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Abstract

Lattices in Rn with orthogonal sublattices are associated with spheri-
cal codes in R2n generated by a finite commutative group of orthog-
onal matrices. They can also be used to construct homogeneous
spherical curves for transmitting a continuous alphabet source over
an AWGN channel. In both cases, the performance of the decod-
ing process is related to the packing density of the lattices. In the
continuous case, the “packing density” of these curves relies on the
search for projection lattices with good packing density. A brief
survey and recent developments on this topic is presented here.
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Spherical and Geometrically Uniform Codes

Consider the sphere of radius a in Rn,

Sn−1(a) = {x ∈ Rn; ‖x‖ = a}

A spherical code is a finite set of M points on this sphere. Usually
we consider only spherical codes on the sphere of radius one, Sn−1 =
Sn−1(1) and all the conclusions will be extended by similarity to a
sphere of radius a.



Spherical and Geometrically Uniform Codes

Two dual optimization (packing) problem, which have several
applications in physics, chemistry, architecture and signal
processing:
Problem 1: Given a dimension n and an integer number M > 0,
to find a spherical code with M points such that the minimum
distance between two points in the code is the largest possible.
Problem 2: Given a dimension n and a minimum distance d > 0,
to find a spherical code with the biggest number M of points such
that each two of them are at distance at least d .



Spherical and Geometrically Uniform Codes

Codes which are solutions for one of these problems are called
optimal spherical codes.
In dimension 2: regular polygons.
In dimesion 3: the solution of Problem 1 is only known for
1 ≤ M ≤ 12 and for M = 24.
For M = 2, 3, 4 (antipodal points, equilateral triangle at the
equator, regular tetrahedron).
For M = 8:

Figura: Antiprism with 8 vertices



M = 2n in Rn: biorthogonal code (permutations of
(0, 0, ...,±1));

M = n + 1 in Rn: simplex code (yi permutations of
1√

n+n2
(1, 1, . . . , 1,−n) ∈ Rn+1).∑n+1

j=1 yij = 0 (hyperplane),
∑n+1

j=1 y2
ij = n + n2.

Normalize and rotate → squared distance between two code
words = 2 + 2

n ;

Λ ⊂ Rn a lattice, C ⊂ Λ→ lattice vectors of a fixed norm.



Group Codes (Slepian 1958)
Finite sets on an n-dimensional sphere generated by the action
of a group of orthogonal matrices.

Subsequent articles 70s – 90s: Biglieri, Elia, Loelinger, Caire,
Ingemarsson

Geometrically Uniform Codes (Forney 1991)
For X a metric space, a signal set S ⊂ X is a geometrically
uniform code if and only if for s, t in S , there is an isometry f
(depending on s, t) in X such that f (s) = t and f (S) = S .

Highly desirable properties that come from homogeneity: the same
distance profile, congruent Voronoi regions (same error
transmission probability) for each codeword.



Examples of group codes in S1:

A rotation group on the left, a group of reflexitions on the right
(the initial vector matters).



Lattices in Rn with orthogonal sublattices can be used to construct
spherical codes in R2n generated by commutative groups of
orthogonal matrices.
Those codes will be contained on flat tori.



Flat Tori

A 2-dimensional flat torus.
For c = (c1, c2) with c1, c2 positive numbers such that
c2

1 + c2
2 = 1, consider the map Φc : R2 → R4, defined as

Φc(u1, u2) = (c1 cos(
u1

c1
), c1 sin(

u1

c1
), c2 cos(

u2

c2
), c2 sin(

u2

c2
)).

This is a doubly periodic map having identical images in the
translates of the rectangle [0, 2πc1)× [0, 2πc2) by vectors (k12πc1,
k22πc2), ki integers.

Tc = Φc(R2) = Φc([0, 2πc1)× [0, 2πc2)).



A view of the 2-dimensional flat torus which only can be realized in R4.



The unit sphere S2L−1 ⊂ R2L can be foliated by flat tori (also

called Clifford Tori): c = (c1, c2, .., cL) ∈ SL−1, ci > 0,
L∑

i=1

c2
i = 1,

and u = (u1, u2, . . . , uL) ∈ RL, let Φc : RL → R2L be defined as

Φc(u) =

(
c1 cos(

u1

c1
), c1 sin(

u1

c1
), . . . , cL cos(

uL
cL

), cL sin(
uL
cL

)

)
.

(1)
For Pc = {u ∈ RL; 0 ≤ ui < 2πci , 1 ≤ i ≤ L}.

Tc = φc(Rl) = φc(P) ⊂ S2L−1.

Any vector of S2L−1 belongs to one and only one of these flat tori.
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The tesselation of the plane associated to c =(0.8, 0.6) ∈ S1, and a lattice Λ (black
dots) which contains 2πc1Z× 2πc2Z as a rectangular sublattice. In this case φc(Λ) is
a spherical code in S3 ⊂ R4 with M = 8 .



Proposition
Let Tb and Tc be two flat tori, defined by unit vectors b and c with non
negative coordinates. The minimum distance d(Tc,Tb) between two
points Φc(u) and Φc(v) on these flat tori is

d(Tc,Tb) = ‖c− b‖ =

(
L∑

i=1

(ci − bi )
2

)1/2

. (2)

d

d
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d
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Distance between two points Φc(u) and Φc(v) on the same torus:

||Φc(u)− Φc(v)|| = 2

√∑
c2
i sin2(

ui − vi
2ci

) (3)

Proposition
[VC03] Let c =(c1, c2, .., cL) ∈ SL−1, ci > 0, cξ = min

1≤i≤L
ci 6= 0,

∆ = ‖u− v‖ for u, v ∈ Pc . Suppose 0 < ∆ ≤ cξ, then

2∆

π
≤ sin

(
∆

2cξ

)
2cξ ≤ ‖Φc(u)− Φc(v)‖ ≤ 2 sin

∆

2
≤ ∆.



Commutative Group Codes, Flat Tori and Lattices

Lattice bounds: Good and optimum commutative group codes

On = the multiplicative group of orthogonal n × n matrices
Gn(M) = the set of all order M commutative subgroups in On.
A spherical commutative group code C is a set of M vectors which
is the orbit of an initial vector u on the unit sphere Sn−1 ⊂ Rn by
a given finite group G ∈ Gn(M):
C = Gu = {gu, g ∈ G} .
The minimum distance in C is:

d = min
x, y ∈ C
x 6= y

||x− y|| = min
gi 6= I ∈ G

||gix− x||,



A canonical form for a commutative group G ∈ Gn(M).

Proposition

All the matrices Oi of a commutative group G = {Oi}Mi=1 of n × n
of orthogonal real matrices can simultaneously be put into a
diagonal block canonical form through an orthogonal matrix Q:

QTOiQ =

[
Rot

(
2πbi1
M

)
, . . . ,Rot

(
2πbiq
M

)
, µ2q+1(i), . . . , µn(i)

]
,

(4)
where bij are integers, the blocks Rot(a) are the ones associated
with 2-dimensional rotations by an angle of a radians:

Rot(a) =

[
cos(a) − sin(a)
sin(a) cos(a)

]
,

and µl(i) = ±1 with l = 2q + 1, . . . , n.



The geometric locus of a commutative group code:

Proposition

Every commutative group code of order M is, up to isometry,
equal to a spherical code X whose initial vector is u = (u1, . . . , un)
and its points have the form

(Rot(ai1)(u1, u2), . . . ,Rot(aiq)(u2q−1, u2q), µ2q+1(i)u2q+1, . . . , µn(i)un),

where aij =
2πbij
M

. Moreover,

1. If n = 2L, X is contained in the flat torus Tc, c = (c1, . . . , cL)
where c2

i = u2
2i−1 + u2

2i .
2. If n = 2L + 1 and X is not contained in a hyperplane,
X = X1 ∪ X2, where Xi is contained in the plane
Pi = {(x1, . . . , x2L+1) ∈ R2L+1; x2L+1 = (−1)iun}. Also, Xi is
contained in the torus Tc of a sphere in R2L with radius
(1− u2

n)1/2, where c2
i = u2

2i−1 + u2
2i .



Lattice Connections

A 2L-dimensional commutative group code is free from reflection
blocks if its generator matrix group satisfies 2L = 2q = n as in the
Proposition (no blocks

±
[
−1 0

0 1

]
).

Commutative group codes in even dimension, whose generator
matrices are free from reflections blocks, are directly related to
lattices.



For such commutative group codes C = Gu we may consider
u = (c1, 0, c2, 0, . . . , cL, 0) where c = (c1, c2, .., cL) ∈ SL−1, ci > 0
rotation angles aij = (2πbij)/M, 1 ≤ i ≤ M, 1 ≤ j ≤ L.
vi = (ai1, . . . aiL), 1 ≤ i ≤ M and the lattice Λ with basis
{v1, ..., vN} which has the rectangular sublattice

Λc = (2πc1)Z× (2πc1)Z× . . .× (2πcL)Z.

Proposition

[SC08] Let C = Gu with u = (c1, 0, c2, 0, . . . , cL, 0),
c = (c1, c2, .., cL), ||c || = 1,ci > 0 be a commutative group code in
R2L, free from reflection blocks. The inverse image Φ−1

c by the
torus mapping (1) is the lattice Λ defined as above. Moreover the

quotient of lattices
Λ

Λc
is isomorphic to the generator group G .



Examples:

1 2 3 4

1

2

3

4

The quotient of lattices linked to the spherical code in R4 with initial vector
u = (1/

√
2, 0, 1/

√
2, 0) and group G of matrices generated by [Rot( 2π.1

5
),Rot( 2π.2

5
)].

This code is a simplex code – squared distance between any two of its five points is 5/2
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Pre-images Φ−1
c of two cyclic group codes C = Gu of order M = 25 in R4. On

the left, G = 〈[Rot( 2π
25

),Rot( 2π7
25

]〉 and the initial vector is

u = (1/
√

2, 0, 1/
√

2, 0). On the right side, G = 〈[Rot( 2π
25

),Rot( 2π10
25

]〉 and the

initial vector is u = (
√

0.54915, 0,
√

0.45085, 0), what provides the best
commutative group code of this order in R4. [TSCS15]



A lattice bound for commutative group codes

Proposition

[SC08] Every commutative group code C = Gu of order M in R2L

free from 2× 2 reflection blocks with initial vector
u = (u1, . . . , u2L) and minimum distance d satisfies

M ≤ πLΠL
i=1(u2

2i−1 + u2
2i )

1/2∆Gu

(arcsin d
4 )L

≤ ∆L

(
π

(arcsin d
4 ).L1/2

)L

,

where ∆Gu is the center density of the lattice Λ associated to the
code and ∆L is the maximum center density of a lattice packing in
RL.



Remarks

The torus bounds given above are tight in the following sense.

d ≤ 2 sin

(
L∏

i=1

ciDL/M

)
.

For big M, d is small and the distance in Tc ⊂ R2L is
approached by its inverse image in RL;

For general commutative groups in R2L the lattice packing
density in the last proposition can be replaced by the best
packing density in RL;

Bounds for commutative group codes in odd dimensions,
n = 2L + 1, can also be obtained [SC08] by observing that
those codes must lie on two parallel hyperplanes and are
formed by two equivalent copies of commutative group codes
in R2L.



Remarks

For general spherical codes (not group codes) we have much
bigger upper bounds and the codes may asymptotically
approach the density of R2L−1 [HZ97]. Shannon (1959),
Kabatianskii-Levenshtein (1979) (linear programming
Delsarte72) bounds;

The great advantage of commutative group codes are their
homogeneity, easiness and low cost of the encoding and
decoding processes on flat tori [VC03, TCV13].



Approaching the Bound: Good and Optimum
Commutative Group Codes

For small distances d or big M good commutative group codes
may be found searching for orthogonal sublattices Λ̃ of a lattice Λ
with good packing density.

Proposition

[AC13, COCBU18] Let α = {v1, v2, ..., vn} and
β = {w1,w2, ...,wn} bases of of lattices Λα and Λβ, Λβ ⊂ Λα, and
the associated generator matrices Aα, Aβ. Then Aβ = AαH, where
H is an integer matrix. Suppose that β is composed by orthogonal
vectors and consider the frame in Rn given by the normalizations

of these vectors. Let bi = ‖wi‖, b=
(∑n

j=1 ‖wj‖2
)

1
2 ,

ci=
bi
b , c = (c1, c2, ..., cn) and φc the torus map regarding in this

frame. Then to the normalized nested pair (1/b)Λβ ⊂ (1/b)Λα of
lattices it is associated a spherical code in R2n with initial vector
(c1, 0, c2, 0, ..., cn, 0) and generator group of matrices determined
by the Smith normal decomposition of H.



Example
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According to the above proposition, α = {v1, v2} , β = {w1,w2},
with v1 = ((0.8)2π/2, 0), v2 = ((0.8)2π/4, (0.6)2π/4),
w1 = ((0.8)2π, 0), w2 = (0, (0.6)2π). (b = 1). Since w1 = 2v1

and w2 = 4v2 − 2v1, we have:

H =

[
2 −2
0 4

]
=

[
1 −1
0 1

] [
2 0
0 4

] [
1 1
0 1

]
=⇒ Λα/Λβ = Z2⊕Z4.

Generators of the quotient of lattices: v̄1 of order 2 and −v̄1 + v̄2

of order 4. The spherical code in R4 has (0.8, 0, 0.6, 0) for initial
vector, and G = {Ar .Bs , 0 ≤ r ≤ 1, 0 ≤ s ≤ 3, where
A = [Rot[2π(1/2)], Identity] and
B = [Rot[2π(−1/4)],Rot[2π(1/4)]].



Examples of good commutative group codes constructed
from orthogonal sublattices of dense lattices

n M dmin Upper bound Group

4 141180 0.012706 0.0127061 Z141180

4 423540 0.00733585 0.00733588 Z423540

6 32 1.1547 1.26069 Z2 ⊕ Z2
4

6 2048 0.318581 0.320294 Z8 ⊕ Z2
16

8 648 0.707107 0.736258 Z3 ⊕ Z3
6

8 10368 0.366025 0.369712 Z6 ⊕ Z3
12

16 65536 0.707107 0.780361 Z2 ⊕ Z6
4 ⊕ Z8

16 16777216 0.382683 0.392069 Z4 ⊕ Z6
8 ⊕ Z16

Examples of commutative group codes in Rn, n = 4, 6, 8, 16, constructed through the
quotient of A2,D3,D4,E8 by “rectangular” sublattices. Their minimum distances
approach the upper bound [AC13].



The search for optimum commutative group codes

In what follows, C(M, n, d) = a commutative group code C in Rn

with M points and minimum distance d . A C(M, n, d) is said to be
optimum if d is the largest minimum distance for a fixed M and n.

For each G ∈ Gn(M) d varies depending on the initial vector;

Isomorphic groups of matrices may produce spherical codes
with different minimum distances for the same initial vector;

Problem: Given m and n to find a optimal C(M, n, d)→ No
general solution;

Biglieri, Elia (1976): for a fixed cyclic group of order M →
linear programming problem, total number of cases to be
tested ≈

(M/2
n/2

)
;

An approach based on the association between commutative group
codes and lattices is presented next.



Proposition (TSCS15)

Every commutative group code C(M, 2L, d), generated by a group
G ∈ O2L free of 2× 2 reflection blocks is isometric to a code
obtained as image by Φc of a lattice ΛG (c) which generator matrix
T satisfies the following conditions:
1. T is in the Hermite Normal Form ;
2. det(T ) = ML−1;
3. There is a matrix W , with integer elements satisfying
W T = M IL, where IL is the L× L identity matrix;

4. The elements of the diagonal of T satisfy T (i , i) =
M

ai
where ai

is a divisor of M and (ai )
i · (ai+1 · · · aL) 6 M, ∀i = 1, . . . , L.



Example

For M = 128 there are, up to isomorphism, only 4 abstract
commutative groups or order M:
{Z128,Z2 × Z64,Z4 × Z32,Z8 × Z16}., however for
n = 2L = {4, 6, 8} there are {2016, 41664, 635376} distinct
representations of them in On.
After discarding isometric codes by using the above Proposition we
must consider just {71, 2539, 55789} representations, respectively.
The initial vector problem can then be solved only for those cases.

M dmin c1 c2 c3 Group Gen Bound
50 0.9763 0.604 0.506 0.615 Z50 (7,6, 34) 1.091

250 0.6180 0.525 0.625 0.668 Z2
5 ⊕ Z10 (50, 0, 0), (50, 50, 0), (25,25,25) 0.436

500 0.5046 0.577 0.577 0.577 Z5 ⊕ Z2
10 (100, 0, 0), (50, 50, 0), (50, 0, 50) 0.5116

750 0.4367 0.587 0.549 0.594 Z750 (187,229,560) 0.5116
1000 0.3979 0.560 0.632 0.535 Z1000 (319,694,45) 0.4065

Some best commutative group codes of order M in R6 with 50 ≤ M ≤ 1000, initial
vector c = (c1, 0, c2, 0, c3)



Good commutative group code can be asymptotically reached
through the following proposition.

Proposition (S18)

Let Λ be a lattice with generator matrix B such that B∗ = (BT )−1

has integer entries and Λ?w ,P a lattice with generator matrix
B?w ,P = wB∗ + P, where P has integer entries and w is integer.
Then the lattice Λw ,P with generator matrix adj(B?w ,P) has
Λ′w ,P = det(Λ?w ,P)Zn as an orthogonal sublattice. Moreover

1

w
Λ?w ,P −→ Λ∗(w →∞)

and by continuity of the matrix inversion process
1

det( 1
w
B?w,P)

Λw ,P −→ Λ(w →∞).



P1,24 P1,24

w log10 M distance log10 M distance

7 27.6113 0.177774 31.1194 0.128473
8 28.9791 0.156625 32.5112 0.112635
9 30.1901 0.139890 33.7389 0.100256

10 31.2763 0.126336 34.8371 0.0903175
11 32.2609 0.115147 35.8305 0.0821655
12 33.1610 0.105760 36.7374 0.0753593

Performance of spherical commutative group codes in dimension 48 based in the last
proposition.



Commutative group codes and codes on graphs

Commutative group codes can also be viewed as a graph or a coset
code on a flat torus with the graph distance (minimum number of
edges from one vertex to another). They are also geometrically
uniform in this context [F91, CMAP04]. This is the approach
presented in [CSAB10] which deals with Perfect Lee codes in Zn

q

(graph metric) and Cayley graphs (used in parallel computing).
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The cyclic group code on left viewed as the circulant graph C25(1, 7).



Spherical codes in layers of tori

Flat tori layers can be used to construct spherical codes which
combine the good structure of commutative group codes in each
layer with a better packing density.
A Torus Layer Spherical Code (TLSC) [TCV13] can be generated
by a finite set of orthogonal matrices and have efficient storage
and decoding process, which is attached to lattices in the half of
the code dimension.
To design these codes, given a distance d ∈ (0,

√
2], we first define

a collection of tori in S2L−1 such that the minimum distance
between any two of these tori is at least d . This can be done by
designing a spherical code in RL with minimum distance d and
positive coordinates. Then, for each one of these tori, a
commutative group code based on lattices is derived.



Example

In [TCV13], starting from a rectangular sublattice of the Leech
lattice it is presented a TLSC in dimension 48 with more than 2113

points placed in 24 layers of flat tori with minimum distance 0.1.
This code is generated by using just 12 matrices.



Example

TLSC have the advantage of being constructive and homogeneous
in each layer. For very small distance and higher dimension the
expected performance will decrease.

d TLSC(4,d) apple-peeling wrapped laminated

0.5 172 136 * *

0.4 308 268 * *

0.3 798 676 * *

0.2 2,718 2,348 * *

0.1 22,406 19,364 17,198 16,976

0.01 2.27 ×107 1.97 ×107 2.31 ×107 2.31 ×107

Four-dimensional code sizes at various minimum distances, TLSC, apple-pilling
[GHSW87], wrapped [HZ97] and laminated approaches [HZ97]. (*): unknown values.



Coding for continuous alphabet sources

Curves on a sphere with good length, large distance between its
folds and structure are suitable to the communication problem: A
real value x (say, belonging to the interval [0, 1]) is to be
transmitted over a power-constrained Gaussian channel of
dimension n to a receiver. One possibility is to map the source, via
a continuous (or piecewise continuous) function s : [0, 1)→ RL and
then transmit it over the channel. Such a function is a curve in Rn.

y = s(x) + n

is observed. The objective is to recover an estimate x, attempting
to minimize the mean square error.
Building curves for such a transmission was discussed by C.
Shannon, in his remarkable paper [S49]. If x has normal
distribution and n = 1, the optimal distortion is achieved by the
scaled identity mapping, i.e., s(x) = αx . For higher dimensions,
however, the problem is not so simple. One approach is related to
flat tori and lattices. structure.



s(x) = φc

(
2π√
n

ax(mod 1)

)
, (5)

where φc is the tori map and usually c = (1/
√
L)(1, . . . , 1). These

closed curves are contained on a flat torus Tc in the sphere of R2L

and are highly homogeneous (all their curvatures are constant
[C90]). From a previous proposition, the distance between the
“laps” of the new curve is approximately the distance between two
lines in the ( mod 1) map. The curve’s length, on the other hand,
is given by 2π ‖a‖ /

√
L.

To summarize, good codes for continuous alphabet sources are
related to curves that can be designed by choosing a vector a ∈ ZL

such that:

(i) The norm of a is large.

(ii) The projection of ZL along the orthogonal hyperplane to a
has large shortest vector.



These two objectives (trade-off) can be attained by finding
projections of the cubic lattice ZL with good packing density. In
the next subsection we consider the study of projections of lattices
in a greater generality.

Illustration of small and large errors.
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Encoding process



Packing of a curve in a Torus of R6, represented in a 3D box.

Advantage of these curves on flat tori: homogeneity and decoding
process (flat torus decoding [VC03])



Projection of lattices

This topic is also connected to laminated and perfect lattices
[CS99, M13].
Good curves on flat tori: Search for dense lattices in R2L−1 given
as projections of the 2L dimensional integer lattice [VC03, SVC10].
A vector in a lattice Λ is said to be primitive if it can be extended
to a basis of Λ.

Proposition

Let v be a primitive vector of a full-rank lattice Λ ⊂ Rn. The
following properties hold

(i) The set Pv⊥(Λ) is a lattice.

(ii) The volume of Pv⊥(Λ) is given by

V (Pv⊥(Λ)) =
V (Λ)

‖v‖ (6)

(iii) Pv⊥(Λ)∗ = Λ∗ ∩ v⊥.



Projection of lattices

We were to choose a vector a ∈ Zn such that

(i) The norm of a is large.

(ii) Pa⊥(Zn) has a large shortest vector.

Or, having fixed the norm of a we would like maximize the
minimum norm of Pa⊥(Zn), say, λ1(a). This is equivalent to
finding projections of Zn with good packing density.
The Lifting Construction [SVC11] gives a general solution for this
problem. Further extensions of this problem higher to projections
from higher codimensions were presented in [CSC13].



An interesting construction of asymptotically optimal
(discrete) cyclic group codes from curves on tori is presented
[ZTM17];

Curves on flat torus layers for analog source coding are
presented in [CTC2013]. As in the discrete case, for an
estimate error correction (distance between “laps”) a much
bigger curve (homogeneous in each torus layers) can be
provided



Continuous curves and secrecy

Schemes based on continuous curves on layers of flat tori can also
be used to design a codes for wiretap channels with continuous
input alphabets as presented in [ATB13].

The AWGN wiretap channel model.



Lattice topics in our research group: recent developments/
perspectives

Still regarding spherical codes and lattices: Spherical codes
inspired in the sphere Hopf fibration (recursive lattice
construction); shaping gain: covering? quantization?

Different metrics in lattices (Lee, Lp and maximum metric),
Perfect and quasi-perfect codes [CJSC16,QC16, QCC18];

Lattices from codes;

Well rounded lattices;

Algebraic lattices [JAC15] / Crypto connections RLWE
[PR17];

Lattice construction based on quaternion and octonion
algebras [AB15, WBAC17];

Lattice decoding in a distributed network setting
(communication cost) [BVC17];
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