# Multilevel LDPC Lattices with Efficient Encoding and Decoding and a Generalization of Construction $\mathrm{D}^{\prime}$ 

Danilo Silva Paulo R. B. da Silva

Department of Electrical and Electronic Engineering Federal University of Santa Catarina (UFSC), Brazil danilo.silva@ufsc.br

Lattice Coding \& Crypto Meeting
Imperial College London
London, January 15, 2018

## Outline

1. Introduction (background, motivation)
2. Constructions of low-complexity lattices
3. New results

- Efficient encoding and decoding for Construction $\mathrm{D}^{\prime}$
- A generalization of Construction $\mathrm{D}^{\prime}$
- Design examples and simulation results

4. Conclusions and open problems

## Introduction

## Motivation

1. Lattice codes provide a structured solution to achieve the capacity of the point-to-point AWGN channel [Erez-Zamir’04]

- Goal: achieve capacity with efficient encoding and decoding


## Motivation

1. Lattice codes provide a structured solution to achieve the capacity of the point-to-point AWGN channel [Erez-Zamir'04]

- Goal: achieve capacity with efficient encoding and decoding
- Solved by polar lattices [Yan-Liu-Ling-Wu'14]


## Motivation

1. Lattice codes provide a structured solution to achieve the capacity of the point-to-point AWGN channel [Erez-Zamir'04]

- Goal: achieve capacity with efficient encoding and decoding
- Solved by polar lattices [Yan-Liu-Ling-Wu'14]

2. For many network information theory problems, lattice codes can achieve strictly better performance than existing non-structured codes

- Compute-and-forward for relay networks [Nazer-Gastpar'11]
- Integer forcing for MIMO systems [Zhan-Nazer-Erez-Gastpar'14]
- Distributed source coding [Krithivasan-Pradhan'09]
- Physical-layer security [Ling-Luzzi-Belfiore-Stehlé'14]
- And more (see Zamir's book)


## Example: The Two-Way Relay Channel




Relay


Has $\mathbf{w}_{2}$
Wants $\mathrm{w}_{1}$

## Routing


${ }^{2}$ Source: [Nazer-Gastpar'13]

## Network Coding


${ }^{3}$ Source: [Nazer-Gastpar'13]

## Physical-Layer Network Coding


${ }^{4}$ Source: [Nazer-Gastpar'13]

## Compute-and-Forward

Physical-Layer Network Coding + Lattices $=$ Compute-and-Forward


## Nested Lattice Codes



- If $\Lambda^{\prime} \subseteq \Lambda$ is a sublattice of $\Lambda$ with a fundamental region $\mathcal{R}_{\Lambda^{\prime}}$, then

$$
\mathcal{C}=\Lambda \cap \mathcal{R}_{\Lambda^{\prime}}=\Lambda \bmod \Lambda^{\prime}
$$

is said to be a nested lattice code

- A decoder that finds the nearest lattice point (ignoring the shaping region) is called a lattice decoder
- Nested lattice codes with lattice decoding are capacity-achieving for the AWGN channel if $\Lambda$ is AWGN-good and $\Lambda^{\prime}$ is quantization-good [EZ'04]


## Compute-and-Forward (special case)

- The users transmit $\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}=\Lambda \cap \mathcal{R}_{\Lambda^{\prime}}$


## Compute-and-Forward (special case)

- The users transmit $\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}=\Lambda \cap \mathcal{R}_{\Lambda^{\prime}}$
- The relay receives

$$
\mathbf{y}=\mathbf{c}_{1}+\mathbf{c}_{2}+\mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

## Compute-and-Forward (special case)

- The users transmit $\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}=\Lambda \cap \mathcal{R}_{\Lambda^{\prime}}$
- The relay receives

$$
\mathbf{y}=\mathbf{c}_{1}+\mathbf{c}_{2}+\mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

and wishes to compute

$$
\mathbf{c}_{3} \triangleq \mathbf{c}_{1}+\mathbf{c}_{2} \bmod \Lambda^{\prime} \in \mathcal{C}
$$

## Compute-and-Forward (special case)

- The users transmit $\mathbf{c}_{1}, \mathbf{c}_{2} \in \mathcal{C}=\Lambda \cap \mathcal{R}_{\Lambda^{\prime}}$
- The relay receives

$$
\mathbf{y}=\mathbf{c}_{1}+\mathbf{c}_{2}+\mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)
$$

and wishes to compute

$$
\mathbf{c}_{3} \triangleq \mathbf{c}_{1}+\mathbf{c}_{2} \bmod \Lambda^{\prime} \in \mathcal{C}
$$

- To do so, it computes

$$
\mathbf{y} \bmod \Lambda^{\prime}=\mathbf{c}_{3}+\mathbf{z} \bmod \Lambda^{\prime}
$$

from which it can then decode $\mathbf{c}_{3} \in \mathcal{C}$.

## Constructions of Low-Complexity Lattices

## Main Problem

How to construct capacity-approaching lattice codes that admit efficient encoding and decoding?
efficient $\triangleq$ linear or quasi-linear complexity in number of information bits

## Background on Low-Density Parity-Check Codes

- An LDPC code is a linear code with a sparse parity-check matrix

$$
\mathcal{C}=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n}: \mathbf{H x}^{\mathrm{T}}=\mathbf{0}\right\}, \quad \mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}
$$

- Equivalently represented by a Tanner graph (a bipartite graph, with $n$ variable nodes and $m$ check nodes, whose incidence matrix is $\mathbf{H}$ )

- Can be decoded in $O(n)$ by the belief propagation algorithm
- Performance depends largely (but not only) on the degree distribution
- Approaches the BI-AWGN capacity (achieves it if spatially coupled)


## Main Approaches

- Low-Density Construction A (LDA) Lattices [di Pietro et al.'12]
- Requires an LDPC code over $\mathbb{Z}_{p}$ with large $p$
- High-complexity decoding: $O\left(p^{2} n\right)$ with belief propagation


## Main Approaches

- Low-Density Construction A (LDA) Lattices [di Pietro et al.'12]
- Requires an LDPC code over $\mathbb{Z}_{p}$ with large $p$
- High-complexity decoding: $O\left(p^{2} n\right)$ with belief propagation
- Low-Density Lattice Codes (LDLC) [Sommer-Feder-Shalvi’08]
- Designed directly in $\mathbb{R}^{n}$ with a sparse parity-check matrix
- BP decoder must process probability density functions


## Main Approaches

- Low-Density Construction A (LDA) Lattices [di Pietro et al.'12]
- Requires an LDPC code over $\mathbb{Z}_{p}$ with large $p$
- High-complexity decoding: $O\left(p^{2} n\right)$ with belief propagation
- Low-Density Lattice Codes (LDLC) [Sommer-Feder-Shalvi’08]
- Designed directly in $\mathbb{R}^{n}$ with a sparse parity-check matrix
- BP decoder must process probability density functions
- Multilevel Lattices [Forney-Trott-Chung'00]
- Uses multiple nested binary linear codes
- Efficient decoding is possible (in principle) using multistage decoding
- AWGN-good if each component code is capacity-achieving


## Multilevel Lattices: Construction D

- Let $\mathcal{C}_{0} \subseteq \mathcal{C}_{1} \subseteq \cdots \subseteq \mathcal{C}_{L-1} \subseteq \mathbb{Z}_{2}^{n}$ be a family of nested linear codes, where each $\mathcal{C}_{\ell}$ has dimension $k_{\ell}$ and generator matrix

$$
\mathbf{G}_{\ell}=\left[\begin{array}{c}
\mathbf{g}_{1} \\
\vdots \\
\mathbf{g}_{k_{\ell}}
\end{array}\right] \in\{0,1\}^{k_{\ell} \times n}
$$

- Construction D:

$$
\Lambda=\left\{\sum_{\ell=0}^{L-1} 2^{\ell} \mathbf{u}_{\ell} \mathbf{G}_{\ell}: \mathbf{u}_{\ell} \in\{0,1\}^{k_{\ell}}, 0 \leq \ell<L\right\}+2^{L} \mathbb{Z}^{n}
$$

(note that $\mathbf{u}_{\ell} \mathbf{G}_{\ell}$ is computed over $\mathbb{Z}$ )

- Remark: Should not be confused with the "Code Formula"

$$
\Gamma=\mathcal{C}_{0}+2 \mathcal{C}_{1}+\cdots+2^{L-1} \mathcal{C}_{L-1}+2^{L} \mathbb{Z}^{n}
$$

which does not generally produce lattices

## Encoding and Multistage Decoding of Construction D



## Multilevel Lattices: Construction $\mathrm{D}^{\prime}$

- Let $\mathcal{C}_{0} \subseteq \mathcal{C}_{1} \subseteq \cdots \subseteq \mathcal{C}_{L-1} \subseteq \mathbb{Z}_{2}^{n}$ be a family of nested linear codes, where each $\mathcal{C}_{\ell}$ has dimension $n-m_{\ell}$ and parity-check matrix

$$
\mathbf{H}_{\ell}=\left[\begin{array}{c}
\mathbf{h}_{1} \\
\vdots \\
\mathbf{h}_{m_{\ell}}
\end{array}\right] \in\{0,1\}^{m_{\ell} \times n}
$$

- Construction $\mathrm{D}^{\prime}$ :

$$
\Lambda=\left\{\mathbf{x} \in \mathbb{Z}^{n}: \mathbf{h}_{j} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \quad\left(\bmod 2^{\ell+1}\right), m_{\ell+1}<j \leq m_{\ell}, 0 \leq \ell<L\right\}
$$

- Matrix description:

$$
\Lambda=\left\{\mathbf{x} \in \mathbb{Z}^{n}: \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \quad\left(\bmod 2^{\ell+1}\right), 0 \leq \ell<L\right\}
$$

## Example of Construction $\mathrm{D}^{\prime}$

For nested codes $\mathcal{C}_{0} \subseteq \mathcal{C}_{1} \subseteq \mathcal{C}_{2} \subseteq \mathbb{Z}_{2}^{4}$, let

$$
\mathbf{H}_{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{H}_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \quad \mathbf{H}_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

Then

$$
\Lambda=\left\{\begin{aligned}
& \\
&\left.\mathbf{x} \in \mathbb{Z}^{4}: \begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0}(\bmod 8) \\
& {\left[\begin{array}{llll}
1 & 1 & 0
\end{array}\right] \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} }(\bmod 4) \\
& {[1} 1
\end{aligned} 0\right.
$$

or equivalently

$$
\Lambda=\left\{\begin{aligned}
& \mathbf{H}_{2} \mathrm{x}^{\mathrm{T}} \equiv \mathbf{0} \\
&\left.\mathbf{x} \in \bmod ^{2}\right) \\
& \mathbf{x} \in \mathbb{Z}^{4}: \mathbf{H}_{1} \mathrm{x}^{\mathrm{T}} \equiv \mathbf{0} \\
& \mathbf{H}_{0} \mathrm{x}^{\mathrm{T}}(\bmod 4) \\
& \equiv \mathbf{0}(\bmod 2)
\end{aligned}\right\}
$$

## Multilevel Lattices: Previous Work

- Polar Lattices [Yan-Liu-Ling-Wu'14]
- Based on Construction D
- Capacity-achieving under MSD
- Encoding and decoding complexity $O(\operatorname{Ln} \log n)$


## Multilevel Lattices: Previous Work

- Polar Lattices [Yan-Liu-Ling-Wu'14]
- Based on Construction D
- Capacity-achieving under MSD
- Encoding and decoding complexity $O(\operatorname{Ln} \log n)$
- LDPC Lattices [Sadeghi-Banihashemi-Panario'06] [Baik-Chung'08]
- Based on Construction D'
- Only joint decoding considered-complexity $O\left(2^{L} n\right)$
- Encoding complexity not addressed


## Multilevel Lattices: Previous Work

- Polar Lattices [Yan-Liu-Ling-Wu'14]
- Based on Construction D
- Capacity-achieving under MSD
- Encoding and decoding complexity $O(\operatorname{Ln} \log n)$
- LDPC Lattices [Sadeghi-Banihashemi-Panario'06] [Baik-Chung'08]
- Based on Construction D'
- Only joint decoding considered-complexity $O\left(2^{L} n\right)$
- Encoding complexity not addressed
- Spatially-Coupled LDPC Lattices [Vem-Huang-Narayanan-Pfister'14]
- AWGN-good under BP MSD
- Based on Construction $\mathrm{D} \Longrightarrow$ generally dense generator matrices
- High-complexity encoding and MSD cancellation step


## Challenges with Construction $\mathrm{D}^{\prime}$

- How to encode (efficiently)?
- How to cancel past levels (efficiently) in MSD?
- Nested parity-check matrices:
- are difficult to design (for non-SC LDPC codes)
- do not perform well under BP MSD (for non-SC LDPC codes)


## New Results

(Submitted to ISIT 2018)

1. A new description of Construction $D^{\prime}$ that enables sequential encoding

- Encoding done entirely over the binary field
- Avoids the need for explicit re-encoding in MSD
- Existing algorithms for LDPC codes can be easily adapted $\Longrightarrow$ encoding and decoding complexity $O(L n)$

2. A generalization of Construction $D^{\prime}$ that relaxes the constraints on $\mathbf{H}_{\ell}$

- Enlarged design space $\Longrightarrow$ better performance under BP
- Easier to design (needs only $\mathbf{H}_{L-1}$ and $m_{0}, \ldots, m_{L-2}$ as inputs)

3. Examples with performance comparable to polar lattices in the power-unconstrained AWGN channel

## Efficient Encoding and Decoding for Construction D'

## Sequential Encoding

## Theorem

Let $\Lambda$ be a lattice given by Construction $\mathrm{D}^{\prime}$ with matrices $\mathbf{H}_{0}, \ldots, \mathbf{H}_{L-1}$ and let $\mathcal{C}=\Lambda \cap\left[0,2^{L}\right)^{n}$ be a lattice code. Then $\mathcal{C}$ is the set of all possible vectors $\mathbf{c} \in \mathbb{Z}^{n}$ produced by the following (well-defined) procedure:

1. For $\ell=0,1, \ldots, L-1$, choose some vector

$$
\mathbf{c}_{\ell} \in \mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right)
$$

where

$$
\begin{aligned}
\mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right) & \triangleq\left\{\mathbf{x} \in\{0,1\}^{n}: \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{s}_{\ell} \quad(\bmod 2)\right\} \\
\mathbf{s}_{\ell} & =\frac{-\mathbf{H}_{\ell} \sum_{i=0}^{\ell-1} 2^{i} \mathbf{c}_{i}^{\mathrm{T}}}{2^{\ell}} \bmod 2 \in\{0,1\}^{m_{\ell}}
\end{aligned}
$$

2. Compute $\mathbf{c}=\mathbf{c}_{0}+2 \mathbf{c}_{1}+\cdots+2^{L-1} \mathbf{c}_{L-1}$

Note: $\mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right)$ is a coset code (linear iff $\mathbf{s}_{\ell}=0$ )

## Example of Sequential Encoding

$$
\mathbf{H}_{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{H}_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \quad \mathbf{H}_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

## Example of Sequential Encoding

$$
\mathbf{H}_{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{H}_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \quad \mathbf{H}_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

1. Choose $\mathbf{c}_{0}$ satisfying $\mathbf{H}_{0} \mathbf{c}_{0}^{\mathrm{T}} \equiv \mathbf{0}(\bmod 2)$, e.g., $\mathbf{c}_{0}=(1,1,1,1)$.

## Example of Sequential Encoding

$$
\mathbf{H}_{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{H}_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \quad \mathbf{H}_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

1. Choose $\mathbf{c}_{0}$ satisfying $\mathbf{H}_{0} \mathbf{c}_{0}^{\mathrm{T}} \equiv \mathbf{0}(\bmod 2)$, e.g., $\mathbf{c}_{0}=(1,1,1,1)$.
2. Compute

$$
\mathbf{s}_{1}=-\frac{1}{2} \mathbf{H}_{1} \mathbf{c}_{0}^{\mathrm{T}} \bmod 2=\frac{1}{2}\left[\begin{array}{l}
4 \\
2
\end{array}\right] \bmod 2=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and choose $\mathbf{c}_{1}$ satisfying $\mathbf{H}_{1} \mathbf{c}_{1}^{\mathrm{T}} \equiv \mathbf{s}_{1}(\bmod 2)$, e.g., $\mathbf{c}_{1}=(0,1,1,0)$.

## Example of Sequential Encoding

$$
\mathbf{H}_{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{H}_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \quad \mathbf{H}_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

1. Choose $\mathbf{c}_{0}$ satisfying $\mathbf{H}_{0} \mathbf{c}_{0}^{\mathrm{T}} \equiv \mathbf{0}(\bmod 2)$, e.g., $\mathbf{c}_{0}=(1,1,1,1)$.
2. Compute

$$
\mathbf{s}_{1}=-\frac{1}{2} \mathbf{H}_{1} \mathbf{c}_{0}^{\mathrm{T}} \bmod 2=\frac{1}{2}\left[\begin{array}{l}
4 \\
2
\end{array}\right] \bmod 2=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and choose $\mathbf{c}_{1}$ satisfying $\mathbf{H}_{1} \mathbf{c}_{1}^{\mathrm{T}} \equiv \mathbf{s}_{1}(\bmod 2)$, e.g., $\mathbf{c}_{1}=(0,1,1,0)$.
3. Compute

$$
\mathbf{s}_{2}=-\frac{1}{4} \mathbf{H}_{2}\left(2 \mathbf{c}_{1}^{\mathrm{T}}+\mathbf{c}_{0}^{\mathrm{T}}\right) \bmod 2=0
$$

and choose $\mathbf{c}_{2}$ satisfying $\mathbf{H}_{2} \mathbf{c}_{2}^{\mathrm{T}} \equiv \mathbf{s}_{2}(\bmod 2)$, e.g., $\mathbf{c}_{2}=(0,0,1,1)$.

## Example of Sequential Encoding

$$
\mathbf{H}_{0}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{H}_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0
\end{array}\right] \quad \mathbf{H}_{2}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]
$$

1. Choose $\mathbf{c}_{0}$ satisfying $\mathbf{H}_{0} \mathbf{c}_{0}^{\mathrm{T}} \equiv \mathbf{0}(\bmod 2)$, e.g., $\mathbf{c}_{0}=(1,1,1,1)$.
2. Compute

$$
\mathbf{s}_{1}=-\frac{1}{2} \mathbf{H}_{1} \mathbf{c}_{0}^{\mathrm{T}} \bmod 2=\frac{1}{2}\left[\begin{array}{l}
4 \\
2
\end{array}\right] \bmod 2=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and choose $\mathbf{c}_{1}$ satisfying $\mathbf{H}_{1} \mathbf{c}_{1}^{\mathrm{T}} \equiv \mathbf{s}_{1}(\bmod 2)$, e.g., $\mathbf{c}_{1}=(0,1,1,0)$.
3. Compute

$$
\mathbf{s}_{2}=-\frac{1}{4} \mathbf{H}_{2}\left(2 \mathbf{c}_{1}^{\mathrm{T}}+\mathbf{c}_{0}^{\mathrm{T}}\right) \bmod 2=0
$$

and choose $\mathbf{c}_{2}$ satisfying $\mathbf{H}_{2} \mathbf{c}_{2}^{\mathrm{T}} \equiv \mathbf{s}_{2}(\bmod 2)$, e.g., $\mathbf{c}_{2}=(0,0,1,1)$.
4. Finally, $\mathbf{c}=\mathbf{c}_{0}+2 \mathbf{c}_{1}+4 \mathbf{c}_{2}$

$$
=(1,1,1,1)+(0,2,2,0)+(0,0,4,4)=(1,3,7,5) .
$$

## Efficient Systematic Encoding

- Computing each $\mathbf{s}_{\ell}$ is efficient since $\mathbf{H}_{\ell}$ is sparse. Thus, the overall complexity will be $O(L n)$ if encoding each coset code $\mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right)$ is $O(n)$


## Efficient Systematic Encoding

- Computing each $\mathbf{s}_{\ell}$ is efficient since $\mathbf{H}_{\ell}$ is sparse. Thus, the overall complexity will be $O(L n)$ if encoding each coset code $\mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right)$ is $O(n)$
- Any coset code can be converted to a linear code:

$$
\mathbf{H}_{\ell} \mathbf{c}_{\ell}^{T} \equiv \mathbf{s}_{\ell} \quad(\bmod 2) \Longleftrightarrow\left[\begin{array}{ll}
-\mathbf{s}_{\ell} & \mathbf{H}_{\ell}
\end{array}\right]\left[\begin{array}{ll}
1 & \mathbf{c}_{\ell}
\end{array}\right]^{\mathrm{T}} \equiv \mathbf{0} \quad(\bmod 2)
$$

## Efficient Systematic Encoding

- Computing each $\mathbf{s}_{\ell}$ is efficient since $\mathbf{H}_{\ell}$ is sparse. Thus, the overall complexity will be $O(L n)$ if encoding each coset code $\mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right)$ is $O(n)$
- Any coset code can be converted to a linear code:

$$
\mathbf{H}_{\ell} \mathbf{c}_{\ell}^{T} \equiv \mathbf{s}_{\ell} \quad(\bmod 2) \Longleftrightarrow\left[\begin{array}{cc}
-\mathbf{s}_{\ell} & \mathbf{H}_{\ell}
\end{array}\right]\left[\begin{array}{ll}
1 & \mathbf{c}_{\ell}
\end{array}\right]^{\mathrm{T}} \equiv \mathbf{0} \quad(\bmod 2)
$$

- Assume each $\mathbf{H}_{\ell}$ is of the form required by Richardson-Urbanke's linear-time encoding algorithm:


Since $\mathbf{H}_{\ell}^{\prime}=\left[\begin{array}{ll}-\mathbf{s}_{\ell} & \mathbf{H}_{\ell}\end{array}\right]$ has the same structure, the encoding complexity is still $O(n)$ and the overall encoding complexity is $O(L n)$

## Efficient Multistage (Lattice) Decoding

- If $\mathbf{r}=\mathbf{c}+\mathbf{z} \bmod 2^{L}$ :

$$
\begin{aligned}
& \mathbf{r}_{0} \triangleq \mathbf{r} \bmod 2=\mathbf{c}_{0}+\mathbf{z} \bmod 2, \quad \mathbf{c}_{0} \in \mathcal{C}_{0} \\
& \mathbf{r}_{1} \triangleq \frac{\mathbf{r}-\mathbf{c}_{0}}{2} \bmod 2=\mathbf{c}_{1}+\frac{\mathbf{z}}{2} \bmod 2, \quad \mathbf{c}_{1} \in \mathcal{C}_{1}\left(\mathbf{s}_{1}\right) \\
& \mathbf{r}_{\ell} \triangleq \frac{\mathbf{r}-\sum_{i=0}^{\ell-1} 2^{i} \mathbf{c}_{i}}{2^{\ell}} \bmod 2=\mathbf{c}_{\ell}+\frac{\mathbf{z}}{2^{\ell}} \bmod 2, \quad \mathbf{c}_{\ell} \in \mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right)
\end{aligned}
$$

## Efficient Multistage (Lattice) Decoding

- If $\mathbf{r}=\mathbf{c}+\mathbf{z} \bmod 2^{L}$ :

$$
\begin{aligned}
& \mathbf{r}_{0} \triangleq \mathbf{r} \bmod 2=\mathbf{c}_{0}+\mathbf{z} \bmod 2, \quad \mathbf{c}_{0} \in \mathcal{C}_{0} \\
& \mathbf{r}_{1} \triangleq \frac{\mathbf{r}-\mathbf{c}_{0}}{2} \bmod 2=\mathbf{c}_{1}+\frac{\mathbf{z}}{2} \bmod 2, \quad \mathbf{c}_{1} \in \mathcal{C}_{1}\left(\mathbf{s}_{1}\right) \\
& \mathbf{r}_{\ell} \triangleq \frac{\mathbf{r}-\sum_{i=0}^{\ell-1} 2^{i} \mathbf{c}_{i}}{2^{\ell}} \bmod 2=\mathbf{c}_{\ell}+\frac{\mathbf{z}}{2^{\ell}} \bmod 2, \quad \mathbf{c}_{\ell} \in \mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right)
\end{aligned}
$$

- If each $\mathcal{C}_{\ell}\left(\mathbf{s}_{\ell}\right)$ admits efficient decoding, then re-encoding is not needed
- This can be easily accomplished by running BP on

$$
\mathbf{H}_{\ell}^{\prime}=\left[\begin{array}{ll}
-\mathbf{s}_{\ell} & \mathbf{H}_{\ell}
\end{array}\right]
$$

with input LLR $^{\prime}=\left[\begin{array}{ll}\infty & \operatorname{LLR}\end{array}\right]$ (corresponding to $\left.\mathbf{c}_{\ell}^{\prime}=\left[\begin{array}{ll}1 & \mathbf{c}_{\ell}\end{array}\right]\right)$

- Overall complexity $O(L n)$


## Consequences of Sequential Encoding

## Corollary

Let $\Lambda$ be a Construction $\mathrm{D}^{\prime}$ lattice with component codes $\mathcal{C}_{0}, \ldots, \mathcal{C}_{L-1}$, where each $\mathcal{C}_{\ell}$ has dimension $n-m_{\ell}$, and let $\mathcal{C}=\Lambda \cap\left[0,2^{L}\right)^{n}$. Then

$$
|\mathcal{C}|=\left|\mathcal{C}_{0}\right| \cdots \cdot\left|\mathcal{C}_{L-1}\right|
$$

and therefore

$$
V(\Lambda)=\frac{V\left(2^{L} \mathbb{Z}^{n}\right)}{|\mathcal{C}|}=2^{m_{0}+\cdots+m_{L-1}}
$$

- Note: The result in Conway \& Sloane's book (Chapter 8, Theorem 14) assumes that "some rearrangement of $\mathbf{h}_{1}, \ldots, \mathbf{h}_{m_{0}}$ forms the rows of an upper triangular matrix", which is not required here


## A Generalization of Construction $D^{\prime}$

## Revisiting Construction $\mathrm{D}^{\prime}$

- Construction $\mathrm{D}^{\prime}$ :

$$
\Lambda=\left\{\mathbf{x} \in \mathbb{Z}^{n}: \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \quad\left(\bmod 2^{\ell+1}\right), 0 \leq \ell<L\right\}
$$

where $\mathbf{H}_{L-1} \subseteq \cdots \subseteq \mathbf{H}_{1} \subseteq \mathbf{H}_{0} \subseteq\{0,1\}^{n \times n}$ ( $\subseteq$ denotes "submatrix of")

- Can we get rid of this nesting constraint? No, because we would lose:
- sequential encoding; and thus
- multistage decoding and
- the cardinality/volume guarantee


## Revisiting Construction $\mathrm{D}^{\prime}$

- Construction $\mathrm{D}^{\prime}$ :

$$
\Lambda=\left\{\mathbf{x} \in \mathbb{Z}^{n}: \mathbf{H}_{\ell} \mathbf{x}^{T} \equiv \mathbf{0} \quad\left(\bmod 2^{\ell+1}\right), 0 \leq \ell<L\right\}
$$

where $\mathbf{H}_{L-1} \subseteq \cdots \subseteq \mathbf{H}_{1} \subseteq \mathbf{H}_{0} \subseteq\{0,1\}^{n \times n}$ ( $\subseteq$ denotes "submatrix of")

- Can we get rid of this nesting constraint? No, because we would lose:
- sequential encoding; and thus
- multistage decoding and
- the cardinality/volume guarantee
- However, sequential encoding requires only the following condition

$$
\mathbf{H}_{\ell} \equiv \mathbf{F}_{\ell} \mathbf{H}_{\ell-1} \quad\left(\bmod 2^{\ell}\right)
$$

- This is needed so that $\mathbf{s}_{\ell}$ is well-defined
- The nesting constraint $\mathbf{H}_{\ell} \subseteq \mathbf{H}_{\ell-1}$ is clearly a special case


## Generalized Construction $D^{\prime}$

## Definition

Let the matrices $\mathbf{H}_{\ell} \in \mathbb{Z}^{m_{\ell} \times n}, \ell=0, \ldots, L-1$, be such that

1. $\mathbf{H}_{\ell} \bmod 2$ is full-rank
2. $\mathbf{H}_{\ell} \equiv \mathbf{F}_{\ell} \mathbf{H}_{\ell-1}\left(\bmod 2^{\ell}\right)$, for some $\mathbf{F}_{\ell} \in \mathbb{Z}^{m_{\ell} \times m_{\ell-1}}$

Then the Generalized Construction $\mathrm{D}^{\prime}$ produces the lattice

$$
\Lambda=\left\{\mathbf{x} \in \mathbb{Z}^{n}: \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv 0 \quad\left(\bmod 2^{\ell+1}\right), 0 \leq \ell \leq L-1\right\}
$$

Remarks:

- Clearly a lattice, admits sequential encoding, same cardinality
- Binary codes $\mathcal{C}_{\ell}$ defined by $\mathbf{H}_{\ell} \bmod 2$ are still nested $\left(\mathcal{C}_{\ell-1} \subseteq \mathcal{C}_{\ell}\right)$
- $\mathbf{H}_{\ell}$ need not be binary


## Example of Generalized Construction D'

- Let $L=3, n=4$, let

$$
\mathbf{F}_{1}=\left[\begin{array}{ccc}
2 & 7 & 4 \\
11 & 9 & 6
\end{array}\right] \quad \mathbf{F}_{2}=\left[\begin{array}{ll}
3 & 5
\end{array}\right]
$$

be arbitraly chosen integer matrices, and let

$$
\begin{aligned}
\mathbf{H}_{0} & =\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \\
\mathbf{H}_{1}=\mathbf{F}_{1} \mathbf{H}_{0} \bmod 2 & =\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \\
\mathbf{H}_{2}=\mathbf{F}_{2} \mathbf{H}_{1} \bmod 4 & =\left[\begin{array}{llll}
3 & 1 & 3 & 1
\end{array}\right]
\end{aligned}
$$

- Generalized Construction $\mathrm{D}^{\prime}$ produces a lattice $\Lambda$ and associated lattice code $\mathcal{C}=\Lambda \cap\left[0,2^{L}\right)^{n}$ for which $|\mathcal{C}|=2^{1+2+3}$.


## Check Splitting

- One way to produce binary matrices that satisfy

$$
\mathbf{H}_{\ell}=\mathbf{F}_{\ell} \mathbf{H}_{\ell-1} \quad \text { (exactly, without mod) }
$$

is by splitting rows of $\mathbf{H}_{\ell}$ (shorter) to produce $\mathbf{H}_{\ell-1}$ (taller)

- This is useful since when designing regular LDPC codes it is best not to increase the column weights (variable-node degrees)



## Example of Check Splitting

- Starting with

$$
\mathbf{H}_{2}=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

we partition it into

$$
\mathbf{H}_{1}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

and, in turn, into

$$
\mathbf{H}_{0}=\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

- Note that the column weights are preserved and

$$
\mathbf{H}_{1}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \mathbf{H}_{0} \quad \text { and } \quad \mathbf{H}_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \mathbf{H}_{1}
$$

## PEG-Based Check Splitting

- We propose two check splitting algorithms based on Progressive Edge Growth (PEG) techniques [Hu et al., 2005]:

1. PEG-based check splitting: greedily attempts to maximize girth
2. Triangular PEG-based check splitting: returns a matrix in approximate triangular form, allowing linear-time encoding

- All our design examples are based on the triangular construction


## Design Examples and Simulation Results

## Power-Unconstrained AWGN Channel

- Channel model:

$$
\mathbf{x} \in \Lambda \quad \longrightarrow \quad \mathbf{y}=\mathbf{x}+\mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

- Multilevel partition with multistage decoding [Forney et al., 2000]:

$$
\mathbf{x}=\mathbf{c}+\boldsymbol{\lambda}^{\prime}, \quad \mathbf{c} \in \mathcal{C}=\Lambda \cap \mathcal{R}_{\Lambda^{\prime}}, \quad \boldsymbol{\lambda}^{\prime} \in \Lambda^{\prime}=2^{L} \mathbb{Z}^{n}
$$

- First, compute

$$
\mathbf{r}=\mathbf{y} \bmod \Lambda^{\prime}=\mathbf{c}+\mathbf{z} \bmod 2^{L}
$$

- Then, decode $\mathbf{c} \in \mathcal{C}$ on the modulo- $2^{L}$ channel
- Finally, subtract c from y and then decode $\boldsymbol{\lambda}^{\prime} \in \Lambda^{\prime}$

$$
P_{e}\left(\Lambda, \sigma^{2}\right) \leq P_{e}\left(\mathcal{C}, \sigma^{2}\right)+P_{e}\left(\Lambda^{\prime}, \sigma^{2}\right)
$$

## Power-Unconstrained AWGN Channel: Design

- Generalized Construction $\mathrm{D}^{\prime}$ with $L=2$ coded levels
- Parameters from [Yan-Liu-Ling-Wu'14]: $n=1024, P_{e}\left(\Lambda, \sigma^{2}\right) \leq 10^{-5}$
- Equal error probability rule:

$$
P_{e}\left(\Lambda, \sigma^{2}\right) \leq P_{e}\left(\mathcal{C}_{0}, \sigma^{2}\right)+P_{e}\left(\mathcal{C}_{1},(\sigma / 2)^{2}\right)+P_{e}\left(4 \mathbb{Z}^{n},(\sigma / 4)^{2}\right)
$$

- LDPC component codes:
- Variable-regular with $d_{v}=3$
- Triangular PEG-based check splitting for linear-time encoding
- Rates $R_{0}=0.2383$ and $R_{1}=0.9043$
- Comparison with:
- Polar lattices [Yan-Liu-Ling-Wu'14]
- (Original) Construction D' LDPC lattices [Sadeghi et al.'06]


## Power-Unconstrained AWGN Channel: Results



## Power-Constrained AWGN Channel

- Channel model:

$$
\mathbf{x} \in \mathcal{X}=(\Lambda+\mathbf{d}) \cap \mathcal{V}\left(\Lambda^{\prime}\right) \quad \longrightarrow \quad \mathbf{y}=\mathbf{x}+\mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

where $\Lambda^{\prime}=2^{L} \mathbb{Z}^{n}$, and $\mathbf{d} \in \mathbb{R}^{n}$ is a shift vector (or dither) chosen such that $\mathcal{X}$ lies in a zero-mean $2^{L}$-PAM constellation

- Modulo-lattice transformation for lattice decoding [Erez-Zamir’04]:

$$
\mathbf{r}=\alpha \mathbf{y}-\mathbf{d} \bmod \Lambda^{\prime}=\mathbf{c}+\mathbf{z}_{\mathrm{eff}} \bmod 2^{L}
$$

gives an equivalent channel with effective noise

$$
\mathbf{z}_{\mathrm{eff}}=(\alpha-1) \mathbf{x}+\alpha \mathbf{z}
$$

- Then, decode $\mathbf{c} \in \mathcal{C}$ on the modulo- $2^{L}$ channel, with $\sigma^{2}$ replaced by

$$
\sigma_{\mathrm{eff}}^{2}=(\alpha-1)^{2} P+\alpha^{2} \sigma^{2}
$$

## Power-Constrained AWGN Channel: Design

- Generalized Construction $\mathrm{D}^{\prime}$ with $L=2$ coded levels (4-PAM modulation)
- Parameters: $n=2048, P_{e} \leq 10^{-3}, R=1.5$ bits per symbol
- Equal error probability rule:

$$
P_{e}\left(\Lambda, \sigma^{2}\right) \leq P_{e}\left(\mathcal{C}_{0}, \sigma^{2}\right)+P_{e}\left(\mathcal{C}_{1},(\sigma / 2)^{2}\right)
$$

- LDPC component codes:
- Variable-regular with $d_{v}=3$
- Triangular PEG-based check splitting for linear-time encoding
- Rates: $R_{0}=0.5244$ and $R_{1}=0.9756$
- Comparison with:
- Conventional (non-lattice) MLC with conventional (non-lattice) MSD
- BICM scheme with Gray labeling ( $n=4096, R=3 / 4$ )


## Power-Constrained AWGN Channel: Results



## Conclusions

## Conclusions

- Lattice codes may provide significant gains for network information theory, but their practical implementation is still challenging
- Multilevel lattices are promising since they can be AWGN-good and only require encoding/decoding of binary codes
- Construction D' LDPC lattices admit efficient encoding and decoding and do not require nested matrices (just nested codes)
- Encouraging examples with competitive performance


## Open Problems

Ongoing work:

- Include (nested lattice) shaping
- Design irregular LDPC lattices

Open problems:

- Can we prove AWGN-goodness under linear complexity?
- Do quantization-good Construction D/D' lattices exist?
- Is compute-and-forward with probabilistic shaping possible?


## Thank You!

