Module-LWE vs. Ring-LWE?

Amit Deo
Royal Holloway, University of London

15 January, 2018

Main Aim of the Talk

1. Discuss popular variants of the LWE problem
2. Present a collection of reductions between the variants
3. Explicitly state parameter expansions in the reductions

Outline

1. Definitions
2. Motivation for Ring/Module-LWE
3. Normal Form Secrets
4. "BLPRS13" Style Reductions
5. "Structure-Building" Reduction

Section 1

Definitions

Notation

Vectors $\mathrm{x} \in \mathbb{Z}_{q}^{n}$:

- Entries integers modulo q, i.e. \mathbb{Z}_{q}
- Dimension n, i.e. $\mathbf{x}=\left(x_{0}, \ldots, x_{n-1}\right)$

Ring elements $r \in R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$:

- Coefficients integers modulo q
- Degree at most $n-1$ i.e. $r=r_{0}+r_{1} \cdot X+\cdots+r_{n-1} \cdot X^{n-1} \in \mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Coefficient Embedding $r=\left(r_{0}, \ldots, r_{n-1}\right) \in \mathbb{Z}_{q}^{n}$

Notation

Module elements $\mathbf{m} \in R_{q}^{d}$:

- A d-tuple of ring elements $\mathbf{m}=\left(m_{0}, \ldots, m_{d-1}\right)$
- Multiplication: $\mathbf{m} \cdot \mathbf{n}:=m_{0} n_{0}+\cdots+m_{d-1} \cdot n_{d-1}$

Terminology:

- q is a "modulus"
- n is a "(ring) dimension"
- d is a "module rank"
- m is the number of samples

Notation: Distributions

- $U(X)$ - uniform distribution over set X

Notation: Distributions

- $U(X)$ - uniform distribution over set X
- χ_{σ} - discrete gaussian over the integers, s.d. σ
- $D_{\Lambda, \sigma}$ - discrete gaussian over lattice Λ, s.d. σ
- $D_{\Lambda, r}$ - discrete ellipsoidal gaussian with s.d.'s $r_{i} \in \mathbb{R}$

Notation: Distributions

- $U(X)$ - uniform distribution over set X
- χ_{σ} - discrete gaussian over the integers, s.d. σ
- $D_{\Lambda, \sigma}$ - discrete gaussian over lattice Λ, s.d. σ
- $D_{\Lambda, r}$ - discrete ellipsoidal gaussian with s.d.'s $r_{i} \in \mathbb{R}$
- D_{σ} - continuous gaussian over \mathbb{R}
- D_{r} - continuous ellipsoidal gaussian over \mathbb{R}^{n} with s.d.'s r_{i}

Generic LWE Problem Framework

Given some uniform random $a, b=a \cdot s+e$:

- (search LWE) decode the noisy product b i.e. recover s from b for "small" e
- (decision LWE) distinguish b from uniform random

Generic LWE Problem Framework

Given some uniform random $a, b=a \cdot s+e$:

- (search LWE) decode the noisy product b i.e. recover s from b for "small" e
- (decision LWE) distinguish b from uniform random

Plain LWE sample: $a \leftarrow \mathbb{Z}_{q}^{n} ; s \leftarrow U$ or $\chi_{\sigma}^{n}, e \leftarrow \chi_{\sigma} ; b \in \mathbb{Z}_{q}$

Distributions and Parameters

- Uniform a
- Error distribution: discrete gaussian $e \leftarrow \chi_{\sigma}$
- Secret distribution: uniform s or $s \leftarrow \chi_{\sigma}^{n}$

Plain LWE sample: $a \leftarrow \mathbb{Z}_{q}^{n} ; s \leftarrow \chi_{\sigma}^{n}, e \leftarrow \chi_{\sigma} ; b \in \mathbb{Z}_{q}$

Distributions and Parameters

- Uniform a
- Error distribution: discrete gaussian $e \leftarrow \chi_{\sigma}$
- Secret distribution: uniform s or $s \leftarrow \chi_{\sigma}^{n}$

Plain LWE sample: $a \leftarrow \mathbb{Z}_{q}^{n} ; s \leftarrow \chi_{\sigma}^{n}, e \leftarrow \chi_{\sigma} ; b \in \mathbb{Z}_{q}$

- Absolute error σ
- Error rate $\alpha:=\sigma / q$

Practical Ring-LWE

Let $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$. Given some uniform random $a \in R_{q}$,

- (search) recover $s \in R_{q}$ from $b=a \cdot s+e$ for "small" $e \in R_{q}$
- (decision) decide whether $b=a \cdot s+e$ or b is random

Practical Ring-LWE

Let $R_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$. Given some uniform random $a \in R_{q}$,

- (search) recover $s \in R_{q}$ from $b=a \cdot s+e$ for "small" $e \in R_{q}$
- (decision) decide whether $b=a \cdot s+e$ or b is random

Error distribution: $s, e \leftarrow \chi_{\sigma}^{n}$

Almost Proper Ring-LWE

Given some uniform random $a \in R_{q}$,

- (search) recover $s \in\left(R_{q}\right)^{d}$ from $b=\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e \bmod 1$ for "small" $e \in R_{q}$
- (decision) decide whether $b=\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e \bmod 1$ or b is random

Notes:

- The error distribution is now continuous
- The discrete Gaussian distribution χ_{σ} becomes continuous Gaussian D_{α} where $\alpha:=\sigma / q$
- Ignoring canonical embedding and dual ring

Practical Module-LWE

Given some uniform random $a \in\left(R_{q}\right)^{d}$,

- (search) recover $s \in\left(R_{q}\right)^{d}$ from $b=\mathbf{a} \cdot \mathbf{s}+e$ for "small" $e \in R_{q}$
- (decision) decide whether $b=\mathbf{a} \cdot \mathbf{s}+e$ or b is random

Practical Module-LWE

Given some uniform random $a \in\left(R_{q}\right)^{d}$,

- (search) recover $s \in\left(R_{q}\right)^{d}$ from $b=\mathbf{a} \cdot \mathbf{s}+e$ for "small" $e \in R_{q}$
- (decision) decide whether $b=\mathbf{a} \cdot \mathbf{s}+e$ or b is random

Error distribution: $\mathbf{s} \leftarrow \chi_{\sigma}^{n d}, e \leftarrow \chi_{\sigma}^{n}$

Almost Proper Module-LWE

Given some uniform random $a \in\left(R_{q}\right)^{d}$,

- (search) recover $s \in\left(R_{q}\right)^{d}$ from $b=\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e \bmod 1$ for "small" $e \in R_{q}$
- (decision) decide whether $b=\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e \bmod 1$ or b is random

Notes:

- The error distribution is now continuous
- The discrete Gaussian distribution χ_{σ} becomes continuous Gaussian D_{α} where $\alpha:=\sigma / q$
- Once again, we ignore canonical embedding and dual ring

Other Variants

- Learning with Rounding (LWR)
- Compact-LWE
- Binary-LWE
- And many more

Section 2

Motivation for Ring-LWE/Module-LWE

Efficiency vs. Security

- Representing n LWE samples:
- $O(n)$ integers (Ring-LWE)
- $O(n d)$ integers (Module-LWE)
- $O\left(n^{2}\right)$ integers (LWE)

Efficiency vs. Security

- Representing n LWE samples:
- $O(n)$ integers (Ring-LWE)
- $O(n d)$ integers (Module-LWE)
- $O\left(n^{2}\right)$ integers (LWE)
- Lattice hardness:
- Ideal lattices SIVP (Ring-LWE)
- Module lattices SIVP (Module-LWE)
- General lattices SIVP (LWE)

Flexibility of Module-LWE

- $R=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$ for power-of-two n
- Effective Ring-LWE dimensions: 256, 512, 1024, 2048, ...
- Effective Module-LWE dimensions: $256 \cdot d, d=1,2, \ldots$

Note:
The cost of multiplying using Module-LWE is larger than the cost of multiplying for Ring-LWE of the same effective dimension.

Section 3

Transforming Secret Distributions

Normal Form LWE

Lemma

Let q be prime. Given $m>n$ uniform secret LWE samples $(A, b) \in \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{m}$, we can produce $m-n$ normal form LWE samples $\left(A^{\prime}, b^{\prime}\right) \in \mathbb{Z}_{q}^{n \times(m-n)} \times \mathbb{Z}_{q}^{(m-n)}$ (with significant probability $1-O(1 / q))$.

Normal Form LWE

Lemma

Let q be prime. Given $m>n$ uniform secret LWE samples
$(A, b) \in \mathbb{Z}_{q}^{n \times m} \times \mathbb{Z}_{q}^{m}$, we can produce $m-n$ normal form LWE
samples $\left(A^{\prime}, b^{\prime}\right) \in \mathbb{Z}_{q}^{n \times(m-n)} \times \mathbb{Z}_{q}^{(m-n)}$ (with significant probability
$1-O(1 / q))$.
Proof.

1. Write $A=\left[A_{1} \mid A_{2}\right]$ where $A_{1} \in \mathbb{Z}_{q}^{n \times n}$ is invertible.
2. $b=\left[b_{1} \mid b_{2}\right]^{T}:=\left[A_{1} \mid A_{2}\right]^{T} s+\left[e_{1} \mid e_{2}\right]^{T}$
3. Set $A^{\prime}:=-A_{1}^{-1} A_{2}, b^{\prime}:=A^{\prime T} b_{1}+b_{2}=A^{\prime} e_{1}+e_{2}$.

Non-Uniform Secret \longrightarrow Uniform Secret

Lemma

Given a LWE sample (a, b) with non-uniform secret s, we can obtain a LWE sample (a, \tilde{b}) with a uniform secret \tilde{s}.

Proof.

1. Sample $s^{\prime} \leftarrow U$.
2. Output LWE sample

$$
\left(a, \tilde{b}:=b+a \cdot s^{\prime}=a \cdot\left(s^{\prime}+s\right)+e\right)=\left(a, a \cdot\left(s^{\prime}+s\right)+e\right)
$$

Section 4

BLPRS13 Style Reductions

Modulus-Dimension Switching LWE Reduction ${ }^{1}$

Lemma

There exists a reduction from
$\mathrm{LWE}_{m, n, q, D_{\alpha}} \longrightarrow \mathrm{LWE}_{m, n^{\prime}=n / k, q^{\prime}=q^{k}, D_{\beta}}$ where $\beta=\mathcal{O}(\alpha \sqrt{n})$.
"We can reduce the dimension at the cost of increasing the modulus while changing the error rate by a \sqrt{n} factor without decreasing hardness."
${ }^{1}$ Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. Stéhle. Classical hardness of learning with errors. STOC13

Reduction Intuition

Goal
Find a reduction (i.e. transformation \mathcal{F}) such that the original LWE distribution almost maps to the target LWE distribution where the effect that \mathcal{F} has on the secret is reversible.

$$
\begin{gathered}
\mathcal{F}(\mathrm{LWE}) \sim_{\text {indist. }} \mathrm{LWE}^{\prime} \\
\mathbf{a} \in \mathbb{Z}_{q}^{n} \quad \xrightarrow{\mathcal{F}} \quad \mathbf{a}^{\prime} \in \mathbb{Z}_{q^{k}}^{n / k} \\
\mathbf{s} \in \mathbb{Z}_{q}^{n} \quad \xrightarrow{\mathcal{F}} \quad \mathbf{s}^{\prime} \in \mathbb{Z}_{q^{k}}^{n / k} \\
b=\left(\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e\right) \bmod 1 \quad \xrightarrow{\mathcal{F}} \quad b^{\prime}=\left(\frac{1}{q^{k}} \mathbf{a}^{\prime} \cdot \mathbf{s}^{\prime}+e^{\prime}\right) \bmod 1
\end{gathered}
$$

Reduction Intuition $n=3, n / k=1$

$$
\begin{aligned}
& a^{\prime}=a_{0}+q a_{1}+q^{2} a_{2} \\
& s^{\prime}=s_{2}+q s_{1}+q^{2} s_{0}
\end{aligned}
$$

Reduction Intuition $n=3, n / k=1$

$$
\begin{aligned}
& a^{\prime}=a_{0}+q a_{1}+q^{2} a_{2} \\
& s^{\prime}=s_{2}+q s_{1}+q^{2} s_{0}
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow \frac{1}{q^{3}} a^{\prime} \cdot s^{\prime} & \equiv 0+\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+\frac{1}{q^{2}}\left(a_{0} \cdot s_{1}+a_{1} \cdot s_{2}\right)+\ldots \bmod 1 \\
& \approx \frac{1}{q} \mathbf{a} \cdot \mathbf{s} \bmod 1
\end{aligned}
$$

Reduction Intuition $n=3, n / k=1$

$$
\begin{gathered}
a^{\prime}=a_{0}+q a_{1}+q^{2} a_{2} \\
s^{\prime}=s_{2}+q s_{1}+q^{2} s_{0} \\
\Longrightarrow \frac{1}{q^{3}} a^{\prime} \cdot s^{\prime} \equiv 0+\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+\frac{1}{q^{2}}\left(a_{0} \cdot s_{1}+a_{1} \cdot s_{2}\right)+\ldots \bmod 1 \\
\approx \frac{1}{q} \mathbf{a} \cdot \mathbf{s} \bmod 1
\end{gathered}
$$

Therefore take $b^{\prime}=b$

A Closer Look at the Error Distribution

Want to analyse the distribution of:

$$
b^{\prime}-\frac{1}{q^{n}} a^{\prime} \cdot s^{\prime}=e-\sum_{i>j} q^{j-i-1} a_{j} s_{i}
$$

Problem:

- $q^{j-i-1} a_{j} s_{i}$ are not continuous gaussians X

INTERLUDE: Fixing a "Bad" Error Distribution - Discrete

 VersionAim
Given bad non-Gaussian distribution ê, make it look like a discrete Gaussian.

How?

Drown by adding a wide discrete Gaussian i.e. consider $\hat{e}+\chi_{\sigma}$

Fixing a "Bad" Error Distribution - Discrete Version

Drowning $(\sigma=3)$

Drowning $(\sigma=10)$

Drowning $(\sigma=10)$

Drowning $(\sigma=20)$

Drowning $(\sigma=20)$

Drowning Lemma

Lemma
${ }^{2}$ Assuming $\left(1 / r^{2}+(\|\mathbf{z}\| / \alpha)^{2}\right)^{-1 / 2}>\eta_{\epsilon}(\Lambda)$, the arising distributions of the following are within statistical distance 4ϵ :

1. Sample $\mathbf{v} \leftarrow D_{\Lambda+\mathbf{u}, r}, e \leftarrow D_{\alpha}$, output $\langle\mathbf{z}, \mathbf{v}\rangle+e$.
2. Let $\beta=\sqrt{(r\|\mathbf{z}\|)^{2}+\alpha^{2}}$, output $e^{\prime} \leftarrow D_{\beta}$.
[^0]
Drowning Lemma

Lemma

${ }^{2}$ Assuming $\left(1 / r^{2}+(\|\mathbf{z}\| / \alpha)^{2}\right)^{-1 / 2}>\eta_{\epsilon}(\Lambda)$, the arising distributions of the following are within statistical distance 4ϵ :

1. Sample $\mathbf{v} \leftarrow D_{\Lambda+\mathbf{u}, r}, e \leftarrow D_{\alpha}$, output $\langle\mathbf{z}, \mathbf{v}\rangle+e$.
2. Let $\beta=\sqrt{(r\|\mathbf{z}\|)^{2}+\alpha^{2}}$, output $e^{\prime} \leftarrow D_{\beta}$.

Notes:

- Fix $r, \mathbf{z}, \Lambda \rightarrow$ minimum drowning parameter $\alpha(\epsilon)$.
- $\eta_{\epsilon}(\Lambda) \leq\|\tilde{\mathbf{B}}\| \cdot \sqrt{\ln (2 n(1+1 / \epsilon)) / \pi}$

[^1]
"General" Reduction from BLPRS13 $\left(n^{\prime}=n / k\right)$

Define:

- $\mathbf{G}:=\mathbf{I}_{n^{\prime}} \otimes \mathbf{g}$ where $\mathbf{g}:=\left(1, q, \ldots, q^{k-1}\right)^{T}$ and
- $\Lambda:=q^{-k} \mathbf{G}^{T} \mathbb{Z}^{n^{\prime}}+\mathbb{Z}^{n}$
- Let $\left(\mathbf{a}, b=\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{T}$ be LWE sample.
${ }^{3}$ efficient sampling possible for $\epsilon \leq 1 / 4$

"General" Reduction from BLPRS13 $\left(n^{\prime}=n / k\right)$

Define:

- $\mathbf{G}:=\mathbf{I}_{n^{\prime}} \otimes \mathbf{g}$ where $\mathbf{g}:=\left(1, q, \ldots, q^{k-1}\right)^{T}$ and
- $\wedge:=q^{-k} \mathbf{G}^{T} \mathbb{Z}^{n^{\prime}}+\mathbb{Z}^{n}$
- Let $\left(\mathbf{a}, b=\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e\right) \in \mathbb{Z}_{q}^{n} \times \mathbb{T}$ be LWE sample.

Reduction:

1. Sample $\mathbf{f} \leftarrow D_{\Lambda-\mathbf{a}, r}$ where
$r \geq\|\tilde{\mathbf{B}}\| \cdot \sqrt{\ln (2 n(1+1 / \epsilon)) / \pi} \geq \eta_{\epsilon}(\Lambda),{ }^{3}$ and choose \mathbf{a}^{\prime} as a uniform random solution to $\mathbf{G}^{T} \mathbf{a}^{\prime}=\mathbf{a}+\mathbf{f} \bmod \mathbb{Z}^{n}$.
2. Sample $e^{\prime} \leftarrow D_{r B}$ where $B \geq\|\mathbf{s}\|$ and output $b^{\prime}=b+e^{\prime}$.
3. Output $\left(\mathbf{a}^{\prime}, b^{\prime}\right)$.
[^2]
Correctness of the Reduction

Proof.

- \mathbf{a}^{\prime} is uniform: $\mathbf{a}+\mathbf{f} \in \Lambda / \mathbb{Z}^{n}$ is uniform random for $r \geq \eta_{\epsilon}(\Lambda)$ and $\mathbf{G}^{T} \mathbf{a}^{\prime}=\mathbf{v} \bmod \mathbb{Z}^{n}$ has the same number of solutions for every \mathbf{v}.
- Error distribution: Let $\mathbf{s}^{\prime}:=\mathbf{G}^{T} \mathbf{s}$. Then

$$
b^{\prime}-\frac{1}{q^{k}} \mathbf{a}^{\prime} \cdot \mathbf{s}^{\prime}=\langle-\mathbf{f}, \mathbf{s}\rangle+e^{\prime}+e \bmod 1
$$

is statistically close to a Gaussian by the drowning lemma if r is big enough.

Recap of Result (Modulus-Dimension Switching)

Lemma

There exists a reduction from
$\mathrm{LWE}_{m, n, q, D_{\alpha}} \longrightarrow \mathrm{LWE}_{m, n^{\prime}=n / k, q^{\prime}=q^{k}, D_{\beta}}$ where $\beta=\mathcal{O}(\alpha \sqrt{n})$.

Module-LWE \longrightarrow Ring-LWE

Idea
Treat module elements as vectors of ring elements and apply BLPRS13 $\left(R^{d} \leftrightarrow \mathbb{Z}^{n}, R \leftrightarrow \mathbb{Z}\right)$.

Reducing (Search) Module-LWE to Ring-LWE

Goal

Find a reduction (i.e. transformation \mathcal{F}) such that the MLWE distribution almost maps to a RLWE distribution where the effect that \mathcal{F} has on the secret is reversible.

$$
\begin{aligned}
& \mathbf{a} \in R_{q}^{d} \xrightarrow{\mathcal{F}} \quad a^{\prime} \in R_{q^{d}} \\
& \mathbf{s} \in R_{q}^{d} \xrightarrow{\mathcal{F}} \quad s^{\prime} \in R_{q^{d}} \\
& b=\left(\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e\right) \bmod 1 \quad \xrightarrow{\mathcal{F}} \quad b^{\prime}=\left(\frac{1}{q^{d}} a^{\prime} \cdot s^{\prime}+e^{\prime}\right) \bmod 1
\end{aligned}
$$

Reduction Intuition $d=3$

$$
\begin{aligned}
& a^{\prime}=a_{0}(X)+q a_{1}(X)+q^{2} a_{2}(X) \\
& s^{\prime}=s_{2}(X)+q s_{1}(X)+q^{2} s_{0}(X)
\end{aligned}
$$

Reduction Intuition $d=3$

$$
\begin{aligned}
a^{\prime} & =a_{0}(X)+q a_{1}(X)+q^{2} a_{2}(X) \\
s^{\prime} & =s_{2}(X)+q s_{1}(X)+q^{2} s_{0}(X) \\
\Longrightarrow \frac{1}{q^{3}} a^{\prime} \cdot s^{\prime} & \equiv 0+\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+\frac{1}{q^{2}}\left(a_{0} \cdot s_{1}+a_{1} \cdot s_{2}\right)+\ldots \bmod 1 \\
& \approx \frac{1}{q} \mathbf{a} \cdot \mathbf{s} \bmod 1
\end{aligned}
$$

Reduction Intuition $d=3$

$$
\begin{aligned}
a^{\prime} & =a_{0}(X)+q a_{1}(X)+q^{2} a_{2}(X) \\
s^{\prime} & =s_{2}(X)+q s_{1}(X)+q^{2} s_{0}(X) \\
\Longrightarrow \frac{1}{q^{3}} a^{\prime} \cdot s^{\prime} & \equiv 0+\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+\frac{1}{q^{2}}\left(a_{0} \cdot s_{1}+a_{1} \cdot s_{2}\right)+\ldots \bmod 1 \\
& \approx \frac{1}{q} \mathbf{a} \cdot \mathbf{s} \bmod 1
\end{aligned}
$$

Therefore take $b^{\prime}=b$

A Closer Look at the Error Distribution

Want to analyse the distribution of:

$$
b^{\prime}-\frac{1}{q^{d}} a^{\prime} \cdot s^{\prime}=e-\sum_{i>j} q^{j-i-1} a_{j} s_{i}
$$

- e is a continuous, narrow Gaussian
- The sum is kind of small

A Closer Look at the Error Distribution

Want to analyse the distribution of:

$$
\tilde{b}-\frac{1}{q^{d}} \tilde{a} \cdot \tilde{s}=e-\sum_{i>j} q^{j-i-1} a_{j} s_{i}
$$

Problems:

1. $q^{j-i-1} a_{j} s_{i}$ are not continuous gaussians X
2. Coefficients are not independent X (partial solution: canonical embedding)

INTERLUDE: Rényi Divergence

Definition

(Rényi Divergence) For any distributions P and Q such that $\operatorname{Supp}(P) \subseteq \operatorname{Supp}(Q)$, the Rényi divergence of P and Q of order $a \in[1, \infty]$ is given by

$$
R_{a}(P \| Q)= \begin{cases}\exp \left(\sum_{x \in \operatorname{Supp}(P)} P(x) \log \frac{P(x)}{Q(x)}\right) & \text { for } a=1, \\ \left(\sum_{x \in \operatorname{Supp}(P)} \frac{P(x)^{a}}{Q(x)^{a-1}}\right)^{\frac{1}{a-1}} & \text { for } a \in(1, \infty) \\ \max _{x \in \operatorname{Supp}(P) \frac{P(x)^{2}}{Q(x)}} & \text { for } a=\infty\end{cases}
$$

Properties of Rényi Divergence

Let P and Q be distributions such that $\operatorname{Supp}(P) \subseteq \operatorname{Supp}(Q)$. Then we have:

- Probability Preservation:

$$
\operatorname{Pr}\left(\text { Success }_{Q}\right) \geq \operatorname{Pr}\left(\text { Success }_{P}\right)^{\frac{a}{a-1}} / R_{a}(P \| Q) \text { if } a \in(1, \infty)
$$

Properties of Rényi Divergence

Let P and Q be distributions such that $\operatorname{Supp}(P) \subseteq \operatorname{Supp}(Q)$. Then we have:

- Probability Preservation:

$$
\operatorname{Pr}\left(\text { Success }_{Q}\right) \geq \operatorname{Pr}\left(\text { Success }_{P}\right)^{\frac{a}{a-1}} / R_{a}(P \| Q) \text { if } a \in(1, \infty)
$$

- Weak Triangle Inequality: For intermediate distribution P_{1},

$$
R_{a}(P \| Q) \leq R_{\infty}\left(P \| P_{1}\right)^{\frac{a}{a-1}} \cdot R_{a}\left(P_{1} \| Q\right) \text { if } a \in(1,+\infty)
$$

Drowning Lemma over n-dimensions

Lemma (Drowning ellipsoidal discrete Gaussians ${ }^{4}$)
Assume that $\min _{i} \frac{r_{i} \sigma}{\sqrt{r_{i}^{2}+\sigma^{2}}} \geq \eta_{\epsilon}(\Lambda)$ for some $\epsilon \in(0,1 / 2)$. Consider the continuous distributions:

- Y obtained by sampling from $D_{\Lambda+\mathbf{u}, \mathbf{r}}$ and then adding a vector from D_{σ}
- $D_{\mathbf{t}}$ where $t_{i}=\sqrt{r_{i}^{2}+\sigma^{2}}$

Then we have $\Delta\left(Y, D_{\mathfrak{t}}\right) \leq 4 \epsilon$ and $R_{\infty}\left(D_{\mathbf{t}} \| Y\right) \leq \frac{1+\epsilon}{1-\epsilon}$.

[^3]
Drowning Lemma over n-dimensions

Lemma (Drowning ellipsoidal discrete Gaussians ${ }^{4}$)
Assume that $\min _{i} \frac{r_{i} \sigma}{\sqrt{r_{i}^{2}+\sigma^{2}}} \geq \eta_{\epsilon}(\Lambda)$ for some $\epsilon \in(0,1 / 2)$. Consider the continuous distributions:

- Y obtained by sampling from $D_{\Lambda+u, r}$ and then adding a vector from D_{σ}
- D_{t} where $t_{i}=\sqrt{r_{i}^{2}+\sigma^{2}}$

Then we have $\Delta\left(Y, D_{\mathfrak{t}}\right) \leq 4 \epsilon$ and $R_{\infty}\left(D_{\mathrm{t}} \| Y\right) \leq \frac{1+\epsilon}{1-\epsilon}$.

Notes:

- Fix $\mathbf{r}, \Lambda \rightarrow$ minimum drowning parameter $\sigma(\epsilon)$.
- $\eta_{\epsilon}(\Lambda) \leq\|\tilde{\mathbf{B}}\| \cdot \sqrt{\ln (2 n(1+1 / \epsilon)) / \pi}$

"General" Reduction $\mathrm{MLWE}_{d} \rightarrow \operatorname{MLWE}_{d^{\prime}}\left(d^{\prime}=d / k\right)$

Define:

- $\mathbf{G}:=\mathbf{I}_{d^{\prime}} \otimes \mathbf{g} \otimes \mathbf{I}_{n}$ where $\mathbf{g}:=\left(1, q, \ldots, q^{k-1}\right)^{T}$ and
- $\Lambda:=q^{-k} \mathbf{G}^{T} \mathbb{Z}^{n d^{\prime}}+\mathbb{Z}^{n d}$
- Let $\left(\mathbf{a}, b=\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e\right) \in \mathbb{Z}_{q}^{n d} \times \mathbb{T}^{n}$ be the MLWE sample.
${ }^{5}$ efficient sampling possible for $\epsilon \leq 1 / 4$

"General" Reduction $\mathrm{MLWE}_{d} \rightarrow \operatorname{MLWE}_{d^{\prime}}\left(d^{\prime}=d / k\right)$

Define:

- $\mathbf{G}:=\mathbf{I}_{d^{\prime}} \otimes \mathbf{g} \otimes \mathbf{I}_{n}$ where $\mathbf{g}:=\left(1, q, \ldots, q^{k-1}\right)^{T}$ and
- $\wedge:=q^{-k} \mathbf{G}^{T} \mathbb{Z}^{n d^{\prime}}+\mathbb{Z}^{n d}$
- Let $\left(\mathbf{a}, b=\frac{1}{q} \mathbf{a} \cdot \mathbf{s}+e\right) \in \mathbb{Z}_{q}^{n d} \times \mathbb{T}^{n}$ be the MLWE sample.

Reduction:

1. Sample $\mathbf{f} \leftarrow D_{\Lambda-\mathbf{a}, r}$ where
$r \geq\|\tilde{\mathbf{B}}\| \cdot \sqrt{\ln (2 n(1+1 / \epsilon)) / \pi} \geq \eta_{\epsilon}(\Lambda),{ }^{5}$ and choose \mathbf{a}^{\prime} as a uniform random solution to $\mathbf{G}^{T} \mathbf{a}^{\prime}=\mathbf{a}+\mathbf{f} \bmod \mathbb{Z}^{\text {nd }}$.
2. Sample $\mathbf{e}_{i}^{\prime} \leftarrow\left(D_{r B}\right)^{n}, i=1 \ldots d$ where $B \geq\|\mathbf{s}\|$ and output $b^{\prime}=b+\sum \mathbf{e}_{i}^{\prime}$.
3. Output $\left(\mathbf{a}^{\prime}, b^{\prime}\right)$.
[^4]
Correctness of the Reduction (Overview)

- \mathbf{a}^{\prime} is uniform: $\mathbf{v}=\mathbf{a}+\mathbf{f} \in \Lambda / \mathbb{Z}^{\text {nd }}$ is uniform random for $r \geq \eta_{\epsilon}(\Lambda)$ and $\mathbf{G}^{T} \mathbf{a}^{\prime}=\mathbf{v} \bmod \mathbb{Z}^{\text {nd }}$ has the same number of solutions for every \mathbf{v}

Correctness of the Reduction (Overview)

Error distribution: Let $\mathbf{s}^{\prime}:=\mathbf{G}^{T} \mathbf{s}$. Then

$$
b^{\prime}-\frac{1}{q^{k}} \mathbf{a}^{\prime} \cdot \mathbf{s}^{\prime}=\sum_{i=1}^{d} \mathbf{S}_{i} \cdot\left(-\mathbf{f}_{i}\right)+\mathbf{e}_{i}^{\prime}+\mathbf{e} \bmod 1
$$

Correctness of the Reduction (Overview)

Error distribution: Let $\mathbf{s}^{\prime}:=\mathbf{G}^{T} \mathbf{s}$. Then

$$
b^{\prime}-\frac{1}{q^{k}} \mathbf{a}^{\prime} \cdot \mathbf{s}^{\prime}=\sum_{i=1}^{d} \mathbf{S}_{i} \cdot\left(-\mathbf{f}_{i}\right)+\mathbf{e}_{i}^{\prime}+\mathbf{e} \bmod 1
$$

- \mathbf{S}_{i} is the matrix version of $s_{i} \in R$
$-f_{i} \leftarrow D_{\frac{1}{q} \mathbb{Z}^{n}+\mathbf{v}_{i}, r}$
- $\mathbf{S}_{i} \cdot\left(\mathbf{f}_{i}\right) \leftarrow D_{\frac{1}{q} \mathbf{s}_{i} \mathbb{Z}^{n}+\mathbf{S}_{i} \mathbf{v}_{i}, r^{\prime} \mathbf{S}_{i}^{T}, ~}^{\text {and }}$

Apply drowning lemma d times.

Recap of Result

Lemma

There exists a reduction from
$\mathrm{MLWE}_{m, d, q, D_{\alpha}} \longrightarrow \mathrm{MLWE}_{m, d^{\prime}=d / k, q^{\prime}=q^{k}, D_{\leq \beta}}$ where
$\beta=\mathcal{O}\left(\alpha n^{2} \sqrt{d}\right)$ preserving non-negligible success probability.

Recap of Result

Lemma

There exists a reduction from
$\mathrm{MLWE}_{m, d, q, D_{\alpha}} \longrightarrow \mathrm{MLWE}_{m, d^{\prime}=d / k, q^{\prime}=q^{k}, D_{\leq \beta}}$ where
$\beta=\mathcal{O}\left(\alpha n^{2} \sqrt{d}\right)$ preserving non-negligible success probability.

Or for perfectly spherical gaussian errors:

Lemma
There exists a reduction from
$\mathrm{MLWE}_{m, d, q, D_{\alpha}} \longrightarrow \mathrm{LWE}_{m, d^{\prime}=d / k, q^{\prime}=q^{k}, D_{\beta}}$ where $\beta=\mathcal{O}\left(\alpha n^{9 / 4} \sqrt{d}\right)$.

$\operatorname{Ring-LWE~}(n, q) \rightarrow$ Ring-LWE $\left(n / 2, q^{2}\right)$

Lemma
There is a reduction $R L W E_{m, n, q, \alpha} \longrightarrow R L W E_{m, n / 2, q^{2}, \beta}$ where $\beta=\mathcal{O}\left(n^{9 / 4} \cdot \alpha\right)$.

$\operatorname{Ring-LWE~}(n, q) \rightarrow \operatorname{Ring-LWE}\left(n / 2, q^{2}\right)$

Lemma
There is a reduction $R L W E_{m, n, q, \alpha} \longrightarrow R L W E_{m, n / 2, q^{2}, \beta}$ where $\beta=\mathcal{O}\left(n^{9 / 4} \cdot \alpha\right)$.

Remark.
Can go from n to 2 dimensions by incurring an extra factor of n.

Section 5

Structure Building Reductions

Many LWE Samples \rightarrow One Ring-LWE Sample

Aim to show: ${ }^{6}$
$\mathrm{LWE}_{m=n, d, q, D_{\alpha}} \quad \longrightarrow \quad \mathrm{RLWE}_{m=1, n, q^{d}, D_{\alpha \sqrt{d}}}$

Many LWE Samples \rightarrow One Ring-LWE Sample

Aim to show: ${ }^{6}$

$$
\begin{equation*}
\mathrm{LWE}_{m=n, d, q, D_{\alpha}} \quad \longrightarrow \quad \operatorname{RLWE}_{m=1, n, q^{d}, D_{\alpha \sqrt{d}}} \tag{1}
\end{equation*}
$$

Main Idea:

- Apply the BLPRS13 reduction (modulus-dimension trade-off) to obtain 1-dimensional LWE samples
- Build Ring-LWE samples from these

Step 1: Apply BLPRS13 Reduction

Apply BLPRS13 reduction: $\mathrm{LWE}_{m=n, d, q, D_{\alpha}} \longrightarrow \mathrm{LWE}_{m=n, 1, q^{d}, D_{\alpha \sqrt{d}}}$

Step 1: Apply BLPRS13 Reduction

Apply BLPRS13 reduction: $\mathrm{LWE}_{m=n, d, q, D_{\alpha}} \longrightarrow \mathrm{LWE}_{m=n, 1, q^{d}, D_{\alpha \sqrt{d}}}$

Denote the 1-dimensional samples as

$$
\left(a_{i}, b_{i}=\frac{1}{q^{d}} \cdot a_{i} s_{0}+e_{i}\right) \in \mathbb{Z}_{q^{d}} \times \mathbb{T} \text { for } i=0, \ldots, n-1
$$

Step 2: Build the Ring Structure

(a) Define Ring-LWE secret $s:=s_{0} \in R_{q}$
(b) Define uniform ring element $a^{\prime}:=a_{0}+\cdots+a_{n-1} \cdot X^{n-1} \in R_{q}$
(c) Set $b^{\prime}=\sum_{i=0}^{n-1} b_{i} \cdot X^{i} \in R_{q}$

Correctness of the Reduction

- Ring-LWE secret s distribution "irrelevant"
- Ring element a is uniformly distributed
- $b^{\prime}-\frac{1}{q^{d}} a \cdot s=\sum_{i=0}^{n-1} e_{i} \cdot X^{i}$ distributed as $D_{\alpha \sqrt{d}}$

Lemma

The ability to solve Ring-LWE in modulus q^{d} and ring dimension n imples the ability to solve LWE given n sample in dimension d and modulus q.

Conclusions: Module-LWE vs. Ring-LWE

- There are numerous reductions between the LWE variants
- We can retain:

1. "LWE hardness" even in dimension 1
2. "Module-LWE hardness" using Ring-LWE
3. "Ring-LWE hardness" when decreasing dimension
4. "LWE hardness" using Ring-LWE

- However, note that we need an modulus that is exponential in the module rank or (ring) dimension as well as an expansion in the error rate

Thank You!

茥
Martin R. Albrecht and Amit Deo.
Large modulus ring-Iwe $>=$ module-Iwe.
Cryptology ePrint Archive, Report 2017/612, 2017.
http://eprint.iacr.org/2017/612.
國 Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.

Classical hardness of learning with errors.
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 575-584. ACM, 2013.

[^0]: ${ }^{2}$ O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005

[^1]: ${ }^{2}$ O. Regev. On lattices, learning with errors, random linear codes, and cryptography. STOC 2005

[^2]: ${ }^{3}$ efficient sampling possible for $\epsilon \leq 1 / 4$

[^3]: ${ }^{4}$ A. Langlois, D. Stéhle. Worst-case to average-case reductions for module lattices. DCC15

[^4]: ${ }^{5}$ efficient sampling possible for $\epsilon \leq 1 / 4$

