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This is a cryptanalysis work...

Target: DRS — a NIST lattice-based signature proposal

Techniques: learning & lattice

Statistical learning ⇒ secret key information leaks
Lattice techniques ⇒ better use of leaks

They claim that Parameter Set-I offers at least 128-bits of security.
We show that it actually offers at most 80-bits of security!

2 / 42



This is a cryptanalysis work...

Target: DRS — a NIST lattice-based signature proposal

Techniques: learning & lattice

Statistical learning ⇒ secret key information leaks
Lattice techniques ⇒ better use of leaks

They claim that Parameter Set-I offers at least 128-bits of security.
We show that it actually offers at most 80-bits of security!

2 / 42



This is a cryptanalysis work...

Target: DRS — a NIST lattice-based signature proposal

Techniques: learning & lattice

Statistical learning ⇒ secret key information leaks

Lattice techniques ⇒ better use of leaks

They claim that Parameter Set-I offers at least 128-bits of security.
We show that it actually offers at most 80-bits of security!

2 / 42



This is a cryptanalysis work...

Target: DRS — a NIST lattice-based signature proposal

Techniques: learning & lattice

Statistical learning ⇒ secret key information leaks
Lattice techniques ⇒ better use of leaks

They claim that Parameter Set-I offers at least 128-bits of security.
We show that it actually offers at most 80-bits of security!

2 / 42



This is a cryptanalysis work...

Target: DRS — a NIST lattice-based signature proposal

Techniques: learning & lattice

Statistical learning ⇒ secret key information leaks
Lattice techniques ⇒ better use of leaks

They claim that Parameter Set-I offers at least 128-bits of security.
We show that it actually offers at most 80-bits of security!

2 / 42



Outline

1 Background

2 DRS signature

3 Learning secret key coefficients

4 Exploiting the leaks

5 Countermeasures

3 / 42



Outline

1 Background

2 DRS signature

3 Learning secret key coefficients

4 Exploiting the leaks

5 Countermeasures

4 / 42



Lattice

Definition

A lattice L is a discrete subgroup
of Rm.

A lattice is generated by its basis
G = (g1, · · · , gn) ∈ Rn×m, e.g.
L = {xG | x ∈ Zn}.

L has infinitely many bases
G is good, B is bad.
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Finding close vectors

Each basis defines a parallelepiped P.
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Babai’s round-off algorithm outputs v ∈ L such that v −m ∈ P.
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GGH & NTRUSign schemes

Public key: P, secret key: S

Sign

1 Hash the message to a random vector m

2 Round m (using S) to v ∈ L

Verify

1 Check v ∈ L (using P)

2 Check v is close to m
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GGH & NTRUSign are insecure!

v −m ∈ P(S) ⇒ (v,m) leaks some information of S.

GGH and NTRUSign were broken by “learning the parallelepiped” [NR06].

Some countermeasures were also broken by a similar attack [DN12].
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Countermeasures

Let us focus on Hash-then-Sign approach!

Provably secure method [GPV08]

rounding based on Gaussian sampling

v −m is independent of S

Heuristic method [PSW08]

rounding based on CVP w.r.t `∞-norm

the support of v −m is independent of S

DRS [PSDS17] is an instantiation, submitted to the NIST.
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DRS

DRS = Diagonal-dominant Reduction Signature

Parameters: (n,D, b,Nb,N1)

n : the dimension

D : the diagonal coefficient

b : the magnitude of the large coefficients (i.e. {±b})
Nb : the number of large coefficients per row vector

N1 : the number of small coefficients (i.e. {±1}) per row vector

S =


D

D
. . .

D

+ ←
{

D > b · Nb + N1;
absolute circulant
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Message reduction algorithm

Input: a message m ∈ Zn, the secret matrix S
Output: a reduced message w such that w −m ∈ L and ‖w‖∞ < D

1: w← m, i ← 0
2: repeat
3: w← w − bwi

D c→0 · si
4: i ← (i + 1) mod n
5: until ‖w‖∞ < D
6: return w
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Message reduction algorithm

Intuition: use si to reduce

wi decreases a lot

for j 6= i , wj increases a bit

A reduction at i : w→ w − qsi , q = bwi
D c→0

‖w − qsi‖1 =
∑
k 6=i

|wk − qsi ,k |+ |wi | − |q| · D (q · wi > 0)

≤
∑
k 6=i

(|wk |+ |qsi ,k |) + |wi | − |q| · D

= ‖w‖1 − |q| · (D −
∑
k 6=i

|si ,k |)

< ‖w‖1 (diagonal dominance)

⇒ message reduction always terminates!
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Resistance to NR attack

The support of w: (−D,D)n

DRS domain

P(S)

The support is “zero-knowledge”, but maybe the distribution is not!
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Intuition
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Correlations

Two sources of correlations between (wi ,wj)

reduction at i and Si ,j 6= 0

reduction at k and Sk,i ,Sk,j 6= 0

⇒ Si ,j should be strongly related to Wi ,j (the distribution of (wi ,wj)) !
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Figure out the model

Can we devise a formula Si ,j ≈ f (Wi ,j) ?

Seems complicated!

cascading phenomenon: a reduction triggers another one.

parasite correlations

⇒ Search for the best linear fit f ?

Search space for all linear f : too large!
⇒ choose some features {fi} and search in span({fi}), i.e. f =

∑
x`f`
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Training — feature selection

Lower degree moments:
f1(W ) = E(wiwj ) f2(W ) = E(wi · |wi |1/2 · wj ) f3(W ) = E(wi · |wi | · wj )
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Training — feature selection
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Training — feature selection

Pay more attention to the central region (i.e. |wi | small).
f4 = E(wi (wi − 1)(wi + 1)wj ) f5 = E(2wi (2wi − 1)(2wi + 1)wj | |2wi | ≤ 1)
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f6 = E(4wi (4wi − 1)(4wi + 1)wj | |4wi | ≤ 1) f7 = E(8wi (8wi − 1)(8wi + 1)wj | |8wi | ≤ 1)

-1 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1
x

-1

-0.75

-0.5

-0.25

0.0

0.25

0.5

0.75

1

y

-1 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1
x

-1

-0.75

-0.5

-0.25

0.0

0.25

0.5

0.75

1

y

Together with transposes (i.e. f t(wi ,wj) = f (wj ,wi )), we finally selected
7× 2− 1 = 13 features in experiments.
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Training — model construction

Si ,j seems easier to learn when (i − j mod n) is smaller.

f + =
∑

x+f`, f
− =

∑
x−f` according to (i − j mod n).

Build models by least-square fit method

30 instances and 400 000 samples per instances

38 core-hours

Possible improvements

advanced machine learning techniques

more blocks

new features
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The models
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Learning

Let’s learn a new S as S′ = f (W )!
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Learning — location

S = D · I+ is “absolute circulant”

⇒ more confidence via diagonal amplification
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Learning — location

The weight of k-th diagonal Wk =
∑

S′2i ,i+k
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Learning — location

#signatures 13/16 14/16 15/16 16/16

50 000 5 3 6 6
100 000 - - - 20
200 000 - - - 20
400 000 - - - 20

Table: Location accuracy. The column, labeled by K/16, shows the number of tested instances
in which the largest Nb scaled weights corresponded to exactly K large coefficient diagonals.
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200 000 - - - 20
400 000 - - - 20

Table: Location accuracy. The column, labeled by K/16, shows the number of tested instances
in which the largest Nb scaled weights corresponded to exactly K large coefficient diagonals.

We locate all large coefficients successfully!
but we are still missing the signs!
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Learning — sign

Si ,j ∈ {±b,±1, 0}
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Learning — sign

Si ,j ∈ {±b}
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Learning — sign

#signatures pl pu p prow
400 000 0.9975 0.9939 0.9956 0.9323
200 000 0.9920 0.9731 0.9826 0.7546
100 000 0.9722 0.9330 0.9536 0.4675
50 000 0.9273 0.8589 0.8921 0.1608

Table: Experimental measures for pl , pu , p and prow .

p = accuracy of guessing the sign of a large coefficient

pl = accuracy for a large coefficient in the lower triangle

pu = accuracy for a large coefficient in the upper triangle

prow = pNb
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Table: Experimental measures for pl , pu , p and prow .

p = accuracy of guessing the sign of a large coefficient

pl = accuracy for a large coefficient in the lower triangle

pu = accuracy for a large coefficient in the upper triangle

prow = pNb

We can determine all large coefficients in one row!
However, it is still hard to learn small coefficients...
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BDD & uSVP

BDD (Bounded Distance Decoding)

Given a lattice L and a target t “very close” to L, to find v ∈ L
minimizing ‖v − t‖.

uSVP (Unique SVP)

Given a lattice L with λ1(L)� λ2(L), to find its shortest non-zero vector.

BDD ⇒ uSVP on L′ spanned by

(
B
t 1

)
λ1(L′) =

√
1 + dist(t,L)2

vol(L′) = vol(L)
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Solving uSVP by BKZ

Required blocksize β

[ADPS16, AGVW17]:
√
β/d · λ1(L′) ≤ δ2β−d

β · vol(L′)
1
d

where d = dim(L′), δβ ≈
(

(πβ)
1
β β

2πe

) 1
2(β−1)

(β > 50).

Cost of BKZ-β

[Che13, Alb17]: CBKZ-β = 16d · CSVP-β

Cost of solving SVP-β

Enum[APS15]: 20.270β lnβ−1.019β+16.10

Sieve [Duc17]: 20.396β+8.4
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Leaks help a lot!

Attack without leaks

d = n + 1, λ1(L′) =
√
b2 · Nb + N1 + 1

cost: > 2128

Naive attack with leaks

, λ1(L′) =

cost: 278

Improved attack with leaks

d = n−Nb, λ1(L′) =
√
N1 + 1

cost: 273
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Improved BDD-uSVP attack

Red: D,±b (known), Blue: 0,±1 (unknown)

t= 0 0 0 0 0 · · · 0 0 0
sk= · · ·

Let H =


∗
∗ ∗
∗ ∗ 1

.

.

.

.

.

.
. . .

∗ ∗ 1

 be HNF (L), and s = cH

t= 0 0 0 0 0 · · · 0 0 0
sk= · · ·
c= · · ·

Let M such that

tM= 0 0 · · · 0 = (0, r)
skM= = (b, r)
cM= = (p, r)
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Improved BDD-uSVP attack

Let MtHM =

(
H′

H′′ I

)
and

let L′ be the lattice spanned by

(
H′

t′ = rH′′ 1

)

dim(L′) = n − Nb

vol(L′) = vol(L)

λ1(L′) = ‖(b, 1)‖ =
√
N1 + 1
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Improved BDD-uSVP attack

Once one si is recovered exactly ⇒ all 0’s in S are determined

tM= 0 0 · · · 0
skM=
cM=

dim = n − Nb

tM= 0 0
skM=
cM=

dim = N1 + Nb + 1 ≈ n/2

Recovering secret matrix ≈ recovering a first secret.

Can we do better with the help of many tk close to sk? [KF17]
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Conclusion

We present a statistical attack against DRS:

given 100 000 signatures, security is below 80-bits;

even less with the current progress of lattice algorithms.
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Modified DRS

In DRS: S = D · I + E is diagonal-dominant

Version 1 [PSDS17]

absolute circulant, Ei ,i = 0

three types of coefficients
({0}, {±1}, {±b}) with
fixed numbers

Version 2 [PSDS18]

e1, · · · , en
$←− {v | ‖v‖1 < D}

variable diagonal elements

Impact

no circulant structure ⇒ diagonal amplification doesn’t work

coefficients are less sparsely distributed ⇒ less confidence of guessing
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Learning attack on modified DRS

We regard Si ,j as a random variable following the same distribution.
Let S′ be the guess of S and N be the sample size.

As N grows, we hope

Var(Si ,j − S′i ,j) < Var(Si ,j) ⇒ more confidence of guessing

‖si − s′i‖ < ‖si‖ ⇒ guessing vector gets closer to the lattice
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Some experiments on modified DRS

We conducted some experiments on reduced parameters.

We re-used the same approach with same features.

Var(Sj,i+j−S′j,i+j )

Var(Sj,i+j )
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Some experiments on modified DRS

We also tried the case of n blocks and some new features.

Var(Sj,i+j−S′j,i+j )
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Further study is ongoing...
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Conclusion

A leak still exists despite the new countermeasure.

Work in progress

use timing leakage to locate the endpoint of message reduction,
then to classify samples and to choose most relevant ones

Open question

well-designed perturbation & statistical arguments
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Thank you!
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