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Introduction



Motivation

1. Lattice codes provide a structured solution to achieve the capacity of
the point-to-point AWGN channel [Erez-Zamir’04]

I Goal: achieve capacity with efficient encoding and decoding

I Solved by polar lattices [Yan-Liu-Ling-Wu’14]

2. For many network information theory problems, lattice codes can
achieve strictly better performance than existing non-structured codes

I Compute-and-forward for relay networks [Nazer-Gastpar’11]
I Integer forcing for MIMO systems [Zhan-Nazer-Erez-Gastpar’14]
I Distributed source coding [Krithivasan-Pradhan’09]
I Physical-layer security [Ling-Luzzi-Belfiore-Stehlé’14]
I And more (see Zamir’s book)
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Example: The Two-Way Relay Channel

1Source: [Nazer-Gastpar’13]
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Routing

2Source: [Nazer-Gastpar’13]
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Network Coding

3Source: [Nazer-Gastpar’13]
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Physical-Layer Network Coding

4Source: [Nazer-Gastpar’13]
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Compute-and-Forward

Physical-Layer Network Coding + Lattices = Compute-and-Forward

5Source: [Nazer-Gastpar’13]
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Nested Lattice Codes

I If Λ′ ⊆ Λ is a sublattice of Λ with a fundamental region RΛ′ , then

C = Λ ∩RΛ′ = Λ mod Λ′

is said to be a nested lattice code

I A decoder that finds the nearest lattice point (ignoring the shaping
region) is called a lattice decoder

I Nested lattice codes with lattice decoding are capacity-achieving for the
AWGN channel if Λ is AWGN-good and Λ′ is quantization-good [EZ’04]
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Compute-and-Forward (special case)

I The users transmit c1, c2 ∈ C = Λ ∩RΛ′

I The relay receives

y = c1 + c2 + z, z ∼ N (0, σ2I)

and wishes to compute

c3 , c1 + c2 mod Λ′ ∈ C

I To do so, it computes

y mod Λ′ = c3 + z mod Λ′

from which it can then decode c3 ∈ C.
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Constructions of Low-Complexity
Lattices



Main Problem

How to construct capacity-approaching lattice codes
that admit efficient encoding and decoding?

efficient , linear or quasi-linear complexity in number of information bits
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Background on Low-Density Parity-Check Codes

I An LDPC code is a linear code with a sparse parity-check matrix

C = {x ∈ Fn
2 : HxT = 0}, H ∈ F(n−k)×n

2

I Equivalently represented by a Tanner graph (a bipartite graph, with
n variable nodes and m check nodes, whose incidence matrix is H)

v2 v3 v4 v5 v6 v7v1

H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1



I Can be decoded in O(n) by the belief propagation algorithm

I Performance depends largely (but not only) on the degree distribution

I Approaches the BI-AWGN capacity (achieves it if spatially coupled)
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Main Approaches

I Low-Density Construction A (LDA) Lattices [di Pietro et al.’12]
I Requires an LDPC code over Zp with large p
I High-complexity decoding: O(p2n) with belief propagation

I Low-Density Lattice Codes (LDLC) [Sommer-Feder-Shalvi’08]
I Designed directly in Rn with a sparse parity-check matrix
I BP decoder must process probability density functions

I Multilevel Lattices [Forney-Trott-Chung’00]
I Uses multiple nested binary linear codes
I Efficient decoding is possible (in principle) using multistage decoding
I AWGN-good if each component code is capacity-achieving
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Multilevel Lattices: Construction D
I Let C0 ⊆ C1 ⊆ · · · ⊆ CL−1 ⊆ Zn

2 be a family of nested linear codes,
where each C` has dimension k` and generator matrix

G` =

 g1
...

gk`

 ∈ {0, 1}k`×n
I Construction D:

Λ =

{
L−1∑
`=0

2`u`G` : u` ∈ {0, 1}k` , 0 ≤ ` < L

}
+ 2LZn

(note that u`G` is computed over Z)

I Remark: Should not be confused with the “Code Formula”

Γ = C0 + 2C1 + · · ·+ 2L−1CL−1 + 2LZn

which does not generally produce lattices
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Encoding and Multistage Decoding of Construction D

u0
G0

u0G0

2

u1
G1

u1G1

Encoder

û0G0

mod 2 D0

G0

û0

−+

1
2

û1G1

mod 2 D1

G1

û1

1
2

−+

Decoder

4

u2
G2

u2G2
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Multilevel Lattices: Construction D′

I Let C0 ⊆ C1 ⊆ · · · ⊆ CL−1 ⊆ Zn
2 be a family of nested linear codes,

where each C` has dimension n−m` and parity-check matrix

H` =

 h1
...

hm`

 ∈ {0, 1}m`×n

I Construction D′:

Λ = {x ∈ Zn : hjx
T ≡ 0 (mod 2`+1), m`+1 < j ≤ m`, 0 ≤ ` < L}

I Matrix description:

Λ =
{
x ∈ Zn : H`x

T ≡ 0 (mod 2`+1), 0 ≤ ` < L
}
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Example of Construction D′

For nested codes C0 ⊆ C1 ⊆ C2 ⊆ Z4
2, let

H0 =

1 1 1 1
1 0 1 0
1 1 0 0

 H1 =

[
1 1 1 1
1 0 1 0

]
H2 =

[
1 1 1 1

]
Then

Λ =

x ∈ Z4 :

[
1 1 1 1

]
xT ≡ 0 (mod 8)[

1 0 1 0
]
xT ≡ 0 (mod 4)[

1 1 0 0
]
xT ≡ 0 (mod 2)


or equivalently

Λ =

x ∈ Z4 :

H2x
T ≡ 0 (mod 8)

H1x
T ≡ 0 (mod 4)

H0x
T ≡ 0 (mod 2)


17 / 39



Multilevel Lattices: Previous Work

I Polar Lattices [Yan-Liu-Ling-Wu’14]
I Based on Construction D
I Capacity-achieving under MSD
I Encoding and decoding complexity O(Ln log n)

I LDPC Lattices [Sadeghi-Banihashemi-Panario’06] [Baik-Chung’08]
I Based on Construction D′

I Only joint decoding considered—complexity O(2Ln)

I Encoding complexity not addressed

I Spatially-Coupled LDPC Lattices [Vem-Huang-Narayanan-Pfister’14]
I AWGN-good under BP MSD
I Based on Construction D =⇒ generally dense generator matrices
I High-complexity encoding and MSD cancellation step
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Challenges with Construction D′

I How to encode (efficiently)?

I How to cancel past levels (efficiently) in MSD?

I Nested parity-check matrices:
I are difficult to design (for non-SC LDPC codes)

I do not perform well under BP MSD (for non-SC LDPC codes)
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New Results
(Submitted to ISIT 2018)

1. A new description of Construction D′ that enables sequential encoding
I Encoding done entirely over the binary field
I Avoids the need for explicit re-encoding in MSD
I Existing algorithms for LDPC codes can be easily adapted

=⇒ encoding and decoding complexity O(Ln)

2. A generalization of Construction D′ that relaxes the constraints on H`

I Enlarged design space =⇒ better performance under BP
I Easier to design (needs only HL−1 and m0, . . . ,mL−2 as inputs)

3. Examples with performance comparable to polar lattices in the
power-unconstrained AWGN channel

20 / 39



Efficient Encoding and Decoding for
Construction D′



Sequential Encoding

Theorem

Let Λ be a lattice given by Construction D′ with matrices H0, . . . ,HL−1

and let C = Λ ∩ [0, 2L)n be a lattice code. Then C is the set of all possible
vectors c ∈ Zn produced by the following (well-defined) procedure:

1. For ` = 0, 1, . . . , L− 1, choose some vector

c` ∈ C`(s`)
where

C`(s`) ,
{
x ∈ {0, 1}n : H`x

T ≡ s` (mod 2)
}

s` =
−H`

∑`−1
i=0 2icT

i

2`
mod 2 ∈ {0, 1}m`

2. Compute c = c0 + 2c1 + · · ·+ 2L−1cL−1

Note: C`(s`) is a coset code (linear iff s` = 0)
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Example of Sequential Encoding

H0 =

1 1 1 1
1 0 1 0
1 1 0 0

 H1 =

[
1 1 1 1
1 0 1 0

]
H2 =

[
1 1 1 1

]

1. Choose c0 satisfying H0c
T
0 ≡ 0 (mod 2), e.g., c0 = (1, 1, 1, 1).

2. Compute

s1 = −1

2
H1c

T
0 mod 2 =

1

2

[
4
2

]
mod 2 =

[
0
1

]
and choose c1 satisfying H1c

T
1 ≡ s1 (mod 2), e.g., c1 = (0, 1, 1, 0).

3. Compute
s2 = −1

4
H2(2cT

1 + cT
0 ) mod 2 = 0

and choose c2 satisfying H2c
T
2 ≡ s2 (mod 2), e.g., c2 = (0, 0, 1, 1).

4. Finally, c = c0 + 2c1 + 4c2

= (1, 1, 1, 1) + (0, 2, 2, 0) + (0, 0, 4, 4) = (1, 3, 7, 5).
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Efficient Systematic Encoding

I Computing each s` is efficient since H` is sparse. Thus, the overall
complexity will be O(Ln) if encoding each coset code C`(s`) is O(n)

I Any coset code can be converted to a linear code:

H`c
T
` ≡ s` (mod 2) ⇐⇒

[
−s` H`

] [
1 c`

]T ≡ 0 (mod 2)

I Assume each H` is of the form required by Richardson-Urbanke’s
linear-time encoding algorithm:

H` =

g

m−g

T 1
1
1

1
1

1
1

1
1

BA

DC E

0

Since H′` =
[
−s` H`

]
has the same structure, the encoding complexity

is still O(n) and the overall encoding complexity is O(Ln)
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Efficient Multistage (Lattice) Decoding

I If r = c + z mod 2L:

r0 , r mod 2 = c0 + z mod 2, c0 ∈ C0

r1 ,
r− c0

2
mod 2 = c1 +

z

2
mod 2, c1 ∈ C1(s1)

r` ,
r−

∑`−1
i=0 2ici
2`

mod 2 = c` +
z

2`
mod 2, c` ∈ C`(s`)

I If each C`(s`) admits efficient decoding, then re-encoding is not needed
I This can be easily accomplished by running BP on

H′` =
[
−s` H`

]
with input LLR′ =

[
∞ LLR

]
(corresponding to c′` =

[
1 c`

]
)

I Overall complexity O(Ln)
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Consequences of Sequential Encoding

Corollary

Let Λ be a Construction D′ lattice with component codes C0, . . . , CL−1,
where each C` has dimension n−m`, and let C = Λ ∩ [0, 2L)n. Then

|C| = |C0| · · · · · |CL−1|

and therefore

V (Λ) =
V (2LZn)

|C|
= 2m0+···+mL−1 .

I Note: The result in Conway & Sloane’s book (Chapter 8, Theorem 14)
assumes that “some rearrangement of h1, . . . ,hm0 forms the rows of an
upper triangular matrix”, which is not required here
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A Generalization of Construction D′



Revisiting Construction D′

I Construction D′:

Λ =
{
x ∈ Zn : H`x

T ≡ 0 (mod 2`+1), 0 ≤ ` < L
}

where HL−1 ⊆ · · · ⊆ H1 ⊆ H0 ⊆ {0, 1}n×n (⊆ denotes “submatrix of”)

I Can we get rid of this nesting constraint? No, because we would lose:
I sequential encoding; and thus
I multistage decoding and
I the cardinality/volume guarantee

I However, sequential encoding requires only the following condition

H` ≡ F`H`−1 (mod 2`)

I This is needed so that s` is well-defined
I The nesting constraint H` ⊆ H`−1 is clearly a special case
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Generalized Construction D′

Definition

Let the matrices H` ∈ Zm`×n, ` = 0, . . . , L− 1, be such that

1. H` mod 2 is full-rank

2. H` ≡ F` H`−1 (mod 2`), for some F` ∈ Zm`×m`−1

Then the Generalized Construction D′ produces the lattice

Λ =
{
x ∈ Zn : H`x

T ≡ 0 (mod 2`+1), 0 ≤ ` ≤ L− 1
}

Remarks:
I Clearly a lattice, admits sequential encoding, same cardinality
I Binary codes C` defined by H` mod 2 are still nested (C`−1 ⊆ C`)
I H` need not be binary
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Example of Generalized Construction D′

I Let L = 3, n = 4, let

F1 =

[
2 7 4
11 9 6

]
F2 =

[
3 5

]
be arbitraly chosen integer matrices, and let

H0 =

1 1 1 1
1 0 1 0
1 1 0 0


H1 = F1H0 mod 2 =

[
1 0 1 0
0 1 0 1

]
H2 = F2H1 mod 4 =

[
3 1 3 1

]
I Generalized Construction D′ produces a lattice Λ and associated lattice

code C = Λ ∩ [0, 2L)n for which |C| = 21+2+3.
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Check Splitting

I One way to produce binary matrices that satisfy

H` = F` H`−1 (exactly, without mod)

is by splitting rows of H` (shorter) to produce H`−1 (taller)

I This is useful since when designing regular LDPC codes it is best not to
increase the column weights (variable-node degrees)

c1

v1 v2 v3 v4

ev1 ev2 ev3 ev4

v1 v2 v3 v4

c1,1 c1,2

ev1 ev2 ev3 ev4
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Example of Check Splitting
I Starting with

H2 =
[
1 1 1 1 1 1 1 1

]
we partition it into

H1 =

[
1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1

]
and, in turn, into

H0 =


0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0


I Note that the column weights are preserved and

H1 =

[
1 1 0 0
0 0 1 1

]
H0 and H2 =

[
1 1

]
H1
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PEG-Based Check Splitting

I We propose two check splitting algorithms based on Progressive Edge
Growth (PEG) techniques [Hu et al., 2005]:

1. PEG-based check splitting: greedily attempts to maximize girth

2. Triangular PEG-based check splitting: returns a matrix in approximate
triangular form, allowing linear-time encoding

I All our design examples are based on the triangular construction
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Design Examples and Simulation
Results



Power-Unconstrained AWGN Channel

I Channel model:

x ∈ Λ −→ y = x + z, z ∼ N (0, σ2)

I Multilevel partition with multistage decoding [Forney et al., 2000]:

x = c + λ′, c ∈ C = Λ ∩RΛ′ , λ′ ∈ Λ′ = 2LZn

I First, compute
r = y mod Λ′ = c + z mod 2L

I Then, decode c ∈ C on the modulo-2L channel

I Finally, subtract c from y and then decode λ′ ∈ Λ′

Pe(Λ, σ
2) ≤ Pe(C, σ2) + Pe(Λ

′, σ2)
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Power-Unconstrained AWGN Channel: Design

I Generalized Construction D′ with L = 2 coded levels

I Parameters from [Yan-Liu-Ling-Wu’14]: n = 1024, Pe(Λ, σ
2) ≤ 10−5

I Equal error probability rule:

Pe(Λ, σ
2) ≤ Pe(C0, σ

2) + Pe(C1, (σ/2)2) + Pe(4Zn, (σ/4)2)

I LDPC component codes:
I Variable-regular with dv = 3

I Triangular PEG-based check splitting for linear-time encoding
I Rates R0 = 0.2383 and R1 = 0.9043

I Comparison with:
I Polar lattices [Yan-Liu-Ling-Wu’14]
I (Original) Construction D′ LDPC lattices [Sadeghi et al.’06]
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Power-Unconstrained AWGN Channel: Results
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Power-Constrained AWGN Channel
I Channel model:

x ∈ X = (Λ + d) ∩ V(Λ′) −→ y = x + z, z ∼ N (0, σ2)

where Λ′ = 2LZn, and d ∈ Rn is a shift vector (or dither) chosen such
that X lies in a zero-mean 2L-PAM constellation

I Modulo-lattice transformation for lattice decoding [Erez-Zamir’04]:

r = αy − d mod Λ′ = c + zeff mod 2L

gives an equivalent channel with effective noise

zeff = (α− 1)x + αz

I Then, decode c ∈ C on the modulo-2L channel, with σ2 replaced by

σ2
eff = (α− 1)2P + α2σ2
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Power-Constrained AWGN Channel: Design

I Generalized Construction D′ with L = 2 coded levels (4-PAM modulation)

I Parameters: n = 2048, Pe ≤ 10−3, R = 1.5 bits per symbol

I Equal error probability rule:

Pe(Λ, σ
2) ≤ Pe(C0, σ

2) + Pe(C1, (σ/2)2)

I LDPC component codes:
I Variable-regular with dv = 3

I Triangular PEG-based check splitting for linear-time encoding
I Rates: R0 = 0.5244 and R1 = 0.9756

I Comparison with:
I Conventional (non-lattice) MLC with conventional (non-lattice) MSD
I BICM scheme with Gray labeling (n = 4096, R = 3/4)
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Power-Constrained AWGN Channel: Results
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Conclusions



Conclusions

I Lattice codes may provide significant gains for network information
theory, but their practical implementation is still challenging

I Multilevel lattices are promising since they can be AWGN-good and
only require encoding/decoding of binary codes

I Construction D′ LDPC lattices admit efficient encoding and decoding
and do not require nested matrices (just nested codes)

I Encouraging examples with competitive performance
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Open Problems

Ongoing work:
I Include (nested lattice) shaping

I Design irregular LDPC lattices

Open problems:
I Can we prove AWGN-goodness under linear complexity?

I Do quantization-good Construction D/D′ lattices exist?

I Is compute-and-forward with probabilistic shaping possible?
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Thank You!
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