Multilevel LDPC Lattices with Efficient Encoding and Decoding and a Generalization of Construction D'

Danilo Silva Paulo R. B. da Silva

Department of Electrical and Electronic Engineering Federal University of Santa Catarina (UFSC), Brazil danilo.silva@ufsc.br

> Lattice Coding & Crypto Meeting Imperial College London London, January 15, 2018

Outline

- 1. Introduction (background, motivation)
- 2. Constructions of low-complexity lattices
- 3. New results
 - Efficient encoding and decoding for Construction D'
 - A generalization of Construction D'
 - Design examples and simulation results
- 4. Conclusions and open problems

Introduction

Motivation

- 1. Lattice codes provide a structured solution to achieve the capacity of the point-to-point AWGN channel [Erez-Zamir'04]
 - Goal: achieve capacity with efficient encoding and decoding

Motivation

- 1. Lattice codes provide a structured solution to achieve the capacity of the point-to-point AWGN channel [Erez-Zamir'04]
 - Goal: achieve capacity with efficient encoding and decoding
 - Solved by polar lattices [Yan-Liu-Ling-Wu'14]

Motivation

- 1. Lattice codes provide a structured solution to achieve the capacity of the point-to-point AWGN channel [Erez-Zamir'04]
 - Goal: achieve capacity with efficient encoding and decoding
 - Solved by polar lattices [Yan-Liu-Ling-Wu'14]
- 2. For many network information theory problems, lattice codes can achieve strictly better performance than existing non-structured codes
 - Compute-and-forward for relay networks [Nazer-Gastpar'11]
 - Integer forcing for MIMO systems [Zhan-Nazer-Erez-Gastpar'14]
 - Distributed source coding [Krithivasan-Pradhan'09]
 - Physical-layer security [Ling-Luzzi-Belfiore-Stehlé'14]
 - And more (see Zamir's book)

Example: The Two-Way Relay Channel

Has \mathbf{w}_1 Wants \mathbf{w}_2

Relay

Has w_2 Wants w_1

¹Source: [Nazer-Gastpar'13]

Routing

²Source: [Nazer-Gastpar'13]

Network Coding

³Source: [Nazer-Gastpar'13]

Physical-Layer Network Coding

⁴Source: [Nazer-Gastpar'13]

Compute-and-Forward

Physical-Layer Network Coding + Lattices = Compute-and-Forward

⁵Source: [Nazer-Gastpar'13]

Nested Lattice Codes

• If $\Lambda' \subseteq \Lambda$ is a sublattice of Λ with a fundamental region $\mathcal{R}_{\Lambda'}$, then

$$\mathcal{C} = \Lambda \cap \mathcal{R}_{\Lambda'} = \Lambda \mod \Lambda'$$

is said to be a nested lattice code

- A decoder that finds the nearest lattice point (ignoring the shaping region) is called a lattice decoder
- Nested lattice codes with lattice decoding are capacity-achieving for the AWGN channel if Λ is AWGN-good and Λ' is quantization-good [EZ'04]

▶ The users transmit $\mathbf{c}_1, \mathbf{c}_2 \in \mathcal{C} = \Lambda \cap \mathcal{R}_{\Lambda'}$

- \blacktriangleright The users transmit $\mathbf{c}_1,\mathbf{c}_2\in\mathcal{C}=\Lambda\cap\mathcal{R}_{\Lambda'}$
- The relay receives

$$\mathbf{y} = \mathbf{c}_1 + \mathbf{c}_2 + \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

- \blacktriangleright The users transmit $\mathbf{c}_1,\mathbf{c}_2\in\mathcal{C}=\Lambda\cap\mathcal{R}_{\Lambda'}$
- The relay receives

$$\mathbf{y} = \mathbf{c}_1 + \mathbf{c}_2 + \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

and wishes to compute

$$\mathbf{c}_3 \triangleq \mathbf{c}_1 + \mathbf{c}_2 \bmod \Lambda' \in \mathcal{C}$$

- \blacktriangleright The users transmit $\mathbf{c}_1,\mathbf{c}_2\in\mathcal{C}=\Lambda\cap\mathcal{R}_{\Lambda'}$
- The relay receives

$$\mathbf{y} = \mathbf{c}_1 + \mathbf{c}_2 + \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

and wishes to compute

$$\mathbf{c}_3 \triangleq \mathbf{c}_1 + \mathbf{c}_2 \mod \Lambda' \in \mathcal{C}$$

To do so, it computes

$$\mathbf{y} \mod \Lambda' = \mathbf{c}_3 + \mathbf{z} \mod \Lambda'$$

from which it can then decode $c_3 \in C$.

Constructions of Low-Complexity Lattices

How to construct capacity-approaching lattice codes that admit efficient encoding and decoding?

efficient \triangleq linear or quasi-linear complexity in number of information bits

Background on Low-Density Parity-Check Codes

An LDPC code is a linear code with a sparse parity-check matrix

$$\mathcal{C} = \{ \mathbf{x} \in \mathbb{F}_2^n : \mathbf{H}\mathbf{x}^{\mathrm{T}} = \mathbf{0} \}, \qquad \mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$$

Equivalently represented by a Tanner graph (a bipartite graph, with n variable nodes and m check nodes, whose incidence matrix is H)

- Can be decoded in O(n) by the belief propagation algorithm
- Performance depends largely (but not only) on the degree distribution
- Approaches the BI-AWGN capacity (achieves it if spatially coupled)

Main Approaches

- Low-Density Construction A (LDA) Lattices [di Pietro et al.'12]
 - Requires an LDPC code over \mathbb{Z}_p with large p
 - High-complexity decoding: $O(p^2n)$ with belief propagation

Main Approaches

- Low-Density Construction A (LDA) Lattices [di Pietro et al.'12]
 - Requires an LDPC code over \mathbb{Z}_p with large p
 - High-complexity decoding: $O(p^2n)$ with belief propagation
- Low-Density Lattice Codes (LDLC) [Sommer-Feder-Shalvi'08]
 - Designed directly in \mathbb{R}^n with a sparse parity-check matrix
 - BP decoder must process probability density functions

Main Approaches

- Low-Density Construction A (LDA) Lattices [di Pietro et al.'12]
 - Requires an LDPC code over \mathbb{Z}_p with large p
 - High-complexity decoding: $O(p^2n)$ with belief propagation
- Low-Density Lattice Codes (LDLC) [Sommer-Feder-Shalvi'08]
 - Designed directly in \mathbb{R}^n with a sparse parity-check matrix
 - BP decoder must process probability density functions
- Multilevel Lattices [Forney-Trott-Chung'00]
 - Uses multiple nested binary linear codes
 - Efficient decoding is possible (in principle) using multistage decoding
 - AWGN-good if each component code is capacity-achieving

Multilevel Lattices: Construction D

▶ Let $C_0 \subseteq C_1 \subseteq \cdots \subseteq C_{L-1} \subseteq \mathbb{Z}_2^n$ be a family of nested linear codes, where each C_ℓ has dimension k_ℓ and generator matrix

$$\mathbf{G}_{\ell} = \begin{bmatrix} \mathbf{g}_1 \\ \vdots \\ \mathbf{g}_{k_{\ell}} \end{bmatrix} \in \{0, 1\}^{k_{\ell} \times n}$$

Construction D:

$$\Lambda = \left\{ \sum_{\ell=0}^{L-1} 2^{\ell} \mathbf{u}_{\ell} \mathbf{G}_{\ell} : \mathbf{u}_{\ell} \in \{0,1\}^{k_{\ell}}, \ 0 \le \ell < L \right\} + 2^{L} \mathbb{Z}^{n}$$

(note that $\mathbf{u}_{\ell}\mathbf{G}_{\ell}$ is computed over \mathbb{Z})

Remark: Should not be confused with the "Code Formula"

$$\Gamma = \mathcal{C}_0 + 2\mathcal{C}_1 + \dots + 2^{L-1}\mathcal{C}_{L-1} + 2^L \mathbb{Z}^n$$

which does not generally produce lattices

Encoding and Multistage Decoding of Construction D

Multilevel Lattices: Construction D'

▶ Let $C_0 \subseteq C_1 \subseteq \cdots \subseteq C_{L-1} \subseteq \mathbb{Z}_2^n$ be a family of nested linear codes, where each C_ℓ has dimension $n - m_\ell$ and parity-check matrix

$$\mathbf{H}_{\ell} = \begin{bmatrix} \mathbf{h}_1 \\ \vdots \\ \mathbf{h}_{m_{\ell}} \end{bmatrix} \in \{0, 1\}^{m_{\ell} \times n}$$

Construction D':

$$\Lambda = \{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{h}_j \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{2^{\ell+1}}, \ m_{\ell+1} < j \le m_{\ell}, \ 0 \le \ell < L \}$$

Matrix description:

$$\Lambda = \left\{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{2^{\ell+1}}, \ 0 \le \ell < L \right\}$$

Example of Construction D'

For nested codes $\mathcal{C}_0 \subseteq \mathcal{C}_1 \subseteq \mathcal{C}_2 \subseteq \mathbb{Z}_2^4$, let

$$\mathbf{H}_{0} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad \mathbf{H}_{1} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{H}_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Then

$$\Lambda = \left\{ \mathbf{x} \in \mathbb{Z}^4 : \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{8} \\ \mathbf{x} \in \mathbb{Z}^4 : \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{4} \\ \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{2} \right\}$$

or equivalently

$$\Lambda = \begin{cases} \mathbf{H}_{2}\mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{8} \\ \mathbf{x} \in \mathbb{Z}^{4} : \mathbf{H}_{1}\mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{4} \\ \mathbf{H}_{0}\mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{2} \end{cases}$$

Multilevel Lattices: Previous Work

- Polar Lattices [Yan-Liu-Ling-Wu'14]
 - Based on Construction D
 - Capacity-achieving under MSD
 - Encoding and decoding complexity $O(Ln \log n)$

Multilevel Lattices: Previous Work

- Polar Lattices [Yan-Liu-Ling-Wu'14]
 - Based on Construction D
 - Capacity-achieving under MSD
 - Encoding and decoding complexity $O(Ln \log n)$
- LDPC Lattices [Sadeghi-Banihashemi-Panario'06] [Baik-Chung'08]
 - Based on Construction D'
 - Only joint decoding considered—complexity $O(2^L n)$
 - Encoding complexity not addressed

Multilevel Lattices: Previous Work

- Polar Lattices [Yan-Liu-Ling-Wu'14]
 - Based on Construction D
 - Capacity-achieving under MSD
 - Encoding and decoding complexity $O(Ln \log n)$
- LDPC Lattices [Sadeghi-Banihashemi-Panario'06] [Baik-Chung'08]
 - Based on Construction D'
 - Only joint decoding considered—complexity $O(2^L n)$
 - Encoding complexity not addressed
- Spatially-Coupled LDPC Lattices [Vem-Huang-Narayanan-Pfister'14]
 - AWGN-good under BP MSD
 - Based on Construction D \implies generally dense generator matrices
 - High-complexity encoding and MSD cancellation step

Challenges with Construction D'

- How to encode (efficiently)?
- How to cancel past levels (efficiently) in MSD?
- Nested parity-check matrices:
 - are difficult to design (for non-SC LDPC codes)
 - do not perform well under BP MSD (for non-SC LDPC codes)

New Results

(Submitted to ISIT 2018)

1. A new description of Construction D' that enables sequential encoding

- Encoding done entirely over the binary field
- Avoids the need for explicit re-encoding in MSD
- Existing algorithms for LDPC codes can be easily adapted \implies encoding and decoding complexity O(Ln)
- 2. A generalization of Construction D' that relaxes the constraints on \mathbf{H}_ℓ
 - Enlarged design space better performance under BP
 - Easier to design (needs only \mathbf{H}_{L-1} and m_0, \ldots, m_{L-2} as inputs)
- 3. Examples with performance comparable to polar lattices in the power-unconstrained AWGN channel

Efficient Encoding and Decoding for Construction D'

Sequential Encoding

Theorem

Let Λ be a lattice given by Construction D' with matrices $\mathbf{H}_0, \ldots, \mathbf{H}_{L-1}$ and let $\mathcal{C} = \Lambda \cap [0, 2^L)^n$ be a lattice code. Then \mathcal{C} is the set of all possible vectors $\mathbf{c} \in \mathbb{Z}^n$ produced by the following (well-defined) procedure:

1. For $\ell = 0, 1, \dots, L-1$, choose some vector

$$\mathbf{c}_{\ell} \in \ \mathcal{C}_{\ell}(\mathbf{s}_{\ell})$$

where

$$\mathcal{C}_{\ell}(\mathbf{s}_{\ell}) \triangleq \left\{ \mathbf{x} \in \{0, 1\}^{n} : \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{s}_{\ell} \pmod{2} \right\}$$
$$\mathbf{s}_{\ell} = \frac{-\mathbf{H}_{\ell} \sum_{i=0}^{\ell-1} 2^{i} \mathbf{c}_{i}^{\mathrm{T}}}{2^{\ell}} \mod 2 \in \{0, 1\}^{m_{\ell}}$$

2. Compute $c = c_0 + 2c_1 + \cdots + 2^{L-1}c_{L-1}$

Note: $C_{\ell}(\mathbf{s}_{\ell})$ is a coset code (linear iff $\mathbf{s}_{\ell} = 0$)

$$\mathbf{H}_0 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad \mathbf{H}_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{H}_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{H}_0 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad \mathbf{H}_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{H}_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

1. Choose \mathbf{c}_0 satisfying $\mathbf{H}_0\mathbf{c}_0^T\equiv \mathbf{0} \pmod{2},$ e.g., $\mathbf{c}_0=(1,1,1,1).$

$$\mathbf{H}_0 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad \mathbf{H}_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{H}_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

1. Choose \mathbf{c}_0 satisfying $\mathbf{H}_0\mathbf{c}_0^T\equiv \mathbf{0} \pmod{2}$, e.g., $\mathbf{c}_0=(1,1,1,1).$

2. Compute

$$\mathbf{s}_1 = -\frac{1}{2}\mathbf{H}_1\mathbf{c}_0^{\mathrm{T}} \mod 2 = \frac{1}{2} \begin{bmatrix} 4\\2 \end{bmatrix} \mod 2 = \begin{bmatrix} 0\\1 \end{bmatrix}$$

and choose \mathbf{c}_1 satisfying $\mathbf{H}_1 \mathbf{c}_1^T \equiv \mathbf{s}_1 \pmod{2}$, e.g., $\mathbf{c}_1 = (0, 1, 1, 0)$.

$$\mathbf{H}_0 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad \mathbf{H}_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{H}_2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

1. Choose c_0 satisfying $H_0c_0^T \equiv 0 \pmod{2}$, e.g., $c_0 = (1, 1, 1, 1)$.

2. Compute

$$\mathbf{s}_1 = -\frac{1}{2}\mathbf{H}_1\mathbf{c}_0^{\mathrm{T}} \mod 2 = \frac{1}{2} \begin{bmatrix} 4\\2 \end{bmatrix} \mod 2 = \begin{bmatrix} 0\\1 \end{bmatrix}$$

and choose \mathbf{c}_1 satisfying $\mathbf{H}_1 \mathbf{c}_1^T \equiv \mathbf{s}_1 \pmod{2}$, e.g., $\mathbf{c}_1 = (0, 1, 1, 0)$.

3. Compute

$$\mathbf{s}_2 = -\frac{1}{4}\mathbf{H}_2(2\mathbf{c}_1^{\mathrm{T}} + \mathbf{c}_0^{\mathrm{T}}) \mod 2 = 0$$

and choose \mathbf{c}_2 satisfying $\mathbf{H}_2 \mathbf{c}_2^T \equiv \mathbf{s}_2 \pmod{2}$, e.g., $\mathbf{c}_2 = (0, 0, 1, 1)$.

$$\mathbf{H}_{0} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \quad \mathbf{H}_{1} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \quad \mathbf{H}_{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

1. Choose c_0 satisfying $H_0c_0^T \equiv 0 \pmod{2}$, e.g., $c_0 = (1, 1, 1, 1)$.

2. Compute

$$\mathbf{s}_1 = -\frac{1}{2}\mathbf{H}_1\mathbf{c}_0^{\mathrm{T}} \mod 2 = \frac{1}{2} \begin{bmatrix} 4\\ 2 \end{bmatrix} \mod 2 = \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

and choose \mathbf{c}_1 satisfying $\mathbf{H}_1 \mathbf{c}_1^T \equiv \mathbf{s}_1 \pmod{2}$, e.g., $\mathbf{c}_1 = (0, 1, 1, 0)$.

3. Compute

$$\mathbf{s}_2 = -\frac{1}{4}\mathbf{H}_2(2\mathbf{c}_1^{\mathrm{T}} + \mathbf{c}_0^{\mathrm{T}}) \bmod 2 = 0$$

and choose \mathbf{c}_2 satisfying $\mathbf{H}_2\mathbf{c}_2^T\equiv\mathbf{s}_2 \pmod{2},$ e.g., $\mathbf{c}_2=(0,0,1,1).$

4. Finally,
$$\mathbf{c} = \mathbf{c}_0 + 2\mathbf{c}_1 + 4\mathbf{c}_2$$

= $(1, 1, 1, 1) + (0, 2, 2, 0) + (0, 0, 4, 4) = (1, 3, 7, 5).$

Efficient Systematic Encoding

► Computing each s_ℓ is efficient since H_ℓ is sparse. Thus, the overall complexity will be O(Ln) if encoding each coset code C_ℓ(s_ℓ) is O(n)

Efficient Systematic Encoding

- ► Computing each s_ℓ is efficient since H_ℓ is sparse. Thus, the overall complexity will be O(Ln) if encoding each coset code C_ℓ(s_ℓ) is O(n)
- Any coset code can be converted to a linear code:

$$\mathbf{H}_{\ell} \mathbf{c}_{\ell}^{T} \equiv \mathbf{s}_{\ell} \pmod{2} \iff \begin{bmatrix} -\mathbf{s}_{\ell} & \mathbf{H}_{\ell} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{c}_{\ell} \end{bmatrix}^{\mathrm{T}} \equiv \mathbf{0} \pmod{2}$$

Efficient Systematic Encoding

- Computing each s_ℓ is efficient since H_ℓ is sparse. Thus, the overall complexity will be O(Ln) if encoding each coset code C_ℓ(s_ℓ) is O(n)
- Any coset code can be converted to a linear code:

$$\mathbf{H}_{\ell} \mathbf{c}_{\ell}^{T} \equiv \mathbf{s}_{\ell} \pmod{2} \iff \begin{bmatrix} -\mathbf{s}_{\ell} & \mathbf{H}_{\ell} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{c}_{\ell} \end{bmatrix}^{\mathrm{T}} \equiv \mathbf{0} \pmod{2}$$

Assume each H_l is of the form required by Richardson-Urbanke's linear-time encoding algorithm:

$$\mathbf{H}_{\ell} = \begin{bmatrix} \mathbf{A} & \mathbf{B} & \mathbf{B} & \mathbf{D} \\ \mathbf{A} & \mathbf{B} & \mathbf{T} & \mathbf{D} \\ \mathbf{C} & \mathbf{D} & \mathbf{E} \end{bmatrix}_{g}^{m-g}$$

Since $\mathbf{H}'_{\ell} = \begin{bmatrix} -\mathbf{s}_{\ell} & \mathbf{H}_{\ell} \end{bmatrix}$ has the same structure, the encoding complexity is still O(n) and the overall encoding complexity is O(Ln)

Efficient Multistage (Lattice) Decoding

• If
$$\mathbf{r} = \mathbf{c} + \mathbf{z} \mod 2^L$$
:

$$\mathbf{r}_{0} \triangleq \mathbf{r} \mod 2 = \mathbf{c}_{0} + \mathbf{z} \mod 2, \quad \mathbf{c}_{0} \in \mathcal{C}_{0}$$
$$\mathbf{r}_{1} \triangleq \frac{\mathbf{r} - \mathbf{c}_{0}}{2} \mod 2 = \mathbf{c}_{1} + \frac{\mathbf{z}}{2} \mod 2, \quad \mathbf{c}_{1} \in \mathcal{C}_{1}(\mathbf{s}_{1})$$
$$\mathbf{r}_{\ell} \triangleq \frac{\mathbf{r} - \sum_{i=0}^{\ell-1} 2^{i} \mathbf{c}_{i}}{2^{\ell}} \mod 2 = \mathbf{c}_{\ell} + \frac{\mathbf{z}}{2^{\ell}} \mod 2, \quad \mathbf{c}_{\ell} \in \mathcal{C}_{\ell}(\mathbf{s}_{\ell})$$

Efficient Multistage (Lattice) Decoding

• If
$$\mathbf{r} = \mathbf{c} + \mathbf{z} \mod 2^L$$
:

$$\mathbf{r}_{0} \triangleq \mathbf{r} \mod 2 = \mathbf{c}_{0} + \mathbf{z} \mod 2, \quad \mathbf{c}_{0} \in \mathcal{C}_{0}$$
$$\mathbf{r}_{1} \triangleq \frac{\mathbf{r} - \mathbf{c}_{0}}{2} \mod 2 = \mathbf{c}_{1} + \frac{\mathbf{z}}{2} \mod 2, \quad \mathbf{c}_{1} \in \mathcal{C}_{1}(\mathbf{s}_{1})$$
$$\mathbf{r}_{\ell} \triangleq \frac{\mathbf{r} - \sum_{i=0}^{\ell-1} 2^{i} \mathbf{c}_{i}}{2^{\ell}} \mod 2 = \mathbf{c}_{\ell} + \frac{\mathbf{z}}{2^{\ell}} \mod 2, \quad \mathbf{c}_{\ell} \in \mathcal{C}_{\ell}(\mathbf{s}_{\ell})$$

▶ If each $C_{\ell}(s_{\ell})$ admits efficient decoding, then re-encoding is not needed

This can be easily accomplished by running BP on

$$\mathbf{H}_{\ell}' = egin{bmatrix} -\mathbf{s}_{\ell} & \mathbf{H}_{\ell} \end{bmatrix}$$

with input LLR' = $\begin{bmatrix} \infty & \text{LLR} \end{bmatrix}$ (corresponding to $\mathbf{c}'_{\ell} = \begin{bmatrix} 1 & \mathbf{c}_{\ell} \end{bmatrix}$)

• Overall complexity O(Ln)

Consequences of Sequential Encoding

Corollary

Let Λ be a Construction D' lattice with component codes C_0, \ldots, C_{L-1} , where each C_{ℓ} has dimension $n - m_{\ell}$, and let $C = \Lambda \cap [0, 2^L)^n$. Then

$$|\mathcal{C}| = |\mathcal{C}_0| \cdot \cdots \cdot |\mathcal{C}_{L-1}|$$

and therefore

$$V(\Lambda) = \frac{V(2^L \mathbb{Z}^n)}{|\mathcal{C}|} = 2^{m_0 + \dots + m_{L-1}}.$$

Note: The result in Conway & Sloane's book (Chapter 8, Theorem 14) assumes that "some rearrangement of h₁,..., h_{m₀} forms the rows of an upper triangular matrix", which is not required here

A Generalization of Construction D'

Revisiting Construction D'

► Construction D':

$$\Lambda = \left\{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{2^{\ell+1}}, \ 0 \le \ell < L \right\}$$

where $\mathbf{H}_{L-1} \subseteq \cdots \subseteq \mathbf{H}_1 \subseteq \mathbf{H}_0 \subseteq \{0,1\}^{n \times n}$ (\subseteq denotes "submatrix of")

- Can we get rid of this nesting constraint? No, because we would lose:
 - sequential encoding; and thus
 - multistage decoding and
 - the cardinality/volume guarantee

Revisiting Construction D'

► Construction D':

$$\Lambda = \left\{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv \mathbf{0} \pmod{2^{\ell+1}}, \ 0 \le \ell < L \right\}$$

where $\mathbf{H}_{L-1} \subseteq \cdots \subseteq \mathbf{H}_1 \subseteq \mathbf{H}_0 \subseteq \{0,1\}^{n \times n}$ (\subseteq denotes "submatrix of")

Can we get rid of this nesting constraint? No, because we would lose:

- sequential encoding; and thus
- multistage decoding and
- the cardinality/volume guarantee

However, sequential encoding requires only the following condition

$$\mathbf{H}_{\ell} \equiv \mathbf{F}_{\ell} \mathbf{H}_{\ell-1} \pmod{2^{\ell}}$$

- \blacktriangleright This is needed so that s_ℓ is well-defined
- \blacktriangleright The nesting constraint $\mathbf{H}_{\ell} \subseteq \mathbf{H}_{\ell-1}$ is clearly a special case

Generalized Construction D'

Definition

Let the matrices $\mathbf{H}_{\ell} \in \mathbb{Z}^{m_{\ell} \times n}$, $\ell = 0, \dots, L-1$, be such that

- 1. $H_{\ell} \mod 2$ is full-rank
- 2. $\mathbf{H}_{\ell} \equiv \mathbf{F}_{\ell} \mathbf{H}_{\ell-1} \pmod{2^{\ell}}$, for some $\mathbf{F}_{\ell} \in \mathbb{Z}^{m_{\ell} \times m_{\ell-1}}$

Then the Generalized Construction D' produces the lattice

$$\Lambda = \left\{ \mathbf{x} \in \mathbb{Z}^n : \mathbf{H}_{\ell} \mathbf{x}^{\mathrm{T}} \equiv 0 \pmod{2^{\ell+1}}, \ 0 \le \ell \le L - 1 \right\}$$

Remarks:

- Clearly a lattice, admits sequential encoding, same cardinality
- ▶ Binary codes C_{ℓ} defined by $\mathbf{H}_{\ell} \mod 2$ are still nested ($C_{\ell-1} \subseteq C_{\ell}$)
- \mathbf{H}_{ℓ} need not be binary

Example of Generalized Construction D'

$$\mathbf{F}_1 = \begin{bmatrix} 2 & 7 & 4 \\ 11 & 9 & 6 \end{bmatrix} \qquad \mathbf{F}_2 = \begin{bmatrix} 3 & 5 \end{bmatrix}$$

be arbitraly chosen integer matrices, and let

$$\mathbf{H}_{0} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$
$$\mathbf{H}_{1} = \mathbf{F}_{1}\mathbf{H}_{0} \mod 2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
$$\mathbf{H}_{2} = \mathbf{F}_{2}\mathbf{H}_{1} \mod 4 = \begin{bmatrix} 3 & 1 & 3 & 1 \end{bmatrix}$$

• Generalized Construction D' produces a lattice Λ and associated lattice code $C = \Lambda \cap [0, 2^L)^n$ for which $|C| = 2^{1+2+3}$.

Check Splitting

One way to produce binary matrices that satisfy

 $\mathbf{H}_{\ell} = \mathbf{F}_{\ell} \mathbf{H}_{\ell-1}$ (exactly, without mod)

is by splitting rows of \mathbf{H}_{ℓ} (shorter) to produce $\mathbf{H}_{\ell-1}$ (taller)

This is useful since when designing regular LDPC codes it is best not to increase the column weights (variable-node degrees)

Example of Check Splitting

Starting with

$$\mathbf{H}_2 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

we partition it into

$$\mathbf{H}_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

and, in turn, into

$$\mathbf{H}_{0} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Note that the column weights are preserved and

$$\mathbf{H}_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \mathbf{H}_0 \quad \text{and} \quad \mathbf{H}_2 = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{H}_1$$

PEG-Based Check Splitting

- We propose two check splitting algorithms based on Progressive Edge Growth (PEG) techniques [Hu et al., 2005]:
 - 1. PEG-based check splitting: greedily attempts to maximize girth
 - 2. Triangular PEG-based check splitting: returns a matrix in approximate triangular form, allowing linear-time encoding
- All our design examples are based on the triangular construction

Design Examples and Simulation Results

Power-Unconstrained AWGN Channel

Channel model:

$$\mathbf{x} \in \Lambda \quad \longrightarrow \quad \mathbf{y} = \mathbf{x} + \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(0, \sigma^2)$$

Multilevel partition with multistage decoding [Forney et al., 2000]:

$$\mathbf{x} = \mathbf{c} + \boldsymbol{\lambda}', \quad \mathbf{c} \in \mathcal{C} = \Lambda \cap \mathcal{R}_{\Lambda'}, \quad \boldsymbol{\lambda}' \in \Lambda' = 2^L \mathbb{Z}^n$$

First, compute

$$\mathbf{r} = \mathbf{y} \mod \Lambda' = \mathbf{c} + \mathbf{z} \mod 2^L$$

- ▶ Then, decode $\mathbf{c} \in \mathcal{C}$ on the modulo- 2^L channel
- Finally, subtract ${f c}$ from ${f y}$ and then decode ${m \lambda}'\in \Lambda'$

$$P_e(\Lambda, \sigma^2) \le P_e(\mathcal{C}, \sigma^2) + P_e(\Lambda', \sigma^2)$$

Power-Unconstrained AWGN Channel: Design

- Generalized Construction D' with L = 2 coded levels
- ► Parameters from [Yan-Liu-Ling-Wu'14]: n = 1024, $P_e(\Lambda, \sigma^2) \le 10^{-5}$
- Equal error probability rule:

 $P_e(\Lambda, \sigma^2) \le P_e(\mathcal{C}_0, \sigma^2) + P_e(\mathcal{C}_1, (\sigma/2)^2) + P_e(4\mathbb{Z}^n, (\sigma/4)^2)$

- LDPC component codes:
 - Variable-regular with $d_v = 3$
 - Triangular PEG-based check splitting for linear-time encoding
 - Rates $R_0 = 0.2383$ and $R_1 = 0.9043$
- Comparison with:
 - Polar lattices [Yan-Liu-Ling-Wu'14]
 - (Original) Construction D' LDPC lattices [Sadeghi et al.'06]

Power-Unconstrained AWGN Channel: Results

Power-Constrained AWGN Channel

Channel model:

 $\mathbf{x} \in \mathcal{X} = (\Lambda + \mathbf{d}) \cap \mathcal{V}(\Lambda') \longrightarrow \mathbf{y} = \mathbf{x} + \mathbf{z}, \quad \mathbf{z} \sim \mathcal{N}(0, \sigma^2)$

where $\Lambda' = 2^L \mathbb{Z}^n$, and $\mathbf{d} \in \mathbb{R}^n$ is a shift vector (or dither) chosen such that \mathcal{X} lies in a zero-mean 2^L -PAM constellation

Modulo-lattice transformation for lattice decoding [Erez-Zamir'04]:

$$\mathbf{r} = \alpha \mathbf{y} - \mathbf{d} \mod \Lambda' = \mathbf{c} + \mathbf{z}_{\mathsf{eff}} \mod 2^L$$

gives an equivalent channel with effective noise

$$\mathbf{z}_{\text{eff}} = (\alpha - 1)\mathbf{x} + \alpha \mathbf{z}$$

▶ Then, decode $\mathbf{c} \in \mathcal{C}$ on the modulo- 2^L channel, with σ^2 replaced by

$$\sigma_{\rm eff}^2 = (\alpha - 1)^2 P + \alpha^2 \sigma^2$$

Power-Constrained AWGN Channel: Design

- Generalized Construction D' with L = 2 coded levels (4-PAM modulation)
- ▶ Parameters: n = 2048, $P_e \le 10^{-3}$, R = 1.5 bits per symbol
- Equal error probability rule:

$$P_e(\Lambda, \sigma^2) \le P_e(\mathcal{C}_0, \sigma^2) + P_e(\mathcal{C}_1, (\sigma/2)^2)$$

- LDPC component codes:
 - Variable-regular with $d_v = 3$
 - Triangular PEG-based check splitting for linear-time encoding
 - Rates: $R_0 = 0.5244$ and $R_1 = 0.9756$
- Comparison with:
 - Conventional (non-lattice) MLC with conventional (non-lattice) MSD
 - ▶ BICM scheme with Gray labeling (n = 4096, R = 3/4)

Power-Constrained AWGN Channel: Results

Conclusions

Conclusions

- Lattice codes may provide significant gains for network information theory, but their practical implementation is still challenging
- Multilevel lattices are promising since they can be AWGN-good and only require encoding/decoding of binary codes
- Construction D' LDPC lattices admit efficient encoding and decoding and do not require nested matrices (just nested codes)
- Encouraging examples with competitive performance

Open Problems

Ongoing work:

- Include (nested lattice) shaping
- Design irregular LDPC lattices

Open problems:

- Can we prove AWGN-goodness under linear complexity?
- Do quantization-good Construction D/D' lattices exist?
- Is compute-and-forward with probabilistic shaping possible?

Thank You!