarrow diagonal amplification doesn't work

In DRS: $S = D \cdot I + E$ is diagonal-dominant

Version 1 [PSDS17]

- absolute circulant, $E_{i,i} = 0$
- three types of coefficients ({0}, {±1}, {±b}) with fixed numbers

Version 2 [PSDS18]

•
$$\mathbf{e}_1, \cdots, \mathbf{e}_n \stackrel{\$}{\leftarrow} \{\mathbf{v} \mid \|\mathbf{v}\|_1 < D\}$$

• variable diagonal elements

Impact

- no circulant structure \Rightarrow diagonal amplification doesn't work
- \bullet coefficients are less sparsely distributed \Rightarrow less confidence of guessing

We regard $S_{i,j}$ as a random variable following the same distribution. Let S' be the guess of S and N be the sample size. We regard $S_{i,j}$ as a random variable following the same distribution. Let S' be the guess of S and N be the sample size.

As N grows, we hope

- Var(S_{i,j} − S'_{i,j}) < Var(S_{i,j}) ⇒ more confidence of guessing
- $\|\mathbf{s}_i \mathbf{s}_i'\| < \|\mathbf{s}_i\| \Rightarrow$ guessing vector gets closer to the lattice

We conducted some experiments on reduced parameters.

We conducted some experiments on reduced parameters.

We re-used the same approach with same features.

300

We also tried the case of n blocks and some new features.

 $\frac{\text{Var}(\textbf{S}_{j,i+j} - \textbf{S}_{j,i+j}')}{\text{Var}(\textbf{S}_{j,i+j})}$

We also tried the case of n blocks and some new features.

 $\frac{\text{Var}(\textbf{S}_{j,i+j}-\textbf{S}_{j,i+j}')}{\text{Var}(\textbf{S}_{j,i+j})}$

Conclusion

A leak still exists despite the new countermeasure.

A leak still exists despite the new countermeasure.

Work in progress

• use timing leakage to locate the endpoint of message reduction, then to classify samples and to choose most relevant ones

Open question

• well-designed perturbation & statistical arguments

Thank you!

References

[NR06]. Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures. Phong Q. Nguyen and Oded Regev. EUROCRYPT 2006.

[DN12]. Learning a Zonotope and More: Cryptanalysis of NTRUSign Countermeasures. Léo Ducas and Phong Q. Nguyen. ASIACRYPT 2012.

[GPV08]. Trapdoors for hard lattices and new cryptographic constructions. Craig Gentry and Chris Peikert and Vinod Vaikuntanathan. STOC 2008.

[PSW08]. A Digital Signature Scheme Based on ${\rm CVP}_\infty.$ Thomas Plantard and Willy Susilo and Khin Than Win. PKC 2008.

[PSDS17]. DRS : Diagonal dominant Reduction for lattice-based Signature. Thomas Plantard and Arnaud Sipasseuth and Cedric Dumondelle and Willy Susilo. Submitted to the NIST PQC Competition.

[ADPS16]. Post-quantum Key Exchange—A New Hope. Erdem Alkim and Léo Ducas and Thomas Pöppelmann and Peter Schwabe. USENIX Security 2016.

[AGVW17]. Revisiting the Expected Cost of Solving uSVP and Applications to LWE. Martin R. Albrecht and Florian Göpfert and Fernando Virdia and Thomas Wunderer. ASIACRYPT 2017.

[Che13]. Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe. Yuanmi Chen. https://www.theses.fr/2013PA077242.

[Alb17]. On Dual Lattice Attacks Against Small-Secret LWE and Parameter Choices in HElib and SEAL. Martin R. Albrecht. EUROCRYPT 2017.

[APS15]. On the concrete hardness of Learning with Errors. Martin R. Albrecht and Rachel Player and Sam Scott. Journal of Mathematical Cryptology.

[Duc17]. Shortest Vector from Lattice Sieving: a Few Dimensions for Free. Léo Ducas. EUROCRYPT 2018.

[KF17]. Revisiting Lattice Attacks on overstretched NTRU parameters. Paul Kirchner and Pierre-Alain Fouque. EUROCRYPT 2017.

[PSD518]. DRS : Diagonal dominant Reduction for lattice-based Signature Version 2. Thomas Plantard and Arnaud Sipasseuth and Cedric Dumondelle and Willy Susilo. https://www.uow.edu.au/thomaspl/drs/current/specification.pdf.