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Introduction



Motivation

1. Lattice codes provide a structured solution to achieve the capacity of
the point-to-point AWGN channel [Erez-Zamir'04]

» Goal: achieve capacity with efficient encoding and decoding
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Motivation

1. Lattice codes provide a structured solution to achieve the capacity of
the point-to-point AWGN channel [Erez-Zamir'04]
» Goal: achieve capacity with efficient encoding and decoding
» Solved by polar lattices [Yan-Liu-Ling-Wu’14]

2. For many network information theory problems, lattice codes can
achieve strictly better performance than existing non-structured codes
» Compute-and-forward for relay networks [Nazer-Gastpar'11]
» Integer forcing for MIMO systems [Zhan-Nazer-Erez-Gastpar’'14]
» Distributed source coding [Krithivasan-Pradhan’09]
Physical-layer security [Ling-Luzzi-Belfiore-Stehlé’14]
And more (see Zamir's book)

v

v
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Example: The Two-Way Relay Channel
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Routing
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Network Coding
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Physical-Layer Network Coding

7 7 N
o (=]
2R
o [
w1 w1 & W Wa

“Source: [Nazer-Gastpar'13]
7/39



Compute-and-Forward

Physical-Layer Network Coding + Lattices = Compute-and-Forward
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Nested Lattice Codes

» If A’ C Ais a sublattice of A with a fundamental region R 5/, then
C:AQIRA/ :AmodA'

is said to be a nested lattice code

» A decoder that finds the nearest lattice point (ignoring the shaping
region) is called a lattice decoder

» Nested lattice codes with lattice decoding are capacity-achieving for the
AWGN channel if A is AWGN-good and A’ is quantization-good [EZ'04]
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Compute-and-Forward (special case)

» The users transmit ci,co € C = AN Ry
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Compute-and-Forward (special case)

» The users transmit ci,co € C = AN Ry

» The relay receives
y=ci+c2+z, z~N(0,0°T)
and wishes to compute
c32ci+comodA €C
» To do so, it computes
y mod A’ = ¢35 + z mod A’

from which it can then decode c3 € C.
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Constructions of Low-Complexity
Lattices



Main Problem

How to construct capacity-approaching lattice codes
that admit efficient encoding and decoding?

efficient £ linear or quasi-linear complexity in number of information bits
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Background on Low-Density Parity-Check Codes

» An LDPC code is a linear code with a sparse parity-check matrix

C={xeFy Hx" =0}, HeF "

» Equivalently represented by a Tanner graph (a bipartite graph, with
n variable nodes and m check nodes, whose incidence matrix is H)

— =
O = =
[ e R
=)
S O =
(=

» Can be decoded in O(n) by the belief propagation algorithm
» Performance depends largely (but not only) on the degree distribution
» Approaches the BI-AWGN capacity (achieves it if spatially coupled)
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Main Approaches

» Low-Density Construction A (LDA) Lattices [di Pietro et al.’12]
» Requires an LDPC code over Z,, with large p
» High-complexity decoding: O(p*n) with belief propagation
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Main Approaches

» Low-Density Construction A (LDA) Lattices [di Pietro et al.’12]
» Requires an LDPC code over Z,, with large p
» High-complexity decoding: O(p*n) with belief propagation

» Low-Density Lattice Codes (LDLC) [Sommer-Feder-Shalvi'08]
» Designed directly in R™ with a sparse parity-check matrix
» BP decoder must process probability density functions

» Multilevel Lattices [Forney-Trott-Chung’00]
» Uses multiple nested binary linear codes
» Efficient decoding is possible (in principle) using multistage decoding
» AWGN-good if each component code is capacity-achieving
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Multilevel Lattices: Construction D

» LetCy CC1 C--- CCr—1 € Z4 be a family of nested linear codes,
where each C; has dimension k, and generator matrix

g1
Gy = c {0, 1}k2><n
gk,
» Construction D:

L—1
A= {Z 2'uGyup e {0,137, 0< 1l < L} + 2Lz
=0

(note that uyGy is computed over 7Z)
» Remark: Should not be confused with the “Code Formula”
[ =Co+2C +---+21c, 4 + 2tz

which does not generally produce lattices
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Encoding and Multistage Decoding of Construction D

Encoder Decoder
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Multilevel Lattices: Construction D’

» LetCy CCy C--- CCr_1 € Z% be a family of nested linear codes,
where each Cy has dimension n — my and parity-check matrix

h;
H,=| : | e{0,1}m"
hp,

L

» Construction D’:

A={xeZ":hx"=0 (mod2°), my1 <j<my 0<L<L}

» Matrix description:

A:{XEZ”:ngTEO (mod2”1),0§€<L}
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Example of Construction D’

For nested codes Cy C C; C Co C Z3, let

1111
Hy={1 01 0 Hl—[
1100

1 1 1 1]x"=0 (mod38)
A=¢xez':[1 0 1 0]x"=0 (mod4)
1 1 0 0]x"=0 (mod2)
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Multilevel Lattices: Previous Work

» Polar Lattices [Yan-Liu-Ling-Wu’14]
» Based on Construction D
» Capacity-achieving under MSD
» Encoding and decoding complexity O(Ln logn)
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Multilevel Lattices: Previous Work

» Polar Lattices [Yan-Liu-Ling-Wu’14]
» Based on Construction D
» Capacity-achieving under MSD
» Encoding and decoding complexity O(Ln logn)

» LDPC Lattices [Sadeghi-Banihashemi-Panario’06] [Baik-Chung’'08]
» Based on Construction D’
» Only joint decoding considered—complexity O(25n)
» Encoding complexity not addressed

» Spatially-Coupled LDPC Lattices [Vem-Huang-Narayanan-Pfister'14]
» AWGN-good under BP MSD
» Based on Construction D =—> generally dense generator matrices
» High-complexity encoding and MSD cancellation step
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Challenges with Construction D’

» How to encode (efficiently)?

» How to cancel past levels (efficiently) in MSD?

» Nested parity-check matrices:
» are difficult to design (for non-SC LDPC codes)
» do not perform well under BP MSD (for non-SC LDPC codes)
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New Results
(Submitted to ISIT 2018)

1. A new description of Construction D’ that enables sequential encoding
» Encoding done entirely over the binary field
» Avoids the need for explicit re-encoding in MSD

» Existing algorithms for LDPC codes can be easily adapted
= encoding and decoding complexity O(Ln)

2. A generalization of Construction D’ that relaxes the constraints on H,
» Enlarged design space = better performance under BP
» Easier to design (needs only Hy,_; and mg, ..., my_s as inputs)

3. Examples with performance comparable to polar lattices in the
power-unconstrained AWGN channel
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Efficient Encoding and Decoding for
Construction D’



Sequential Encoding

Let A be a lattice given by Construction D’ with matrices Hy, ..., Hy_
and let C = AN [0,2%)" be a lattice code. Then C is the set of all possible
vectors ¢ € Z" produced by the following (well-defined) procedure:

1. For{=0,1,...,L — 1, choose some vector
ce € Cy(se)
where
Co(se) £ {x € {0,1}" : Hx" =5, (mod 2)}

_ -H 3%

Sy Y * mod 2 € {0,1}"

2. Compute ¢ = cg +2¢1 + --- + 287 1ep

Note: Cy(sy) is a coset code (linear iff s, = 0)
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Example of Sequential Encoding

_[1111

1010} Ho=[1 1 1 1]
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Example of Sequential Encoding

1111
Hy=|1 010 leﬁéi(ﬂ Hy=[1 1 1 1]
1100

1. Choose cy satisfying Hocl = 0 (mod 2), e.g., co = (1,1,1,1).
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Example of Sequential Encoding

1111
Hop= {1 0 1 0 le[iéié} Hy=[1 1 1 1]
1100

1. Choose cy satisfying Hocl = 0 (mod 2), e.g., co = (1,1,1,1).
2. Compute

1. ¢ 1[4 0
s1 = _§H100 mod 2 = 3 [2] mod 2 = [J

and choose c; satisfying Hic] =s; (mod 2), e.g., c; = (0,1,1,0).
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Example of Sequential Encoding

1111
Hy={1 0 1 0 le[
1100

1. Choose cy satisfying Hocl = 0 (mod 2), e.g., co = (1,1,1,1).

1111
1 010

} Ho=[1 1 1 1]
2. Compute . T4 0
ST = —§H1COT mod 2 = 3 [2] mod 2 = [J

and choose c; satisfying Hic] =s; (mod 2), e.g., c; = (0,1,1,0).

3. Compute 1
Sp = —1H2(2c1T +cl)mod2=0

and choose c; satisfying Hocl = s2 (mod 2), e.g., ca = (0,0, 1, 1).
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Example of Sequential Encoding

1111
Hy={1 0 1 0 le[
1100

1. Choose cy satisfying Hocl = 0 (mod 2), e.g., co = (1,1,1,1).

1111

1010} Ho=[1 1 1 1]

2. Compute
2 1

1 1
ST = —§H1COT mod 2 = 3 [4] mod 2 = [0}

and choose c; satisfying Hic] =s; (mod 2), e.g., c; = (0,1,1,0).
3. Compute 1
Sp = —1H2(2c1T +cl)mod2=0
and choose c; satisfying Hocl = s2 (mod 2), e.g., ca = (0,0, 1, 1).
4. Finally, ¢ = cp+ 2cq1 + 4co
=(1,1,1,1) 4+ (0,2,2,0) + (0,0,4,4) = (1,3,7,5).
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Efficient Systematic Encoding

» Computing each sy is efficient since Hy is sparse. Thus, the overall
complexity will be O(Ln) if encoding each coset code Cy(sy) is O(n)
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Efficient Systematic Encoding

» Computing each sy is efficient since Hy is sparse. Thus, the overall
complexity will be O(Ln) if encoding each coset code Cy(sy) is O(n)

» Any coset code can be converted to a linear code:
Hic] =s; (mod2) < [—Sg Hg] [1 Cg]T =0 (mod 2)

» Assume each Hy is of the form required by Richardson-Urbanke’s
linear-time encoding algorithm:

1 m—g
H, — A [B] 0,

c [D E ||s

Since H), = [—Sg Hg] has the same structure, the encoding complexity
is still O(n) and the overall encoding complexity is O(Ln)
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Efficient Multistage (Lattice) Decoding
» If r = ¢ + z mod 2L:

ro2rmod2=cy+zmod2, cyeC

a —Cop
r =

mod 2 =c; + g mod 2, c¢; € Ci(s1)

01 o
s T=>ip2'¢

z
ry o0 mod 2 = ¢y + o mod 2, ¢y € Cy(sy)
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Efficient Multistage (Lattice) Decoding

» Ifr = ¢ + z mod 2%:

ro2rmod2=cy+zmod2, cyeC

aT—Co m0d2:c1+gm0d2’ c1 € Ci(s1)

Iy

01 o
— >0 2%
r, & I‘ZZZZ:OZmOdQ_cE+2ZKm0d2, cr € Co(se)

» If each Cy(s,) admits efficient decoding, then re-encoding is not needed

» This can be easily accomplished by running BP on

H% = [75[ Hg]
with input LLR" = [co  LLR] (corresponding to ¢j = [1 ¢(])

» Overall complexity O(Ln)
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Consequences of Sequential Encoding

Corollary

Let A be a Construction D’ lattice with component codes Co, . ..,Cr_1,
where each C, has dimension n — my, and let C = A N [0, 25)". Then

IC| = |Co|---- - |Cp—1]
and therefore .
via) = LEED o,
C

» Note: The result in Conway & Sloane’s book (Chapter 8, Theorem 14)
assumes that “some rearrangement of hy, ..., hy,,, forms the rows of an
upper triangular matrix”, which is not required here

25/39



A Generalization of Construction D’



Revisiting Construction D’

» Construction D’:
A:{XEZNZHKXTEO (mod 2°+1), 0§€<L}
where Hy ; C--- C H; C Hy C {0,1}™*"™ (C denotes “submatrix of”)

» Can we get rid of this nesting constraint? No, because we would lose:

» sequential encoding; and thus
» multistage decoding and
» the cardinality/volume guarantee
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Revisiting Construction D’

» Construction D’:
A= {x eZ" :HxT=0 (mod2*1), 0< (< L}
where Hy ; C--- C H; C Hy C {0,1}™*"™ (C denotes “submatrix of”)

» Can we get rid of this nesting constraint? No, because we would lose:

» sequential encoding; and thus
» multistage decoding and
» the cardinality/volume guarantee

» However, sequential encoding requires only the following condition
H,=F/H, ; (mod 2

» This is needed so that s, is well-defined
» The nesting constraint H, C H,_ is clearly a special case
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Generalized Construction D’

Let the matrices H, € Z™*" ¢ =0,...,L — 1, be such that
1. Hy mod 2 is full-rank
2. H, = F;Hy_; (mod 2°), for some F, € Zm¢*m-1

Then the Generalized Construction D’ produces the lattice

A:{er":HexTzo (mod2‘+1),og£gL—1}

Remarks:
» Clearly a lattice, admits sequential encoding, same cardinality
» Binary codes C, defined by H, mod 2 are still nested (Cy_1 C Cy)
» H, need not be binary
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Example of Generalized Construction D’

» Let L =3,n =4, let

2 7 4
F. = [11 9 6} F2=13 9]
be arbitraly chosen integer matrices, and let

11 11

Hop=(1 01 0

1100

101 0

H1 = F1H0 mod 2 = [0 10 1:|

Hy =F;Hymod4=[3 1 3 1]

» Generalized Construction D’ produces a lattice A and associated lattice
code C = AN [0,25)" for which |C| = 21+2+3,
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Check Splitting

» One way to produce binary matrices that satisfy
H,=F,H,_, (exactly, without mod)

is by splitting rows of H, (shorter) to produce H,_ (taller)

» This is useful since when designing regular LDPC codes it is best not to
increase the column weights (variable-node degrees)
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Example of Check Splitting

» Starting with
Ho=[1 11111 1 1]

we partition it into

(1 001 01 1 0]
Hl__01101 1

and, in turn, into
0 001 0 1 0 0]
H_10000010
°Z 1o 1000001
001 010 0 0]

» Note that the column weights are preserved and

1100

Hl:[o 01 1

:|H0 and HQZ[l l]Hl
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PEG-Based Check Splitting

» We propose two check splitting algorithms based on Progressive Edge
Growth (PEG) techniques [Hu et al., 2005]:

1. PEG-based check splitting: greedily attempts to maximize girth

2. Triangular PEG-based check splitting: returns a matrix in approximate
triangular form, allowing linear-time encoding

» All our design examples are based on the triangular construction
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Design Examples and Simulation
Results



Power-Unconstrained AWGN Channel

» Channel model:

xeAN — y=x+z, z~N(0,0%

v

Multilevel partition with multistage decoding [Forney et al., 2000]:

x=c+N, ceC=ANRy, NeA =27"

v

First, compute
r =y mod A’ = ¢ 4+ z mod 2

Then, decode ¢ € C on the modulo-2Z channel

v

v

Finally, subtract ¢ from y and then decode X" € A’

P.(A,0%) < P.(C,0%) + P.(N,0?)
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Power-Unconstrained AWGN Channel: Design

» Generalized Construction D’ with L = 2 coded levels
» Parameters from [Yan-Liu-Ling-Wu'14]: n = 1024, P.(A,0?) < 107°

» Equal error probability rule:

P.(A,0%) < P.(Cy,0?%) + P.(C1, (0/2)%) + P.(4Z", (c/4)?)

v

LDPC component codes:
» Variable-regular with d, = 3
» Triangular PEG-based check splitting for linear-time encoding
» Rates Ry = 0.2383 and R; = 0.9043
Comparison with:
» Polar lattices [Yan-Liu-Ling-Wu’14]
» (Original) Construction D’ LDPC lattices [Sadeghi et al.’06]

v
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Power-Unconstrained AWGN Channel: Results

10°%

Block error rate

107" ¢

0%

1074k

—+8— LDPC (generalized D’)

3.5

f | —©— LDPC (original D') 3
f | —— Polar
| | = = = Poltyrev limit
0 0.5 1 1.5 2 25
VNR (dB)
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Power-Constrained AWGN Channel

» Channel model:
xeX=(A+d)NVA) — y=x+z z~N(00

where A’ = 27" and d € R" is a shift vector (or dither) chosen such
that X lies in a zero-mean 2-PAM constellation

» Modulo-lattice transformation for lattice decoding [Erez-Zamir'04]:
r=ay —dmod A’ = ¢ + zet mod 2”
gives an equivalent channel with effective noise
Zeit = (0 — 1)X + az
» Then, decode c € C on the modulo-2” channel, with o2 replaced by
02 = (a—1)*P + o?0?
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Power-Constrained AWGN Channel: Design

v

Generalized Construction D’ with L = 2 coded levels (4-PAM modulation)

Parameters: n = 2048, P, < 1073, R = 1.5 bits per symbol

v

v

Equal error probability rule:

P,(A,0?%) < P.(Cy,0?) + P.(C1, (c/2)?)

v

LDPC component codes:
» Variable-regular with d, = 3
» Triangular PEG-based check splitting for linear-time encoding
» Rates: Ry = 0.5244 and R; = 0.9756

v

Comparison with:
» Conventional (non-lattice) MLC with conventional (non-lattice) MSD
» BICM scheme with Gray labeling (n = 4096, R = 3/4)
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Power-Constrained AWGN Channel: Results

Block error rate

—&— Lattice-MLC / Lattice-MSD
—&— Lattice-MLC / MSD
—A— MLC / MSD

—8— BICM

= = = Shannon limit

1 1 1

9.5 10 10.5
SNR (dB)
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Conclusions



Conclusions

» Lattice codes may provide significant gains for network information
theory, but their practical implementation is still challenging

» Multilevel lattices are promising since they can be AWGN-good and
only require encoding/decoding of binary codes

» Construction D’ LDPC lattices admit efficient encoding and decoding
and do not require nested matrices (just nested codes)

» Encouraging examples with competitive performance
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Open Problems

Ongoing work:
» Include (nested lattice) shaping
» Design irregular LDPC lattices
Open problems:
» Can we prove AWGN-goodness under linear complexity?
» Do quantization-good Construction D/D’ lattices exist?

» Is compute-and-forward with probabilistic shaping possible?
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