Algebraic codes are good

Patrick Solé joint works with Adel Alahmadi, Cem Gueneri, MinJia Shi, Hatoon Shoaib, Liqin Qian, Rongsheng Wu, Hongwei Zhu

CNRS/LAGA

London, UK, January 2019

References

- A. Alahmadi, F. Özdemir, P. Solé, "On self-dual double circulant codes", *Designs, Codes Cryptogr.*, 2016
- Adel Alahmadi, Cem Gueneri, Buket Äzkaya, Hatoon Shohaib, Patrick Solé : On self-dual double negacirculant codes. Discrete Applied Mathematics 222 : 205–212 (2017)
- A. Alahmadi, C. Güneri, H. Shoaib, P. Solé, "Long quasi-polycyclic *t*-CIS codes", Adv. in Math. of Comm. 12(1): 189–198 (2018)
- M. Shi, J. Tang, M. Ge, L. Sok, P. Solé, "A special class of quasi-cyclic codes", *Bulletin of the Austr. Math Soc.*, Aug. 2017.
- M. Shi, L. Qian, P. Solé, On self-dual negacirculant codes of index 2 and 4, *Designs Codes & Cryptography*, 2017 :1–10
- M. Shi, H. Zhu, P. Solé, On self-dual four-circulant codes, Int. J. Found. Comput. Sci. 29(7) (2018)
- M. Shi, R. Wu, P. Solé, Additive cyclic codes are asymptotically good, IEEE Communications Letters 22(10) :

History

" Are long cyclic codes good" ? Assmus-Mattson-Turyn (1966)

If C(n) is a family of codes of parameters $[n, k_n, d_n]$, the rate r is

$$r=\limsup_{n\to\infty}\frac{k_n}{n},$$

relative distance δ is

$$\delta = \liminf_{n \to \infty} \frac{d_n}{n}.$$

A family of codes is said to be **good** iff $r\delta > 0$.

Negative results

- S. Lin, E. Peterson, Long BCH codes are bad, Information and Control 11(4) :445–451, October 1967
- the most famous class of cyclic codes is bad
- T. Kasami, An upper bound on k/n for affine-invariant codes with fixed d/n, IEEE Trans. Inform. Theory (Corresp.), vol. IT-15, pp. 174-176. Jan. 1969
- \Rightarrow Affine invariant cyclic codes are also bad.

Hope

- R. J. McEliece, On the symmetry of good nonlinear codes, IEEE Trans. Inform. Theory, vol. IT–16, pp. 609–611, Sept. 1970
- \Rightarrow there are good nonlinear shift-invariant codes
- L.M.J.Bazzi, S.K.Mitter,Some randomized code constructions from group actions,IEEE Trans. Inform. Theory52(2006), no. 7, 3210–3219
- \Rightarrow long dihedral linear codes are good. Proof is involved.
- C. L. Chen, W. W. Peterson, E. J. Weldon, "Some results on quasi-cyclic codes", *Information and Control*, vol. 15, no. 5, pp. 407–423, Nov. 1969.
- ⇒ long quasi-cyclic codes are easier to study than long cyclic codes.

Reason : random coding work better when there are more codes !

Plan

- self-dual double circulant codes are dihedral
- they are good by expurgated random coding argument
 ⇒ new proof of Bazzi-Mitter result
- cyclic codes over extension fields give quasi-cyclic codes by projection on a basis of the extension
- good quasi-cyclic codes give good additive cyclic codes over extension fields
- generalizations and extensions : four-circulant codes, quasi-abelian codes

Dihedral codes

The dihedral group D_n , is the group of order 2n with two generators r and s of respective orders n and 2 with the relation $srs = r^{-1}$.

 D_n is the group of orthogonal transforms (rotation or axial symmetries) of the *n*-gon.

A code of length 2n is called dihedral if it is invariant under D_n acting transitively on its coordinate places.

Double circulant codes

Codes over GF(q) of length 2*n* with *n* odd and coprime to *q*. A code is *double circulant* if its generator matrix *G* is of the form

$$G = (I, A)$$

I is the identity matrix of order *n A* is a circulant matrix of the same order. circulant \Leftrightarrow each row obtained from the first by successive shifts. pure double circulant is different from bordered double circulant (add a top row and middle column to *G*)

Self-dual double circulant are dihedral

If q is even, C self-dual double circulant length 2n then C is invariant under D_n .

The main idea : A is circulant $\Rightarrow \exists$ permutation matrix P such that $PAP = A^t$.

Already observed in

C. Martinez-Perez, W. Willems,

Self-dual doubly even 2-quasi-cyclic transitive codes are asymptotically good,

```
IEEE Trans. Inform. Theory, IT-53, (2007) 4302-4308.
```

Quasi-cyclic codes I

Let T denote the shift operator on n positions.

A linear code C is ℓ -quasi-cyclic (QC) code if C is invariant under T^{ℓ} , i.e. $T^{\ell}(C) = C$.

The smallest ℓ with that property is called the **index** of *C*. For simplicity we assume that $n = \ell m$ for some integer *m*, sometimes called the **co-index**.

The special case $\ell=1$ gives the more familiar class of $\ \mbox{cyclic}$ codes .

Double circulant codes of length 2n are, up to equivalence, 2-quasicyclic of co-index n.

Quasi-cyclic codes II

The ring theoretic approach to QC codes is via

$$R(m,q) = \mathbb{F}_q[x]/\langle x^m - 1 \rangle.$$

Thus cyclic codes of length m over \mathbb{F}_q are ideals of R(m,q) via the polynomial representation.

Similarly QC codes of index ℓ and co-index *m* linear codes R(m, q) submodules of $R(m, q)^{\ell}$.

In the language of polynomials, a codeword of an ℓ -quasi-cyclic code can be written as $c(x) = (c_0(x), \dots, c_{\ell-1}(x)) \in R(m, q)^{\ell}$. Benefit : use CRT to decompose R(m, q) into direct sums of local rings

Look at shorter codes over larger alphabets.

Expurgated random coding

Suppose we now there are Ω_n codes of length *n* in the family we want to show of relative distance at least δ .

Suppose that there are at most λ_n codes in the family containing a given nonzero vector.

Denote by B(r) the volume of the Hamming ball of radius r.

If, for n large enough, we can show that

 $B(\lfloor \delta n \rfloor)\lambda_n < \Omega_n$

then the family will have relative distance $\geq \delta$.

Algebraic counting

Let *n* denote a positive odd integer. Assume that -1 is a square in GF(q). If $x^n - 1$ factors as a product of two irreducible polynomials over GF(q),

$$x^{n} - 1 = (x - 1)(x^{n-1} + \dots + 1),$$

the number of self-dual double circulant codes of length 2n is $\Omega_n = 2(q^{\frac{n-1}{2}} + 1)$ if q is odd $\Omega_n = (q^{\frac{n-1}{2}} + 1)$ if q is even. The proof reduces to enumerating hermitian self-dual codes of length 2 in $GF(q^{\frac{n-1}{2}})$.

How to have only two factors?

In number theory, Artin's conjecture on primitive roots states that a given integer q which is neither a perfect square nor -1 is a primitive root modulo infinitely many primes ℓ . It was proved conditionally under the Generalized Riemann Hypothesis (GRH) by Hooley in 1967. In this case, by the correspondence between cyclotomic cosets and irreducible factors of $x^\ell-1$

the factorization of $x^{\ell} - 1$ into irreducible polynomials over GF(q) contains exactly two factors, one of which is x - 1

Covering lemma

Let a(x) denote a polynomial of GF(q)[x] coprime with $x^n - 1$, and let C_a be the double circulant code with generator matrix (1, a).

Assume the factorization of $x^n - 1$ into irreducible polynomials is $x^n - 1 = (x - 1)h(x)$.

The following fact was proved first for q = 2 in Chen, Peterson, Weldon (1969).

With the above assumptions, let $u \in GF(q)^{2n}$. If $u \neq 0$ has Hamming weight < n, then there are at most $\lambda_n = q$ polynomials *a* such that $u \in C_a$.

The proof uses the CRT decomposition of R(n, q).

Asymptotic bound

the q-ary entropy function is for $0 < t < \frac{q-1}{q}$ by

$$H_q(t) = t \log_q(q-1) - t \log_q(t) - (1-t) \log_q(1-t).$$

If *q* is not a square, then, under Artin's conjecture, there are infinite families of self-dual double circulant codes of relative distance

$$\delta \geq H_q^{-1}(\frac{1}{4}).$$

Corollary : long dihedral codes are good.

Double Negacirculant codes I

A linear code of length N is quasi-twisted of index ℓ for $\ell \mid N$, and co-index $m = \frac{N}{\ell}$ if it is invariant under the power T_{α}^{ℓ} of the constashift T_{α} defined as

$$T_{\alpha}:(x_0,\ldots,x_{N-1})\mapsto (\alpha x_{N-1},x_0,\ldots,x_{N-2}).$$

A matrix A over a finite field \mathbb{F}_q is said to be *negacirculant* if its rows are obtained by successive negashifts ($\alpha = -1$) from the first row.

We consider *double negacirculant* (DN) codes over finite fields, that is [2n, n] codes with generator matrices of the shape (I, A) with I the identity matrix of size n and A a negacirculant matrix of order n.

Double Negacirculant codes II

The factorization of $x^n + 1$ is in two factors when *n* is a power of 2. The proof is elementary and relies on *Dickson polynomial* (of the first kind)

This is the main difference with the double circulant case.

$$D_n(x,\alpha) = \sum_{p=0}^{\lfloor n/2 \rfloor} \frac{n}{n-p} \binom{n-p}{p} (-\alpha)^p x^{n-2p}.$$

The D_n satisfy the Chebyshev's like identity

$$D_n(u + \alpha/u, \alpha) = u^n + (\alpha/u)^n.$$

Double Negacirculant codes III

If q is odd integer, and n is a power of 2, then there are infinite families of :

(i) double negacirculant codes of relative distance δ satisfying $H_q(\delta) \geq \frac{1}{4}$.

(ii) self dual double negacirculant codes of relative distance δ satisfying $H_q(\delta) \geq \frac{1}{4}$.

Advertisement

If you have liked the CRT approach please buy our book !!!!

M. Shi, A. Alahmadi, P. Solé, Codes and Rings : Theory and Practice,

Academic Press, 2017. More results on

- local rings, Galois rings, chain rings, Frobenius rings,
- Lee metric, homogeneous metric, rank metric, RT-metric, ...
- Quasi-twisted codes, consta-cyclic codes, skew-cyclic codes...

A link between QC and cyclic codes

Given a basis $B = \{e_0, e_1, \cdots, e_{\ell-1}\}$ of $\mathbb{F}_{q^{\ell}}$ over \mathbb{F}_q we can define the following map

$$\phi_B : R(m,q)^\ell \quad o \quad R(m,q^\ell) \ (c_0(x),c_1(x),\cdots,c_{\ell-1}(x)) \quad \longmapsto \quad \sum_{i=0}^{\ell-1} c_i(x)e_i.$$

This map can be used to construct additive cyclic codes over \mathbb{F}_{q^ℓ} from ℓ -QC codes over \mathbb{F}_q The reverse map can be used to construct ℓ -QC codes from cyclic codes over \mathbb{F}_{q^ℓ} The map ϕ_B^{-1} has been used since the 1980's to construct self-dual codes by TOB's.

From cyclic codes to QC codes : minimum distance

Let \tilde{C} be a quasi-cyclic code of length ℓm and index ℓ over \mathbb{F}_q Let $C = \phi_B^{-1}(\tilde{C})$ be a cyclic code over \mathbb{F}_{q^ℓ} with respect to a basis $B = \{e_0, e_1, \cdots, e_{\ell-1}\}$ of \mathbb{F}_{q^ℓ} over \mathbb{F}_q . Then $d_{\mathbb{F}_q}(\tilde{C}) \ge d_{\mathbb{F}_{q^\ell}}(C)$. Equality holds if C has a minimum weight vector the nonzero components of which are elements of B.

From cyclic codes to QC codes : duality

If C is a cyclic code over $\mathbb{F}_{q^{\ell}}$ then we have

$$\phi_{B^*}^{-1}(C^{\perp}) = \phi_B^{-1}(C)^{\perp}.$$

If $B = B^*$, and C is self-dual, then $\phi_B^{-1}(C)$ is self-dual. Note that self-dual cyclic codes only exist for even q^{ℓ} . If $B = B^*$, and C is LCD, then $\phi_B^{-1}(C)$ is LCD.

From QC codes to additive cyclic codes I

An additive cyclic code over $\mathbb{F}_{q^{\ell}}$, is an \mathbb{F}_{q} -linear code over the alphabet $\mathbb{F}_{q^{\ell}}$ that is invariant under the shift \mathcal{T} . Cyclic codes over $\mathbb{F}_{q^{\ell}}$, are additive cyclic, but not conversely. See e.g. the dodecacode over \mathbb{F}_{4} .

Are useful in **quantum error correction**. Have deep structure theory.

If C is an ℓ -quasi-cyclic code of length $n = \ell m$ over \mathbb{F}_q then $\phi_B(C)$ is an additive cyclic code of length m over \mathbb{F}_{q^ℓ} . The codes in the image of ϕ_B need not be \mathbb{F}_{q^ℓ} -linear in general.

From QC codes to additive cyclic codes II

Let $m = \frac{n}{\ell}$. Assume $\phi_B(C)$ has constituents C_i in the CRT decomposition of the ring $\mathbb{F}_q[x]/(x^m - 1)$. Write $\mathbb{F}_{q^\ell} = \mathbb{F}_q(\alpha)$. Denote by M_α the companion matrix of the minimal polynomial of α .

Necessary condition : If $\phi_B(C)$ is $\mathbb{F}_{q^{\ell}}$ -linear then each C_i is left wholly invariant by M_{α} .

The theory of invariant subspaces allows us to write each C_i as a sum of invariant subspaces.

(joint work with Gueneri-Ozdemir to appear in Discrete Math).

QC codes of given index are good

Let q be a prime power, and m be a prime. If $x^m - 1 = (x - 1)u(x)$, with u(x) irreducible over $\mathbb{F}_q[x]$, then for any fixed integer $\ell \ge 2$, there are infinite families of QC codes of length $n\ell$, index ℓ , rate $1/\ell$ and of relative distance δ ,

$$H_q(\delta) \geq rac{\ell-1}{\ell}$$

The proof uses expurgated random coding on codes with generator matrices of the form

$$(I, A_1, \cdots, A_{\ell-1}).$$

From QC codes to additive cyclic codes II

For an ℓ -quasi-cyclic code of length $n = \ell m$ over \mathbb{F}_q of distance d(C), we have the bound on the distance of $d(\phi_B(C))$ given by

$$d(\phi_B(C)) \geq \frac{d(C)}{\ell}.$$

The proof is elementary.

Let $c = (c_0, c_1, \ldots, c_{\ell-1}) \in C$, with $c \neq 0$, and with $c_i \in \mathbb{F}_q^m$ for all *i*'s. Put $z = \phi_B(c)$. Then $z = \sum_{i=0}^{\ell-1} c_i e_i$. Consider z_j an arbitrary component of z. Thus, by linearity, $z_j = \sum_{i=0}^{\ell-1} c_{ij}e_i$, with c_{ij} component of index j of c_i . Since B is a basis $z_j = 0$ entails $c_{ij} = 0$ for all *i*'s. This, in turn, proves that $\ell w(z_j) \geq \sum_{i=0}^{\ell-1} w(c_{ij})$. But

$$w(c) = \sum_{i=0}^{\ell-1} \sum_{j=0}^{m-1} w(c_{ij}),$$

and $w(z) = \sum_{j=0}^{m-1} w(z_j)$. The result follows by summing *m* inequalities.

From QC codes to additive cyclic codes III

Combining good QC codes with the previous bound we obtain There are infinite families of additive cyclic codes of length $m \to \infty$ over $\mathbb{F}_{a^{\ell}}$ of rate $1/\ell$ and relative distance

$$\delta \geq \frac{1}{\ell} H_q^{-1} (1 - 1/\ell).$$

Variations

- from one-generator to two-generator codes
- four circulant codes= two-generator and index 4

$$G = \left(\begin{array}{ccc} I_n & 0 & A & B\\ 0 & I_n & -B^T & A^T \end{array}\right)$$

- From constacyclic codes to quasi-twisted codes (joint work Shi, Guan, Sok)
- From quasi-abelian codes to abelian codes (joint work with Borello, Gueneri, Sacikara)

Action of the constashift

Let $\lambda \in \mathbb{F}_q^*$ and let l be a positive integer. We define an action of the constashift $T_{\lambda,l}$ on the vectors as $T_{\lambda,l}(c_{0,0}, c_{1,0}, \cdots, c_{0,n-1}, c_{1,0}, c_{1,1}, \cdots, c_{1,n-1}, \cdots, c_{l-1,0}, c_{l-1,1}, \cdots, c_{l-1}) =$ $(\lambda c_{0,n-1}, c_{0,0}, \cdots, c_{0,n-2}, \lambda c_{1,n-1}, c_{1,0}, \cdots, c_{1,n-2}, \cdots, \lambda c_{l-1,n-1}, c_{l-1,0}, \cdots)$ If $\lambda = 1$, we have the usual cyclic shift.

A (λ , l)-QT code is invariant as a set under the action of $T_{\lambda,l}$.

Quasi-twisted codes

If for each codeword $c \in C$, we have $T_{\lambda,l}(c) \in C$, then the code C is called a (λ, l) -quasi-twisted (QT) code of index l. By the polynomial correspondence, a (λ, l) -QT code of length nl over \mathbb{F}_q is identified with a $\frac{\mathbb{F}_q[x]}{(x^n - \lambda)}$ -submodule of $\left(\frac{\mathbb{F}_q[x]}{(x^n - \lambda)}\right)^l$.

Circulant and twistulant matrices

A matrix A over \mathbb{F}_q is said to be λ -circulant if its rows are obtained by successive λ -shifts from the first row as follows :

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ \lambda a_{n-1} & a_0 & a_1 & \cdots & a_{n-2} \\ \lambda a_{n-2} & \lambda a_{n-1} & a_0 & \cdots & a_{n-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \lambda a_1 & \lambda a_2 & \lambda a_3 & \cdots & a_0 \end{pmatrix}$$

A linear code C is called a four λ -circulant code over \mathbb{F}_q if the code C generated by

$$G = \left(\begin{array}{ccc} I_n & 0 & A & B \\ 0 & I_n & -B^t & A^t \end{array}\right),$$

where A, B are λ -circulant matrices and the exponent "t" denotes transposition.

Special factorizations of $x^n \pm 1$

Eq. (4)
$$x^n + 1 = h_1(x)h_1^*(x)h_2(x)h_2^*(x)$$
, where $h_1(x), h_2(x), h_1^*(x)$ and $h_2^*(x)$ are irreducible polynomials over \mathbb{F}_q .

Asymptotics for quasi-twisted codes

- Eq. (1) There exists a family of LCD double circulant codes over \mathbb{F}_q of length 2n, of relative distance δ , and rate 1/2, with $H_q(\delta) \geq \frac{1}{2}$.
- Eq. (2) There exists a family of LCD double negacirculant codes over \mathbb{F}_q of length 2n, of relative distance δ , and rate 1/2, with $H_q(\delta) \geq \frac{1}{4}$; there exists a family of LCD four negacirculant codes over \mathbb{F}_q of length 4n, of relative distance δ , and rate 1/2, with $H_q(\delta) \geq \frac{1}{8}$;
- Eq. (3) There exists a family of LCD double negacirculant codes over \mathbb{F}_q of length 2n, of relative distance δ , and rate 1/2, with $H_q(\delta) \geq \frac{1}{4}$.
- Eq. (4) There exists a family of LCD double negacirculant codes over \mathbb{F}_q of length 2n, of relative distance δ , and rate 1/2, with $H_q(\delta) \geq \frac{1}{8}$.

Quasi-abelian codes I

Let G be a finite abelian group of order n.

Consider the group algebra $\mathbb{F}_q[G]$, whose elements are formal polynomials $\sum_{g \in G} \alpha_g Y^g$ in Y with coefficients $\alpha_g \in \mathbb{F}_q$. Note that $\mathbb{F}_q[G]$ can be considered as a vector space over \mathbb{F}_q of dimension n.

A code C in $\mathbb{F}_q[G]$ is called an H quasi-abelian code (H-QA) of index ℓ if C is an $\mathbb{F}_q[H]$ -module, where H is a subgroup of G with $[G:H] = \ell$. Let $\{g_1, \ldots, g_\ell\}$ be a fixed set of representatives of the cosets of H in G. Note that a QA code of index ℓ in $\mathbb{F}_q[G]$ can be seen as an $\mathbb{F}_q[H]$ -submodule of $\mathbb{F}_q[H]^\ell$ by the following $\mathbb{F}_q[H]$ -module isomorphism.

$$\Phi: \qquad \mathbb{F}_{q}[G] \qquad \longrightarrow \qquad \mathbb{F}_{q}[H]^{\ell}$$
$$\sum_{i=1}^{\ell} \sum_{h \in H} \alpha_{h+g_{i}} Y^{h+g_{i}} \qquad \longmapsto \qquad \left(\sum_{h \in H} \alpha_{h+g_{1}} Y^{h}, \dots, \sum_{h \in H} \alpha_{h+g_{\ell}} Y^{h} \right)$$

Quasi-abelian codes II

Jitman and Ling (2015) call a QA code C strictly QA (SQA) if H is not a cyclic group. Similarly, if $\ell = 1$ and H is not cyclic, we refer to strictly abelian (SA) codes. In this section, we consider the link between QA codes and additive abelian codes . Additive abelian codes have been studied by Cao *et al.* and Martinez-Moro *et al.* as a special class of semisimple abelian codes . Semisimple abelian codes are defined as

$$\mathbb{F}_q[x_1,\ldots,x_n]/\langle t_1(x_1),\ldots,t_n(x_n)\rangle$$

submodules in

$$\mathbb{F}_{q^{\ell}}[x_1,\ldots,x_n]/\langle t_1(x_1),\ldots,t_n(x_n)\rangle.$$

Here, $t_i(x_i)$'s are separable polynomials with \mathbb{F}_{q^-} coefficients and $\mathbb{F}_{q^{\ell}}$ denotes an extension field of degree ℓ over \mathbb{F}_q . Additive abelian codes is the special case of $t_i(x_i) = x_i^{m_i} - 1$.

Quasi-abelian codes III

Choose a basis $\beta = \{e_1, e_2, \dots, e_\ell\}$ for \mathbb{F}_{q^ℓ} over \mathbb{F}_q . We have the following $\mathbb{F}_q[H]$ -module isomorhism

$$\Phi_{\beta}: \qquad \mathbb{F}_{q}[H]^{\ell} \qquad \longrightarrow \qquad \mathbb{F}_{q^{\ell}}[H] \\ \left(\sum_{h \in H} \alpha_{1h} Y^{h}, \dots, \sum_{h \in H} \alpha_{\ell h} Y^{h} \right) \qquad \longmapsto \qquad \sum_{i=1}^{\ell} (\sum_{h \in H} \alpha_{ih} Y^{h}) e_{i}$$

So, for an *H*-QA code C of index ℓ , $\Phi_{\beta}(C)$ is an $\mathbb{F}_q[H]$ -submodule in $\mathbb{F}_{q^{\ell}}[H]$, that is an additive abelian code. If *H* is not cyclic, we call these codes strictly additive abelian.

.

Quasi-abelian codes IV

Jitman and Ling showed that the classes of binary self-dual doubly even H-QA codes of index $\ell = 2$ and binary H-QA LCD codes of index 3 are asymptotically good .

In their proof, they consider an infinite family of H-QA codes by fixing the index ℓ .

In other words, if $C_{(a,b)}^{(n)}$ is a binary self-dual doubly even asymptotically good family described before, and $C_{(a,b,1)}^{(n)}$ is a binary *H*- QA LCD asymptotically good family described by Jitman-Ling, then the corresponding infinite families of additive strictly abelian codes $\Phi_{\beta}(C_{(a,b)}^{(n)})$ over \mathbb{F}_4 and \mathbb{F}_8 are asymptotically good.

Conclusion and open problems

- QC and QT codes of low index are good, by random coding
- SD and LCD subclasses are dealt with. Arbitrary hull of given relative dimension?
- additive cyclic codes, additive constacyclic codes, additive abelian codes are good, by mapping from previous
- Are cyclic codes good ? : still open after after 50 years !
- Are there QC codes better than VG? still open!
- There are transitive (Stichtenoth 06) and quasi-transitive (Bassa, 2006) codes better than VG . Are they abelian (resp. quasi-abelian)?

The last slide

Thanks for your attention !