
Implementing RLWE-based Schemes Using an
RSA Co-Processor

Martin R. Albrecht1, Christian Hanser2, Andrea Hoeller2,
Thomas Pöppelmann3, Fernando Virdia1, Andreas Wallner2

1Information Security Group, Royal Holloway, University of London, UK

2Infineon Technologies Austria AG

3Infineon Technologies AG, Germany

23 January 2019
Lattice Coding & Crypto Meeting

London

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Overview

Prelude
Post-quantum cryptography

Deploying cryptography

Deployment in general
Lattice-based cryptography

Ring arithmetic on RSA co-processors

Kronecker substitution
Splitting rings
Karatsuba multiplication

Implementation

Future directions

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Prelude

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Post-quantum cryptography

[Sho97] introduces a fast1 order-finding quantum algorithm
that allows factoring and computing discrete logs in Abelian
groups.

Since then, there has been a growing effort to develop new
public-key encryption and signature algorithms that can resist
cryptanalysis using large-scale general quantum computers.

In 2016, the US National Institute of Standards and
Technology (NIST) started a several year long process to
standardise post-quantum cryptographic schemes [Nat16].

Many of the proposed schemes are based on problems defined
over polynomial rings, such as the RLWE problem.

1Let’s not go there.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Post-quantum cryptography

[Sho97] introduces a fast1 order-finding quantum algorithm
that allows factoring and computing discrete logs in Abelian
groups.

Since then, there has been a growing effort to develop new
public-key encryption and signature algorithms that can resist
cryptanalysis using large-scale general quantum computers.

In 2016, the US National Institute of Standards and
Technology (NIST) started a several year long process to
standardise post-quantum cryptographic schemes [Nat16].

Many of the proposed schemes are based on problems defined
over polynomial rings, such as the RLWE problem.

1Let’s not go there.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deploying cryptography

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

In practice, cryptographic schemes have two crucial
requirements2: high performance and ease of deployment.

Optimised implementations are an active area of research.

As part of the NIST process, designers often provided fast
software implementations with a focus on modern CPU
architectures.

However, implementations of quantum-safe schemes are also
required in constrained (often embedded) environments such
as microcontrollers or smart cards.

2Other than being secure in some appropriate model!

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

In practice, cryptographic schemes have two crucial
requirements2: high performance and ease of deployment.

Optimised implementations are an active area of research.

As part of the NIST process, designers often provided fast
software implementations with a focus on modern CPU
architectures.

However, implementations of quantum-safe schemes are also
required in constrained (often embedded) environments such
as microcontrollers or smart cards.

2Other than being secure in some appropriate model!

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

For example, smart-cards provide low-power 16-bit and 32-bit
CPU and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors3,

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In the smart-card context, what would be required to run
lattice-based cryptography?

3And DES!

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

For example, smart-cards provide low-power 16-bit and 32-bit
CPU and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors3,

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In the smart-card context, what would be required to run
lattice-based cryptography?

3And DES!

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Deployment in general

For example, smart-cards provide low-power 16-bit and 32-bit
CPU and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors3,

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In the smart-card context, what would be required to run
lattice-based cryptography?

3And DES!

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Lattice-based cryptography

Definition (LWE)

For q, n,m ∈ Z+ with m = O(n), χs , χe probability distributions over Zq,

Decision-LWE: distinguish (A, ~b) from uniform

Search-LWE: recover ~s from (A, ~b)

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Lattice-based cryptography

Definition (MLWE as used in Kyber)

Let R = Z[x]/(xn + 1) where n is a power of 2, let Rq = R/(q) for some q ∈ Z+.

Let Rk
q be a ring module of dimension k over Rq. Let χ be a probability

distribution over Zq.

Decision-MLWE: distinguish (A, ~b) from uniform

Search-MLWE: recover ~s from (A, ~b)

Note: every row ~bi =
∑

j Ai ,j · ~sj + ~ei

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Lattice-based cryptography

Definition (Kyber CPA PKE component)

Simplified Kyber.CPA.Gen

1 A
$← Rk×k

q

2 (~s, ~e)
χ←− Rk

q × Rk
q

3 ~t ← Compressq(A~s + ~e)
4 return

pkCPA := (~t,A), skCPA := ~s

Simplified Kyber.CPA.Dec

Input: skCPA = ~s
Input: c = (~u, v)

1 ~u ← Decompressq(~u)
2 v ← Decompressq(v)
3 return Compressq(v − 〈~s, ~u〉)

Simplified Kyber.CPA.Enc

Input: pkCPA = (~t,A)
Input: m ∈M

1 ~t ← Decompressq(~t)

2 (~r , ~e1, e2)
χ←− Rk

q × Rk
q × Rq

3 ~u ← Compressq(A
T~r + ~e1)

4 v ← Compressq(
〈
~t, ~r

〉
+ e2 + d q2 c ·m)

5 return c := (~u, v)

The CCA-secure Kyber768 KEM is
obtained by setting n = 256, k = 3,
q = 7681 and using a FO-like transform.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Lattice-based cryptography

The most expensive operation is computing
MULADD(a, b, c):

a(x) · b(x) + c(x) mod (q, f (x)).

To reduce its cost, the · is computed using the Number
Theoretic Transform (NTT).

In the embedded hardware setting, multiple designs for
“RLWE co-processors” have been proposed4.

Yet, new hardware design means having to implement, test,
certify, and deploy!

4E.g. [GFS+12] [PG12] [APS13] [PG14a] [PG14b] [PDG14] [RVM+14]
[CMV+15] [POG15] [RRVV15] [LPO+17]

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Lattice-based cryptography

The most expensive operation is computing
MULADD(a, b, c):

a(x) · b(x) + c(x) mod (q, f (x)).

To reduce its cost, the · is computed using the Number
Theoretic Transform (NTT).

In the embedded hardware setting, multiple designs for
“RLWE co-processors” have been proposed4.

Yet, new hardware design means having to implement, test,
certify, and deploy!

4E.g. [GFS+12] [PG12] [APS13] [PG14a] [PG14b] [PDG14] [RVM+14]
[CMV+15] [POG15] [RRVV15] [LPO+17]

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Ring arithmetic on RSA co-processors

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Our approach: we construct a flexible MULADD gadget by
reusing the RSA co-processor on current smart-cards.

We demonstrate it by implementing a variant of Kyber with
competitive performance on the SLE 78 platform.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Our approach: we construct a flexible MULADD gadget by
reusing the RSA co-processor on current smart-cards.

We demonstrate it by implementing a variant of Kyber with
competitive performance on the SLE 78 platform.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

Kronecker substitution

Kronecker substitution is a classical technique in
computational algebra for reducing polynomial arithmetic to
large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for
carry propagation in the latter.

a = x + 2

b = 3x + 4

a · b = 3x2 + 10x + 8

A = a(100) = 100 + 2

B = b(100) = 3 · 100 + 4

A · B = 102 · 304 = 31008

= 3 · 1002 + 10 · 100 + 8

This works if we choose a large enough integer to evaluate a
and b on. It also works for signed coefficients [Har09].

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

Kronecker substitution

Kronecker substitution is a classical technique in
computational algebra for reducing polynomial arithmetic to
large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for
carry propagation in the latter.

a = x + 2

b = 3x + 4

a · b = 3x2 + 10x + 8

A = a(100) = 100 + 2

B = b(100) = 3 · 100 + 4

A · B = 102 · 304 = 31008

= 3 · 1002 + 10 · 100 + 8

This works if we choose a large enough integer to evaluate a
and b on. It also works for signed coefficients [Har09].

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

Kronecker substitution

Kronecker substitution is a classical technique in
computational algebra for reducing polynomial arithmetic to
large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for
carry propagation in the latter.

a = x + 2

b = 3x + 4

a · b = 3x2 + 10x + 8

A = a(100) = 100 + 2

B = b(100) = 3 · 100 + 4

A · B = 102 · 304 = 31008

= 3 · 1002 + 10 · 100 + 8

This works if we choose a large enough integer to evaluate a
and b on. It also works for signed coefficients [Har09].

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

It also works when evaluating a(x) mod f (x):

a = 3x2 + 10x + 8

f = x2 + 1

a mod f = 3x2 + 10x + 8

− 3(x2 + 1)

= 10x + 5

A= a(100) = 3 · 1002 + 10 · 100 + 8

F = f (100) = 1002 + 1

A mod F = 3 · 1002 + 10 · 100 + 8

− 3(1002 + 1)

= 1005 = 10 · 100 + 5

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

By combining the two properties, and choosing fixed
representatives for coefficients in Zq, it is possible to compute

a(x) · b(x) + c(x) mod (q, f (x))

by
a(t) · b(t) + c(t) mod f (t)

where t ∈ Z is large enough.

Since these are all integers, we can use our RSA co-processor
to compute in Zf (t)!

The particular variant we use furthermore shortens t.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

By combining the two properties, and choosing fixed
representatives for coefficients in Zq, it is possible to compute

a(x) · b(x) + c(x) mod (q, f (x))

by
a(t) · b(t) + c(t) mod f (t)

where t ∈ Z is large enough.

Since these are all integers, we can use our RSA co-processor
to compute in Zf (t)!

The particular variant we use furthermore shortens t.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

How should we chose t ∈ Z?

In [AHH+18], we provide a tight lower bound such that the
computation works without errors by carry.

Lemma
Let a, b, c ∈ Z[x] such that a =

∑n−1
i=0 aix

i , b =
∑n−1

i=0 bix
i ,

c =
∑n−1

i=0 cix
i with ai ∈ {−α, . . . , α}, bi ∈ {−β, . . . , β}, and

ci ∈ {−γ, . . . , γ}. Let

d :=
n−1∑
i=0

di x
i ≡ a · b + c mod f

with di ∈ {−δ, . . . , δ}, where δ > 0 depends on α, β, γ, n, f and f
is monic of degree n such that f (2`) > 2n` − 1. Let
ϕ := maxi<n |fi |, and let ` > log2(δ + ϕ) + 1 be an integer. Then
the above tricks work for any integer t ≥ 2`.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

How should we chose t ∈ Z?

In [AHH+18], we provide a tight lower bound such that the
computation works without errors by carry.

Lemma
Let a, b, c ∈ Z[x] such that a =

∑n−1
i=0 aix

i , b =
∑n−1

i=0 bix
i ,

c =
∑n−1

i=0 cix
i with ai ∈ {−α, . . . , α}, bi ∈ {−β, . . . , β}, and

ci ∈ {−γ, . . . , γ}. Let

d :=
n−1∑
i=0

di x
i ≡ a · b + c mod f

with di ∈ {−δ, . . . , δ}, where δ > 0 depends on α, β, γ, n, f and f
is monic of degree n such that f (2`) > 2n` − 1. Let
ϕ := maxi<n |fi |, and let ` > log2(δ + ϕ) + 1 be an integer. Then
the above tricks work for any integer t ≥ 2`.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Kronecker substitution

Let’s see, for Kyber768 (k = 3, n = 256, q = 7681, η = 4)

` > log2

(
kn
⌊q

2

⌋
η + η + 1

)
+ 1 ≈ 24.5 =⇒ ` = 25.

This means having log2 f (t) = log2 f (2`) > ` · n = 6400.

Problem: our RSA multiplier computes x · y mod z where
log x , log y , log z < 2200.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Splitting rings

KS alone won’t suffice.

We can interpolate between full polynomial multiplication and
KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

Let’s abuse notation.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Splitting rings

KS alone won’t suffice.

We can interpolate between full polynomial multiplication and
KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

Let’s abuse notation.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Splitting rings

KS alone won’t suffice.

We can interpolate between full polynomial multiplication and
KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

Let’s abuse notation.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Say we have

a = a0 + a1 x + a2 x
2 + a3 x

3

b = b0 + b1 x + b2 x
2 + b3 x

3

f = x4 + 1

and we want to compute a · b mod f .

Let y = x2; then
a = a(0) + a(1) x

where
a(0) = a0 + a2 y and a(1) = a1 + a3 y ,

and similarly for b.
Then, computing a · b mod f ≡ (a · b mod y2 + 1) mod x4 + 1.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

The inner operation is

a · b mod y2 + 1 = a(0) b(0) + a(1) b(1) x2

+ (a(1) b(0) + a(0) b(1)) x mod y2 + 1

where each a(i) b(j) mod y2 + 1 can be computed using KS,
with a smaller ` than the original operation would require.

This results in a polynomial in x of degree 4 to reduce mod f ,
which can be done on the CPU.

While in this small example there is no gain, this technique
enables us to compute the Kyber768 MULADD operation
using e.g. polynomials of y -degree < 64, x-degree < 4, and
` > 25 (we choose ` = 32).

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

The inner operation is

a · b mod y2 + 1 = a(0) b(0) + a(1) b(1) x2

+ (a(1) b(0) + a(0) b(1)) x mod y2 + 1

where each a(i) b(j) mod y2 + 1 can be computed using KS,
with a smaller ` than the original operation would require.

This results in a polynomial in x of degree 4 to reduce mod f ,
which can be done on the CPU.

While in this small example there is no gain, this technique
enables us to compute the Kyber768 MULADD operation
using e.g. polynomials of y -degree < 64, x-degree < 4, and
` > 25 (we choose ` = 32).

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Karatsuba multiplication

Karatsuba multiplication

One more trick: since we are now multiplying low-degree
polynomials in x , we can use Karatsuba-like formulae.

In its simplest form, the algorithm computes
(a + b · x) · (c + d · x) in Z[x] by computing the products
t0 = a · c , t1 = b · d and t2 = (a + b) · (c + d) and outputting
t0 + (t2 − t0 − t1) · x + t2x

2.

This can be done recursively, to obtain a complexity of 3dlog2Le

coefficient multiplications for degree L− 1 polynomials, versus
schoolbook multiplication using L2 multiplications.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Karatsuba multiplication

Karatsuba multiplication

One more trick: since we are now multiplying low-degree
polynomials in x , we can use Karatsuba-like formulae.

In its simplest form, the algorithm computes
(a + b · x) · (c + d · x) in Z[x] by computing the products
t0 = a · c , t1 = b · d and t2 = (a + b) · (c + d) and outputting
t0 + (t2 − t0 − t1) · x + t2x

2.

This can be done recursively, to obtain a complexity of 3dlog2Le

coefficient multiplications for degree L− 1 polynomials, versus
schoolbook multiplication using L2 multiplications.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Karatsuba multiplication

Karatsuba multiplication

One more trick: since we are now multiplying low-degree
polynomials in x , we can use Karatsuba-like formulae.

In its simplest form, the algorithm computes
(a + b · x) · (c + d · x) in Z[x] by computing the products
t0 = a · c , t1 = b · d and t2 = (a + b) · (c + d) and outputting
t0 + (t2 − t0 − t1) · x + t2x

2.

This can be done recursively, to obtain a complexity of 3dlog2Le

coefficient multiplications for degree L− 1 polynomials, versus
schoolbook multiplication using L2 multiplications.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Implementation

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

After all this work, we have a MULADD gadget running on an
RSA co-processor. Is it worth it in practice?

Kyber makes use of SHAKE-128 as XOF, SHAKE-256 as
PRF, and SHA3 as hash function for the CCA transform.

The SLE 78 has no Keccak-f co-processor, and software
implementations are way too slow.

We circumvent this problem by defining an AES-based XOF
and PRF, and use SHA256 for the CCA transform’s G and H.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

After all this work, we have a MULADD gadget running on an
RSA co-processor. Is it worth it in practice?

Kyber makes use of SHAKE-128 as XOF, SHAKE-256 as
PRF, and SHA3 as hash function for the CCA transform.

The SLE 78 has no Keccak-f co-processor, and software
implementations are way too slow.

We circumvent this problem by defining an AES-based XOF
and PRF, and use SHA256 for the CCA transform’s G and H.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

After all this work, we have a MULADD gadget running on an
RSA co-processor. Is it worth it in practice?

Kyber makes use of SHAKE-128 as XOF, SHAKE-256 as
PRF, and SHA3 as hash function for the CCA transform.

The SLE 78 has no Keccak-f co-processor, and software
implementations are way too slow.

We circumvent this problem by defining an AES-based XOF
and PRF, and use SHA256 for the CCA transform’s G and H.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Table: Performance of our work on the SLE 78 target device in clock
cycles.

Scheme Cycles

Kyber.CPA.Imp.Gen (HW-AES: PRF/XOF) 3,625,718
Kyber.CPA.Imp.Enc (HW-AES: PRF/XOF) 4,747,291
Kyber.CPA.Imp.Dec 1,420,367

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; SW-SHA3: H) 14,512,691
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; SW-SHA3: G ,H) 18,051,747
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; SW-SHA3: G ,H) 19,702,139

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; HW-SHA-256: H) 3,980,517
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; HW-SHA-256: G ,H) 5,117,996
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; HW-SHA-256: G ,H) 6,632,704

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Table: Comparison of our work with other PKE or KEM schemes on SLE 78.

Scheme Target Gen Enc Dec

Kyber768a (CPA; our work) SLE 78 3,625,718 4,747,291 1,420,367
Kyber768b (CCA; our work) SLE 78 3,980,517 5,117,996 6,632,704

RSA-2048c SLE 78 - ≈ 300,000 ≈ 21,200,000
RSA-2048 (CRT)d SLE 78 - ≈ 300,000 ≈ 6,000,000
Kyber768 (CPA+NTT)e SLE 78 ≈ 10,000,000 ≈ 14,600,000 ≈ 5,400,000
NewHope1024f SLE 78 ≈ 14,700,000 ≈ 31,800,000 ≈ 15,200,000
a

CPA-secure Kyber variant using the AES co-processor to implement PRF/XOF and KS2 on SLE 78 @ 50 MHz.
b

CCA-secure Kyber variant using the AES co-processor to implement PRF/XOF, the SHA-256 co-processor to implement G
and H and KS2 on SLE 78 @ 50 MHz.

c
RSA-2048 encryption with short exponent and decryption without CRT and with countermeasures on SLE 78 @ 50 MHz.
Extrapoliation based on data-sheet.

d
RSA-2048 decryption with short exponent and decryption with CRT and countermeasures on SLE 78 @ 50 MHz.
Extrapoliation based on data-sheet.

e
Extrapolation of cycle counts of CPA-secure Kyber768 based on our implementation assuming usage of the AES co-processor
to implement PRF/XOF and a software implementation of the NTT with 997,691 cycles for an NTT on SLE 78 @ 50 MHz.

f
Reference implementation of constant time ephemeral NewHope key exchange (n = 1024) [ADPS16] modified to use the
AES co-processor as PRNG on SLE 78 @ 50 MHz.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Future directions

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Investigate other schemes:

ThreeBears [Ham17] or Mersenne-75683917 [AJPS17] are
NIST proposals designed with a similar idea of doing
lattice-based cryptography over the integers. However, they
use integer sizes too large for direct handling with our
co-processor.

Try implementing an MLWE-based scheme that is
parameterised with a power-of-two modulus q,
e.g. SABER [DKRV17].

Try designing a scheme with parameters such that each
packed polynomial fits directly into a co-processor register
(prime cyclotomic? Kyber with smaller non-NTT-friendly q?).

Try implementing a signature scheme, e.g. Dilithium.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Final idea:

LWE-based CPA schemes tolerate some small level of noise
added to the ciphertext.

Maybe we can choose ` smaller than what our correctness
lower bound requires.

We could introduce carry-over errors when computing

a · b + c mod f .

If we can bound the error norm, we may still get correct
decryption, with smaller packed polynomials.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Thank you

You can find:

the paper @ https://ia.cr/2018/425

the code @
https://github.com/fvirdia/lwe-on-rsa-copro

me @ https://fundamental.domains

https://ia.cr/2018/425
https://github.com/fvirdia/lwe-on-rsa-copro
https://fundamental.domains

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

[Har09] introduces a KS variant working as follows. Assume we are
computing a · b using t = 22 `. Let

c(+) := c(2`) = a(2`) · b(2`) =
∑

[i]2=0

ci 2i` +
∑

[i]2=1

ci 2i`

c(−) := c(−2`) = a(−2`) · b(−2`) =
∑

[i]2=0

ci 2i` −
∑

[i]2=1

ci 2i`

Then, we can recover the even coefficients of c(x) from

c(+) + c(−) = c(2`) + c(−2`) = 2
∑

[i]2=0

ci 2i`

and the odd coefficients from

c(+) − c(−) = c(2`)− c(−2`) = 2 · 2`
∑

[i]2=1

ci 2(i−1)`

since the sum and the difference cancel out either the even or the
odd powers. The KS2 algorithm is compatible with arithmetic
modulo f = xn + 1, when n is even.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange - A new hope.
In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Symposium,
USENIX Security 16, pages 327–343. USENIX Association, 2016.

Martin R. Albrecht, Christian Hanser, Andrea Hoeller, Thomas Pöppelmann,
Fernando Virdia, and Andreas Wallner.
Implementing RLWE-based schemes using an RSA co-processor.
IACR TCHES, 2019(1):169–208, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7338.

Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Mikos Santha.
Mersenne-756839.
Technical report, National Institute of Standards and Technology, 2017.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions.

A. Aysu, C. Patterson, and P. Schaumont.
Low-cost and area-efficient fpga implementations of lattice-based cryptography.
In 2013 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 81–86, June 2013.

Lejla Batina and Matthew Robshaw, editors.
CHES 2014, volume 8731 of LNCS. Springer, Heidelberg, September 2014.

D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung, D. Pao,
and I. Verbauwhede.

https://tches.iacr.org/index.php/TCHES/article/view/7338
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

High-speed polynomial multiplication architecture for ring-lwe and she
cryptosystems.
IEEE Transactions on Circuits and Systems I: Regular Papers, 62(1):157–166,
Jan 2015.

Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren.
Saber.
Technical report, National Institute of Standards and Technology, 2017.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions.

Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buchmann, and
Sorin A. Huss.
On the design of hardware building blocks for modern lattice-based encryption
schemes.
In Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 512–529. Springer, Heidelberg, September 2012.

Mike Hamburg.
Three bears.
Technical report, National Institute of Standards and Technology, 2017.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

round-1-submissions.

David Harvey.
Faster polynomial multiplication via multipoint kronecker substitution.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

J. Symb. Comput., 44(10):1502–1510, 2009.

Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy Sinha Roy,
Tim Güneysu, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede.
High-performance ideal lattice-based cryptography on 8-bit AVR
microcontrollers.
ACM Trans. Embedded Comput. Syst., 16(4):117:1–117:24, 2017.

National Institute of Standards and Technology.
Submission requirements and evaluation criteria for the Post-Quantum
Cryptography standardization process.
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/

call-for-proposals-final-dec-2016.pdf, December 2016.

H. Nussbaumer.
Fast polynomial transform algorithms for digital convolution.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(2):205–215,
Apr 1980.

Thomas Pöppelmann, Léo Ducas, and Tim Güneysu.
Enhanced lattice-based signatures on reconfigurable hardware.
In Batina and Robshaw [BR14], pages 353–370.

Thomas Pöppelmann and Tim Güneysu.
Towards efficient arithmetic for lattice-based cryptography on reconfigurable
hardware.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

In Alejandro Hevia and Gregory Neven, editors, LATINCRYPT 2012, volume
7533 of LNCS, pages 139–158. Springer, Heidelberg, October 2012.

Thomas Pöppelmann and Tim Güneysu.
Towards practical lattice-based public-key encryption on reconfigurable hardware.

In Tanja Lange, Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume
8282 of LNCS, pages 68–85. Springer, Heidelberg, August 2014.

T. Pöppelmann and T. Güneysu.
Area optimization of lightweight lattice-based encryption on reconfigurable
hardware.
In 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pages
2796–2799, June 2014.

Thomas Pöppelmann, Tobias Oder, and Tim Güneysu.
High-performance ideal lattice-based cryptography on 8-bit ATxmega
microcontrollers.
In Kristin E. Lauter and Francisco Rodŕıguez-Henŕıquez, editors,
LATINCRYPT 2015, volume 9230 of LNCS, pages 346–365. Springer,
Heidelberg, August 2015.

Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede.
A masked ring-LWE implementation.
In Tim Güneysu and Helena Handschuh, editors, CHES 2015, volume 9293 of
LNCS, pages 683–702. Springer, Heidelberg, September 2015.

Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede.
Compact ring-LWE cryptoprocessor.
In Batina and Robshaw [BR14], pages 371–391.

Arnold Schönhage.
Schnelle multiplikation von polynomen über körpern der charakteristik 2.
Acta Informatica, 7(4):395–398, Dec 1977.

Peter W. Shor.
Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer.
SIAM J. Comput., 26(5):1484–1509, October 1997.

Joachim Von Zur Gathen and Jürgen Gerhard.
Modern computer algebra.
Cambridge university press, 2013.

	Prelude
	Post-quantum cryptography

	Deploying cryptography
	Deployment in general
	Lattice-based cryptography

	Ring arithmetic on RSA co-processors
	Kronecker substitution
	Splitting rings
	Karatsuba multiplication

	Implementation
	Future directions

