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Post-quantum cryptography

[Sho97] introduces a fast1 order-finding quantum algorithm
that allows factoring and computing discrete logs in Abelian
groups.

Since then, there has been a growing effort to develop new
public-key encryption and signature algorithms that can resist
cryptanalysis using large-scale general quantum computers.

In 2016, the US National Institute of Standards and
Technology (NIST) started a several year long process to
standardise post-quantum cryptographic schemes [Nat16].

Many of the proposed schemes are based on problems defined
over polynomial rings, such as the RLWE problem.

1Let’s not go there.
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Deploying cryptography
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Deployment in general

In practice, cryptographic schemes have two crucial
requirements2: high performance and ease of deployment.

Optimised implementations are an active area of research.

As part of the NIST process, designers often provided fast
software implementations with a focus on modern CPU
architectures.

However, implementations of quantum-safe schemes are also
required in constrained (often embedded) environments such
as microcontrollers or smart cards.

2Other than being secure in some appropriate model!
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Deployment in general

For example, smart-cards provide low-power 16-bit and 32-bit
CPU and small amounts of RAM.

These are augmented with specific co-processors enabling
them to run Diffie-Hellman key exchange (over finite fields
and elliptic curves) and RSA encryption and signatures.

For example, the SLE 78CLUFX5000 Infineon chip card
provides:

16-bit CPU @ 50 MHz, 16 Kbyte RAM, 500 Kbyte NVM,

AES and SHA256 co-processors3,

ZN adder and multiplier for log2 N = 2200 (“the RSA
co-processor”).

In the smart-card context, what would be required to run
lattice-based cryptography?

3And DES!
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Lattice-based cryptography

Definition (LWE)

For q, n,m ∈ Z+ with m = O(n), χs , χe probability distributions over Zq,

Decision-LWE: distinguish (A, ~b) from uniform

Search-LWE: recover ~s from (A, ~b)
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Lattice-based cryptography

Definition (MLWE as used in Kyber)

Let R = Z[x ]/(xn + 1) where n is a power of 2, let Rq = R/(q) for some q ∈ Z+.

Let Rk
q be a ring module of dimension k over Rq. Let χ be a probability

distribution over Zq.

Decision-MLWE: distinguish (A, ~b) from uniform

Search-MLWE: recover ~s from (A, ~b)

Note: every row ~bi =
∑

j Ai ,j · ~sj + ~ei
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Lattice-based cryptography

Definition (Kyber CPA PKE component)

Simplified Kyber.CPA.Gen

1 A
$← Rk×k

q

2 (~s, ~e)
χ←− Rk

q × Rk
q

3 ~t ← Compressq(A~s + ~e)
4 return

pkCPA := (~t,A), skCPA := ~s

Simplified Kyber.CPA.Dec

Input: skCPA = ~s
Input: c = (~u, v)

1 ~u ← Decompressq(~u)
2 v ← Decompressq(v)
3 return Compressq(v − 〈~s, ~u〉)

Simplified Kyber.CPA.Enc

Input: pkCPA = (~t,A)
Input: m ∈M

1 ~t ← Decompressq(~t)

2 (~r , ~e1, e2)
χ←− Rk

q × Rk
q × Rq

3 ~u ← Compressq(A
T~r + ~e1)

4 v ← Compressq(
〈
~t, ~r

〉
+ e2 + d q2 c ·m)

5 return c := (~u, v)

The CCA-secure Kyber768 KEM is
obtained by setting n = 256, k = 3,
q = 7681 and using a FO-like transform.
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Lattice-based cryptography

The most expensive operation is computing
MULADD(a, b, c):

a(x) · b(x) + c(x) mod (q, f (x)).

To reduce its cost, the · is computed using the Number
Theoretic Transform (NTT).

In the embedded hardware setting, multiple designs for
“RLWE co-processors” have been proposed4.

Yet, new hardware design means having to implement, test,
certify, and deploy!

4E.g. [GFS+12] [PG12] [APS13] [PG14a] [PG14b] [PDG14] [RVM+14]
[CMV+15] [POG15] [RRVV15] [LPO+17]
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Ring arithmetic on RSA co-processors
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Our approach: we construct a flexible MULADD gadget by
reusing the RSA co-processor on current smart-cards.

We demonstrate it by implementing a variant of Kyber with
competitive performance on the SLE 78 platform.
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Kronecker substitution

Kronecker substitution

Kronecker substitution is a classical technique in
computational algebra for reducing polynomial arithmetic to
large integer arithmetic [VZGG13, p. 245][Har09].

The fundamental idea behind this technique is that univariate
polynomial and integer arithmetic are identical except for
carry propagation in the latter.

a = x + 2

b = 3x + 4

a · b = 3x2 + 10x + 8

A = a(100) = 100 + 2

B = b(100) = 3 · 100 + 4

A · B = 102 · 304 = 31008

= 3 · 1002 + 10 · 100 + 8

This works if we choose a large enough integer to evaluate a
and b on. It also works for signed coefficients [Har09].
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Kronecker substitution

It also works when evaluating a(x) mod f (x):

a = 3x2 + 10x + 8

f = x2 + 1

a mod f = 3x2 + 10x + 8

− 3(x2 + 1)

= 10x + 5

A= a(100) = 3 · 1002 + 10 · 100 + 8

F = f (100) = 1002 + 1

A mod F = 3 · 1002 + 10 · 100 + 8

− 3(1002 + 1)

= 1005 = 10 · 100 + 5
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Kronecker substitution

By combining the two properties, and choosing fixed
representatives for coefficients in Zq, it is possible to compute

a(x) · b(x) + c(x) mod (q, f (x))

by
a(t) · b(t) + c(t) mod f (t)

where t ∈ Z is large enough.

Since these are all integers, we can use our RSA co-processor
to compute in Zf (t)!

The particular variant we use furthermore shortens t.
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Kronecker substitution

How should we chose t ∈ Z?

In [AHH+18], we provide a tight lower bound such that the
computation works without errors by carry.

Lemma
Let a, b, c ∈ Z[x ] such that a =

∑n−1
i=0 aix

i , b =
∑n−1

i=0 bix
i ,

c =
∑n−1

i=0 cix
i with ai ∈ {−α, . . . , α}, bi ∈ {−β, . . . , β}, and

ci ∈ {−γ, . . . , γ}. Let

d :=
n−1∑
i=0

di x
i ≡ a · b + c mod f

with di ∈ {−δ, . . . , δ}, where δ > 0 depends on α, β, γ, n, f and f
is monic of degree n such that f (2`) > 2n` − 1. Let
ϕ := maxi<n |fi |, and let ` > log2(δ + ϕ) + 1 be an integer. Then
the above tricks work for any integer t ≥ 2`.
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Kronecker substitution

Let’s see, for Kyber768 (k = 3, n = 256, q = 7681, η = 4)

` > log2

(
kn
⌊q

2

⌋
η + η + 1

)
+ 1 ≈ 24.5 =⇒ ` = 25.

This means having log2 f (t) = log2 f (2`) > ` · n = 6400.

Problem: our RSA multiplier computes x · y mod z where
log x , log y , log z < 2200.
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Splitting rings

Splitting rings

KS alone won’t suffice.

We can interpolate between full polynomial multiplication and
KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

Let’s abuse notation.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Splitting rings

KS alone won’t suffice.

We can interpolate between full polynomial multiplication and
KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

Let’s abuse notation.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Splitting rings

KS alone won’t suffice.

We can interpolate between full polynomial multiplication and
KS.

The idea is similar to Schönhage [Sch77] or
Nussbaumer [Nus80].

Let’s abuse notation.



Prelude Deploying cryptography Rings on RSA co-processors Implementation Future directions

Splitting rings

Say we have

a = a0 + a1 x + a2 x
2 + a3 x

3

b = b0 + b1 x + b2 x
2 + b3 x

3

f = x4 + 1

and we want to compute a · b mod f .

Let y = x2; then
a = a(0) + a(1) x

where
a(0) = a0 + a2 y and a(1) = a1 + a3 y ,

and similarly for b.
Then, computing a · b mod f ≡ (a · b mod y2 + 1) mod x4 + 1.
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Splitting rings

The inner operation is

a · b mod y2 + 1 = a(0) b(0) + a(1) b(1) x2

+ (a(1) b(0) + a(0) b(1)) x mod y2 + 1

where each a(i) b(j) mod y2 + 1 can be computed using KS,
with a smaller ` than the original operation would require.

This results in a polynomial in x of degree 4 to reduce mod f ,
which can be done on the CPU.

While in this small example there is no gain, this technique
enables us to compute the Kyber768 MULADD operation
using e.g. polynomials of y -degree < 64, x-degree < 4, and
` > 25 (we choose ` = 32).
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Karatsuba multiplication

Karatsuba multiplication

One more trick: since we are now multiplying low-degree
polynomials in x , we can use Karatsuba-like formulae.

In its simplest form, the algorithm computes
(a + b · x) · (c + d · x) in Z[x ] by computing the products
t0 = a · c , t1 = b · d and t2 = (a + b) · (c + d) and outputting
t0 + (t2 − t0 − t1) · x + t2x

2.

This can be done recursively, to obtain a complexity of 3dlog2Le

coefficient multiplications for degree L− 1 polynomials, versus
schoolbook multiplication using L2 multiplications.
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Implementation
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After all this work, we have a MULADD gadget running on an
RSA co-processor. Is it worth it in practice?

Kyber makes use of SHAKE-128 as XOF, SHAKE-256 as
PRF, and SHA3 as hash function for the CCA transform.

The SLE 78 has no Keccak-f co-processor, and software
implementations are way too slow.

We circumvent this problem by defining an AES-based XOF
and PRF, and use SHA256 for the CCA transform’s G and H.
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Table: Performance of our work on the SLE 78 target device in clock
cycles.

Scheme Cycles

Kyber.CPA.Imp.Gen (HW-AES: PRF/XOF) 3,625,718
Kyber.CPA.Imp.Enc (HW-AES: PRF/XOF) 4,747,291
Kyber.CPA.Imp.Dec 1,420,367

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; SW-SHA3: H) 14,512,691
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; SW-SHA3: G ,H) 18,051,747
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; SW-SHA3: G ,H) 19,702,139

Kyber.CCA.Imp.Gen (HW-AES: PRF/XOF; HW-SHA-256: H) 3,980,517
Kyber.CCA.Imp.Enc (HW-AES: PRF/XOF; HW-SHA-256: G ,H) 5,117,996
Kyber.CCA.Imp.Dec (HW-AES: PRF/XOF; HW-SHA-256: G ,H) 6,632,704
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Table: Comparison of our work with other PKE or KEM schemes on SLE 78.

Scheme Target Gen Enc Dec

Kyber768a (CPA; our work) SLE 78 3,625,718 4,747,291 1,420,367
Kyber768b (CCA; our work) SLE 78 3,980,517 5,117,996 6,632,704

RSA-2048c SLE 78 - ≈ 300,000 ≈ 21,200,000
RSA-2048 (CRT)d SLE 78 - ≈ 300,000 ≈ 6,000,000
Kyber768 (CPA+NTT)e SLE 78 ≈ 10,000,000 ≈ 14,600,000 ≈ 5,400,000
NewHope1024f SLE 78 ≈ 14,700,000 ≈ 31,800,000 ≈ 15,200,000
a

CPA-secure Kyber variant using the AES co-processor to implement PRF/XOF and KS2 on SLE 78 @ 50 MHz.
b

CCA-secure Kyber variant using the AES co-processor to implement PRF/XOF, the SHA-256 co-processor to implement G
and H and KS2 on SLE 78 @ 50 MHz.

c
RSA-2048 encryption with short exponent and decryption without CRT and with countermeasures on SLE 78 @ 50 MHz.
Extrapoliation based on data-sheet.

d
RSA-2048 decryption with short exponent and decryption with CRT and countermeasures on SLE 78 @ 50 MHz.
Extrapoliation based on data-sheet.

e
Extrapolation of cycle counts of CPA-secure Kyber768 based on our implementation assuming usage of the AES co-processor
to implement PRF/XOF and a software implementation of the NTT with 997,691 cycles for an NTT on SLE 78 @ 50 MHz.

f
Reference implementation of constant time ephemeral NewHope key exchange (n = 1024) [ADPS16] modified to use the
AES co-processor as PRNG on SLE 78 @ 50 MHz.
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Future directions
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Investigate other schemes:

ThreeBears [Ham17] or Mersenne-75683917 [AJPS17] are
NIST proposals designed with a similar idea of doing
lattice-based cryptography over the integers. However, they
use integer sizes too large for direct handling with our
co-processor.

Try implementing an MLWE-based scheme that is
parameterised with a power-of-two modulus q,
e.g. SABER [DKRV17].

Try designing a scheme with parameters such that each
packed polynomial fits directly into a co-processor register
(prime cyclotomic? Kyber with smaller non-NTT-friendly q?).

Try implementing a signature scheme, e.g. Dilithium.
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Final idea:

LWE-based CPA schemes tolerate some small level of noise
added to the ciphertext.

Maybe we can choose ` smaller than what our correctness
lower bound requires.

We could introduce carry-over errors when computing

a · b + c mod f .

If we can bound the error norm, we may still get correct
decryption, with smaller packed polynomials.
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Thank you

You can find:

the paper @ https://ia.cr/2018/425

the code @
https://github.com/fvirdia/lwe-on-rsa-copro

me @ https://fundamental.domains

https://ia.cr/2018/425
https://github.com/fvirdia/lwe-on-rsa-copro
https://fundamental.domains
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[Har09] introduces a KS variant working as follows. Assume we are
computing a · b using t = 22 `. Let

c(+) := c(2`) = a(2`) · b(2`) =
∑

[i ]2=0

ci 2i` +
∑

[i ]2=1

ci 2i`

c(−) := c(−2`) = a(−2`) · b(−2`) =
∑

[i ]2=0

ci 2i` −
∑

[i ]2=1

ci 2i`

Then, we can recover the even coefficients of c(x) from

c(+) + c(−) = c(2`) + c(−2`) = 2
∑

[i ]2=0

ci 2i`

and the odd coefficients from

c(+) − c(−) = c(2`)− c(−2`) = 2 · 2`
∑

[i ]2=1

ci 2(i−1)`

since the sum and the difference cancel out either the even or the
odd powers. The KS2 algorithm is compatible with arithmetic
modulo f = xn + 1, when n is even.
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Post-quantum key exchange - A new hope.
In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Symposium,
USENIX Security 16, pages 327–343. USENIX Association, 2016.

Martin R. Albrecht, Christian Hanser, Andrea Hoeller, Thomas Pöppelmann,
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