Lattice Codes Information Theory

Rami Zamir
School of EE, Tel Aviv University
Talk in London, Sept. 2017

What a Lattice Means?...

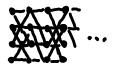
For my kid:

For a physicist/crystallographer:

For a mathematician:

For a Computer Scientist:

For a coding theorist: 18, 124, ...



an Information Theorist:

 $N \rightarrow \infty$

We'll talk about...

- 1. lattices: representation & partition
- 2. Construction from linear codes
- 3. figures of merit
- 4. asymptotic goodness
- 5. multi-level constructions
- 6. dithering (lattice randomization)
- 7. Side-information problems
- ?. distributed lattice coding

1. Representation & Partition

Vol (A)

Modulo A

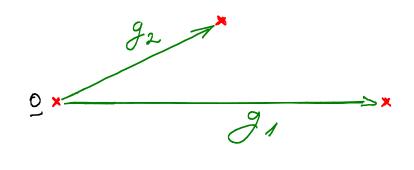
Lattice: Definition

Let $f_1, ..., f_n - linearly independent vectors in <math>\mathbb{R}^n$ $G = \begin{pmatrix} g_1 & \dots & g_n \end{pmatrix} = generator matrix$

$$\Lambda(G) = \begin{cases} i_1 \cdot g_1 + \dots + i_n \cdot g_n : i_1 \dots i_n \in \mathbb{Z} \end{cases}$$

$$= \begin{cases} G \cdot i : i \in \mathbb{Z}^n \end{cases}$$

$$= G \cdot \mathbb{Z}^n$$



M-dimensional lattice: Definition

Let
$$f_1, \dots, f_n$$
 - linearly independent vectors in \mathbb{R}^n

$$G = \left(\begin{array}{c} g_1 \\ \vdots \\ g_n \end{array} \right) = generator \ matrix$$

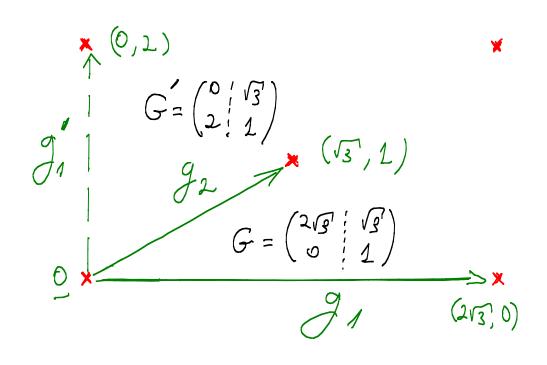
×

Linearity: $\lambda_1, \lambda_2 \in \Lambda \Rightarrow \lambda_1 = \lambda_2 \in \Lambda$

Lattice: Equivalent Representations

$$T = unimodular matrix$$

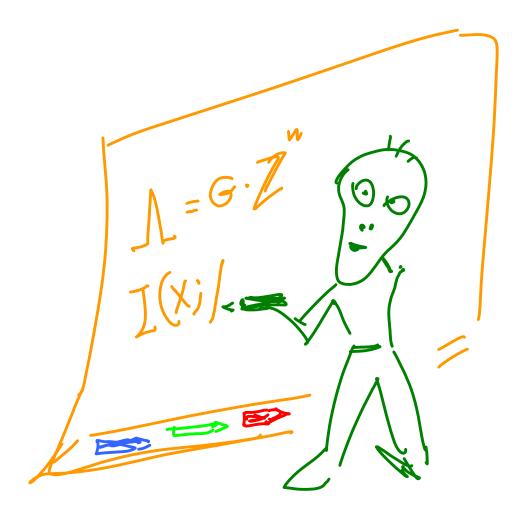
(integer elements, $lut(T) = \pm 1$)



×

X

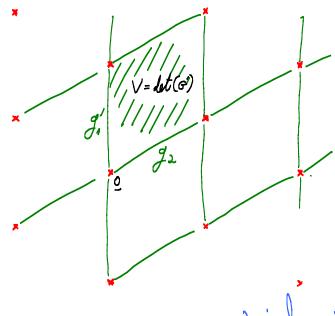
On-Board Calculation...



Let $(\Lambda) \triangleq |det(G)| = basis invariant$

Lattice Partition: Quantization / Decision Regions Volume = |det (G)/ paralle lopipels $P_0 = 2 \propto_1 g_1 + \propto_2 g_2 :$ $0 \leq \omega_{1}, \omega_{2} \leq 1$ $\int A + P_o = IR^n$

Partitions, Fundamental Cells



Other Basis =>
other Para llelepiped

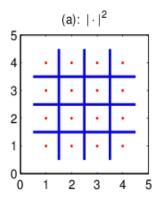
> Cell Volume IT is
invariant of partition

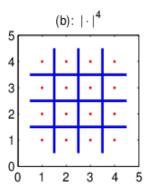
Sequentialition

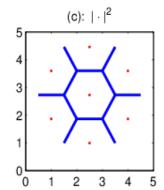
Voronoi Partition

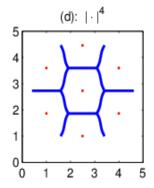
Po={x: ||x|| \le ||x-li|| } +lie_{

Non-Euclidean Voronoi partition









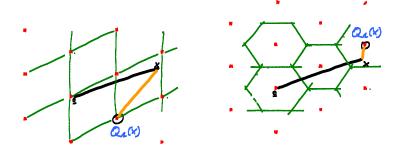
Lattice Quantization, Modulo Lattice

$$Q(x) = \lambda \quad \text{if} \quad x \in (\lambda + P_0)$$

$$\times \mod \Lambda \quad = \quad X - Q(x)$$

$$x \mod \Lambda = x - Q(x)$$

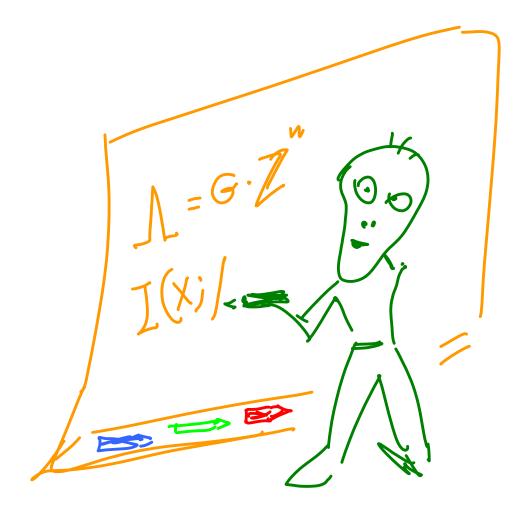
$$\Rightarrow X \in \mathbb{R}^n$$
 uniquely written as $Q_{\lambda}(x) + (x \text{ modulo}_{\lambda})$
 $q_{\mu q \mu + 12a + 10in}$
 $error$



Modulo Laws:

* a mod
$$\Lambda = \alpha + \lambda(a)$$
, $\lambda(a) \in \Lambda$

On-Board Calculation...



 $V(\Lambda) \stackrel{\triangle}{=} cell \quad volume = det(\Lambda)$ = invariant of partition

Similarity $\Lambda(G')$ is similar to $\Lambda(G)$ if

Example: E8 lattice

Definition 1: all all-integer or all half-integer vectors in R⁸ whose coordinate sum is even.

Definition 2 (construction A): $\{ \{ \{ \{ \{ \{ \} \} \} \} \} \}$ $C_H = (8,4,4) \}$ extended Hamming code = ...

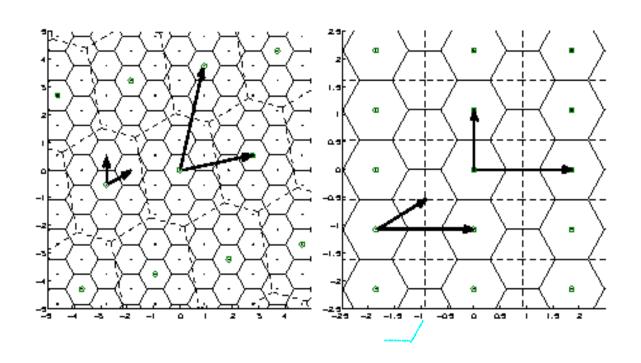
Nested Lattices

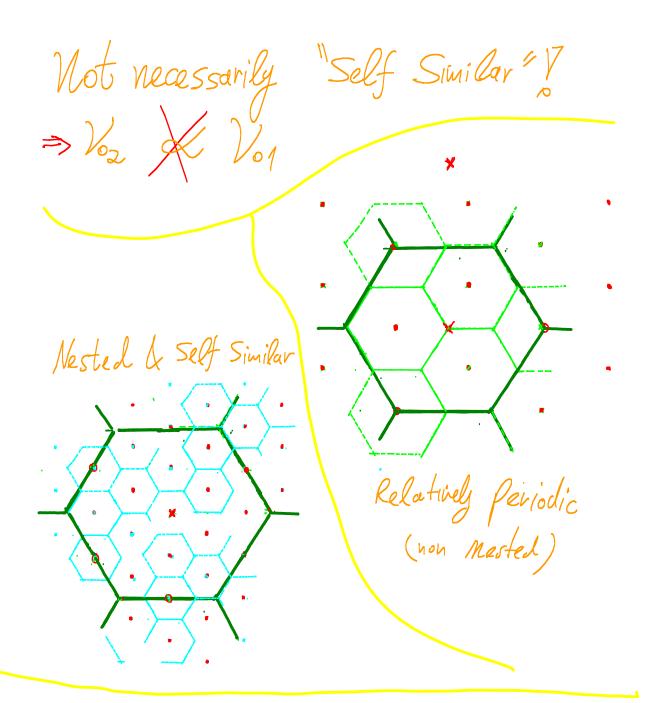
Mester Danies

$$A_2 \subset A_1 \implies G_2 = G_1 \cdot J$$

Cource fine lattice watrix

Nesting Ratio =
$$\left(\frac{V(\Lambda_2)}{V(\Lambda_1)}\right)^n = \left| \det(J) \right|^n$$





Diagonal Form

If $\Lambda_2 \subset \Lambda_1$, then \exists grevator matrices G_1, G_2 S.t. the nesting matrix J is diagonal $J = \begin{pmatrix} j_1 & 0 \\ 0 & j_n \end{pmatrix}$

We'll talk about...

- 1. lattices: representation & partition
- 2. Construction from linear codes
- 3. figures of merit
- 4. asymptotic goodness
- 5. multi-level constructions
- 6. dithering (lattice randomization)
- 7. Side-information problems
- ?. distributed lattice coding

2. Construction from Linear Codes

$$0000 \longrightarrow (construction A) \longrightarrow (x \times x \times x)$$

$$1010 \longrightarrow (x \times x)$$

$$x \times x \times x$$

Construction A

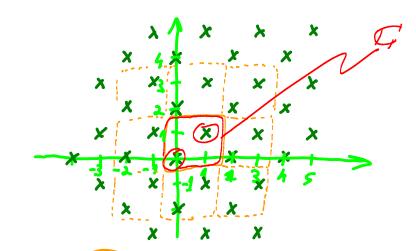
Let I be an (n, M, d) binary code:

 $C_i = \{ \subseteq i \}_{i=1}^M$, $\subseteq i \in \{0,1\}^n$, d = minimum Hamming distance.

Construction A lifts of to 12" periodically:

Des. 1 $\Gamma_G = \{ x \in \mathbb{Z}^n : x \mod 2 \in G \}$

integer vectors module 2 per each component



Equivalent definitions:

2) Let $Z = (LSR(z), MSB_1(z), MSB_2(z), ...) = binary expansion of z$

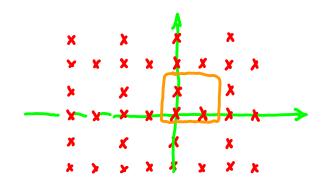
$$\Gamma_{\mathbf{C}} = \{ \times \in \mathbf{Z}^n : LSB(\mathbf{X}) \in \mathbf{G} \}$$

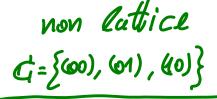
Construction A: properties

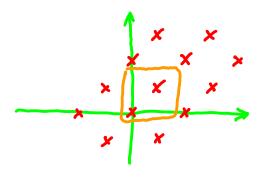
min Euclideun duit in coset $C + 2Z^n$ for $C \in C$

$$\Rightarrow \|\underline{C_1} - \underline{C_2}\| = \sqrt{d} \quad (Pythagoras)$$

$$\Rightarrow V_G = A_G$$
 is a modulo-2 lattice.







Cattice C = {(00), (11)}

We'll talk about ...

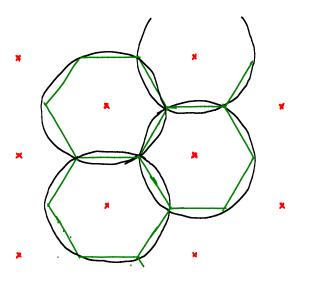
- 1. lattices: representation & partition
- 2. Construction from linear codes
- 3. figures of merit
 - 4. asymptotic goodness
- 5. multi-level constructions
- 6. dithering (lattice randomization)
- 7. Side-information problems
- ?. distributed lattice coding

3. Figures of merit Ga), $M(\Lambda, pe)$

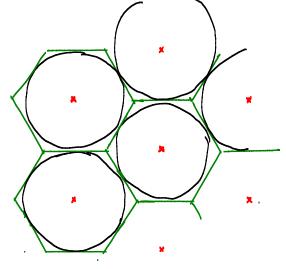
Covering, Packing, Kissing Number Reging 12 with (for)

Covering 12 with (few)

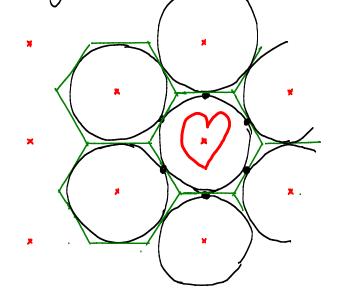
Spheres



Packing (mang)
spheres in 12ⁿ



Kissing by (many) Spheres



good arrangements
for quantization
and AWGN channel
Coding

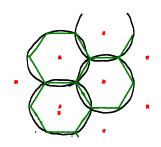
Figures of Merit

V_{cov} V_{pack}

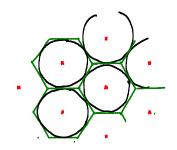
Radiuses:

· Covering efficiency:

$$P_{cov}(\Lambda) = \frac{V_{cov}}{V_{eff}} > 1$$



· Packing efficiency:



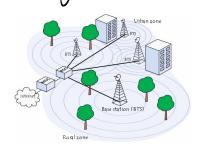
Not an "All-Purpose" Lattice!

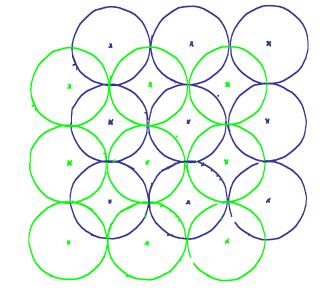
* Best 3-dim Packing: F.C.C.

each layer = hexagonal 1 layers are staggered

*Best 3-din Covering: B.C.C.

each layer = cubic 1 layers are staggered





Source coding (quantization)

Channel coding (modulation) Source coding: source sampling quantization encoding $X(t) \longrightarrow (X_1, ..., X_n) \longrightarrow X(m) \longrightarrow 011,...,1$ $ER^n \qquad Eset \\ 1 \leq m \leq M$ Channel coding: data Coded-modulation D/C X(t)transmission data demodulation λ decoding $y(t) \in Veceiving$

Lattice Codes in Signal Space square (Z)-lattice >> uncoded constellation More "interesting" lattice -> Coded constellation

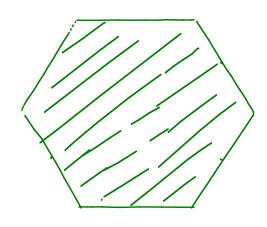
Figures of Merit (Continued)

Quantization efficiency:

X n Uniform (Vo)

 $C(A) \triangleq \frac{1}{n} E \|X\|^2$

 $G(\Lambda) \triangleq \frac{C^2(\Lambda)}{\sqrt{2/N}}$



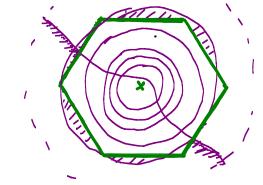
= normalized Second moment

Figures of Merit (Continued)

AWGN coding efficiency:
$$Z \sim AWGN N(0, C_z^2)$$

$$V_{2}/n = Volume - to - Noise Ratio$$

$$V_{2}/n = Volume - to - Noise Ratio$$



$$\mu(\Lambda, Pe) \triangleq \frac{V^{2/n}}{C_{z}^{2}} / @ Pe$$

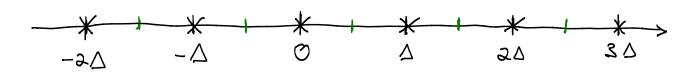
Example: One dimensional lattice (Voronoi cell = interval)

1. NSM

$$\Rightarrow G(\Box) = \frac{EU^2}{V^2(\Lambda)} = \frac{\Delta^2/12}{\Delta^2} = \frac{1}{12}$$

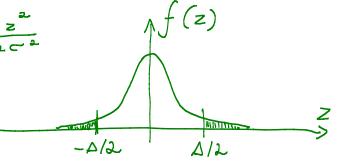
invariant of D

Example: One dimensional lattice (Voronoi cell = interval)



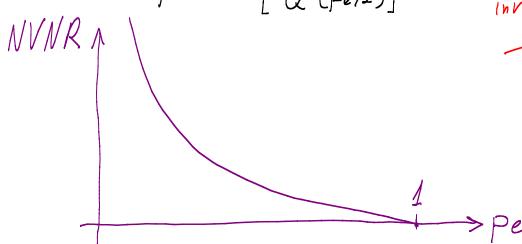
2. NVNR

Z~ 1 e 20



$$Pe = Pr\{|Z| > \frac{\Delta}{2}\} = 2 \cdot Q\left(\frac{\Delta/2}{C}\right)$$

$$\mathcal{M}(\Lambda, \rho_e) = \frac{V^2(\Lambda)}{C\rho_e} = \left[\frac{\Lambda}{\frac{\Lambda/2}{Q^{-1}(\rho_e/2)}}\right]^2 = \left[2 \cdot Q^{-1}(\frac{\rho_e}{2})\right]^2$$
invariant of Λ



* lattice Vector quantizer gain ;

$$\triangleq \frac{C'(Z)}{C'(\Lambda)} = \frac{G(Z)}{G(\Lambda)}$$

$$= \frac{G(Z)}{G(\Lambda)}$$

$$= \frac{G(Z)}{G(\Lambda)}$$

* Coding gain @ AWGN channel:

$$\stackrel{\triangle}{=} \frac{C_z^2 \otimes \Lambda}{C_z^2 \otimes Z} = \frac{\mu(Z, p_e)}{\mu(\Lambda, p_e)} \xrightarrow{p_e \to 0} \frac{d_{min}(\Lambda)}{d_{min}(Z)}$$

$$\stackrel{\triangle}{=} \frac{C_z^2 \otimes \Lambda}{C_z^2 \otimes Z} = \frac{\mu(Z, p_e)}{\mu(\Lambda, p_e)} \xrightarrow{p_e \to 0} \frac{d_{min}(\Lambda)}{d_{min}(Z)}$$

$$\stackrel{\triangle}{=} \frac{d_{min}(\Lambda)}{d_{min}(Z)}$$

$$\stackrel{\triangle}{=} \frac{d_{min}(\Lambda)}{d_{min}(Z)}$$

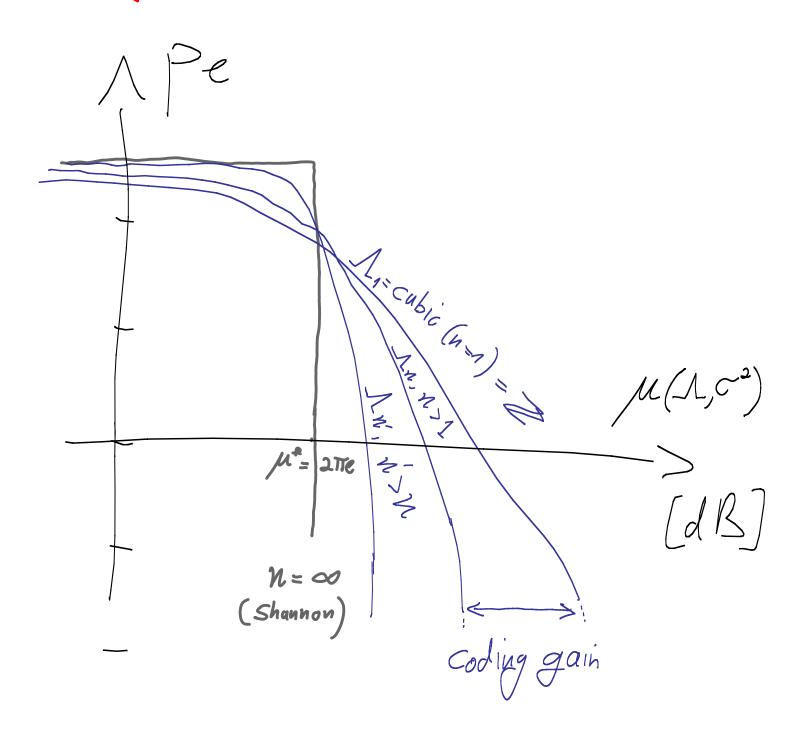
$$\stackrel{\triangle}{=} \frac{d_{min}(\Lambda)}{d_{min}(Z)}$$

$$\stackrel{\triangle}{=} \frac{d_{min}(\Lambda)}{d_{min}(Z)}$$

$$\stackrel{\triangle}{=} \frac{d_{min}(\Lambda)}{d_{min}(Z)}$$

Pe versus V.N.R. for fixed V

(~ "Pe versus SNR @ fixed Rate")



We'll talk about ...

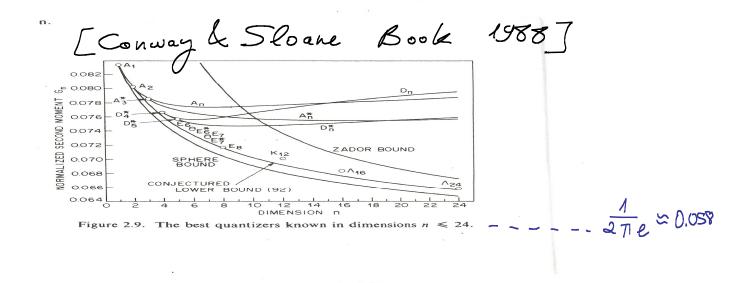
- 1. lattices: representation & partition
- 2. Construction from linear codes
- 3. figures of merit
- 4. asymptotic goodness
- 5. multi-level constructions
- 6. dithering (lattice randomization)
- 7. Side-information problems
- ?. distributed lattice coding

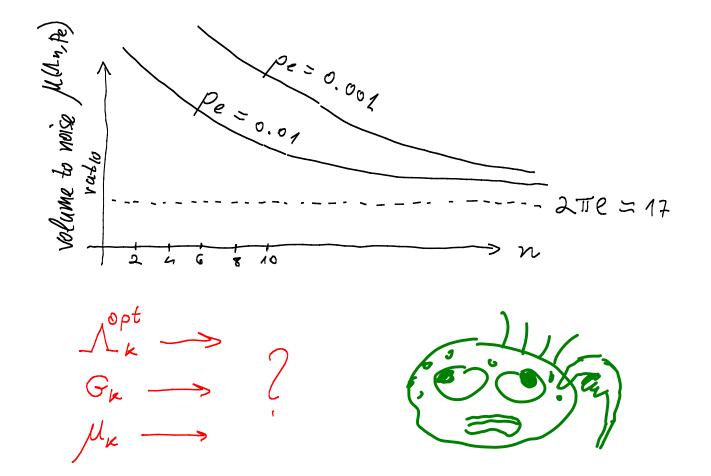
4. Asymptotic goodness dimension -> ~

$$G(\Lambda_n) \xrightarrow{?} \frac{1}{2\pi e}, \text{ as } N \to \infty$$

$$M(\Lambda_n, p_e) \xrightarrow{?} 2\pi e, \text{ as } n \to \infty \quad \forall p_2 > 0$$

G(1n) and M(1n, Pe) as a function of dimension n





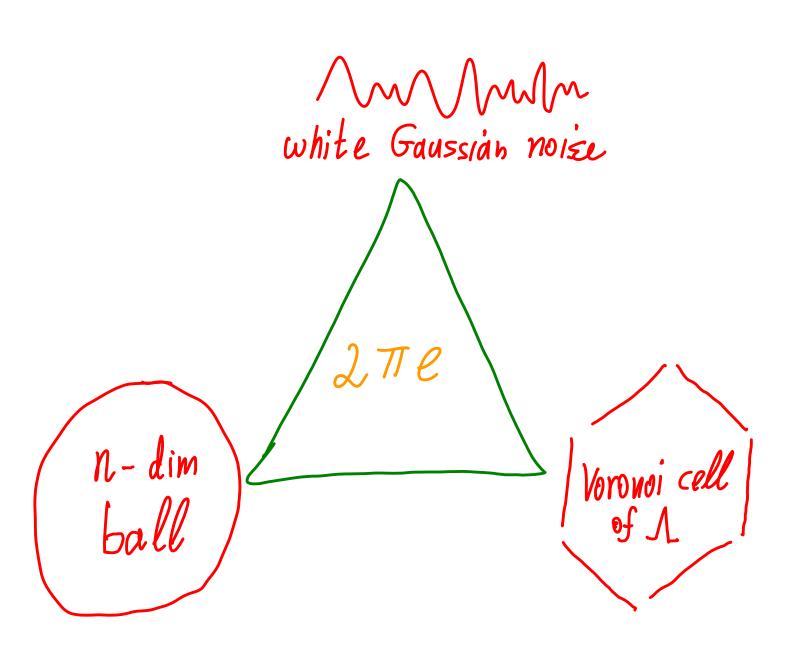
Vector Quantization Gain of An, for N=1,2,3,...

Dimension		Lattice	$\Gamma_q [\mathrm{dB}]$	Sphere Bound
1	\mathbb{Z}	integer	0	0
2	A_2	hexagonal	0.17	0.20
3	A_3	FCC	0.24	0.34
3	A_3^*	BCC	0.26	0.34
4	D_4	(Example 2.4.2)	0.36	0.45
5	D_5^*		0.42	0.54
6	E_6^*		0.50	0.61
7	E_7^*		0.57	0.67
8	E_8^*	Gosset*	0.65	0.72
12	K_{12}		0.75	0.87
16	BW_{16}	Barnes-Wall	0.86	0.97
24	Λ_{24}^*	Leech*	1.03	1.10
∞	?	?	1.53	1.53

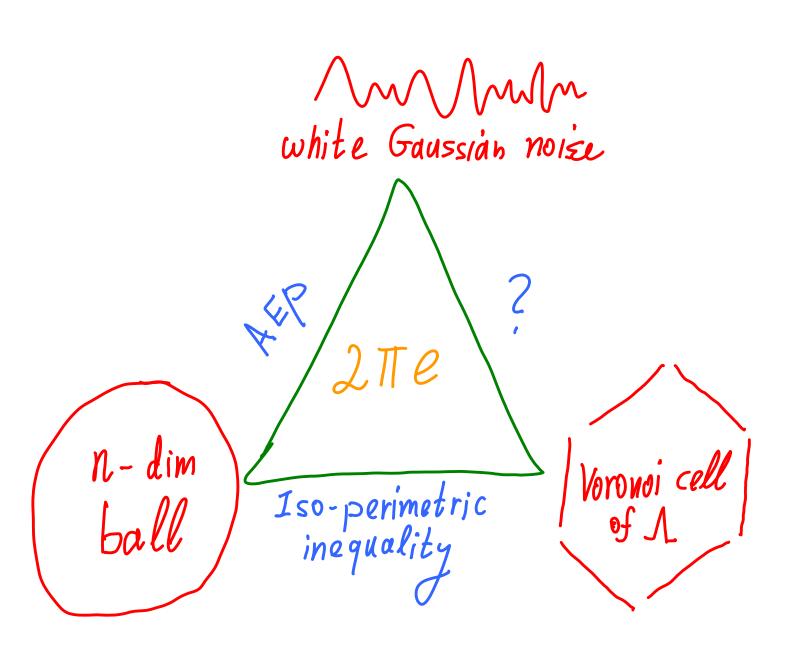
Coding Fain of In, for N=1,2,3,...

SER		10^{-1} 10^{-2}		10^{-3}	10^{-4}	10^{-5}	
Dim.	Lattice						
1	\mathbb{Z}^1	0	0	0	0	0	
2	A_2	0.14 (0.16)	$0.27 \ (0.33)$	$0.33 \ (0.45)$	$0.42 \ (0.54)$	$0.46 \ (0.6)$	
3	A_3	$0.20 \ (0.27)$	$0.42 \ (0.56)$	0.55 (0.78)	$0.65 \ (0.93)$	0.72 (1.05)	
	A_3^*	$0.20 \ (0.27)$	$0.40 \ (0.56)$	$0.52 \ (0.78)$	0.59 (0.93)	$0.61 \ (1.05)$	
4	D_4	$0.29 \ (0.36)$	$0.60 \ (0.75)$	0.82 (1.03)	0.95 (1.24)	1.00 (1.40)	
8	E_8	$0.50 \ (0.56)$	1.08 (1.2)	1.49 (1.68)	1.80 (2.04)	2.00 (2.30)	
16	BW_{16}	$0.63 \ (0.75)$	$1.47 \ (1.63)$	2.09 (2.32)	$2.52 \ (2.83)$	2.80 (3.22)	
24	Λ_{24}	0.75 (0.84)	$1.76 \ (1.85)$	2.51 (2.65)	3.08 (3.25)	3.50 (3.71)	
∞	?	-2.0	1.9	4.0	5.5	6.6	

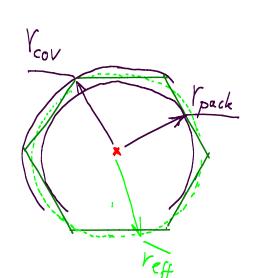
W.G.N. \ Ball \ \



W.G.N. \ Ball \ A



Iso-perimetric Inequalities (Sphere bounds)



Ball minimizes

* * *

over all bodies

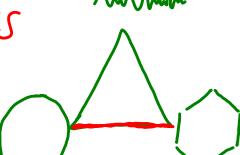
of a fixed volume?

 $C(\Lambda) \geq C^2(ball with radius reff)$ $Pe(\Lambda) \geq Pe(""")$

G(A) > N.S.M. of n-dim ball

µ(1, pe) ≥ V.N.R. " "

Iso-perimetric Inequalities



$$G(\Lambda) \geq G_n(Ball)$$

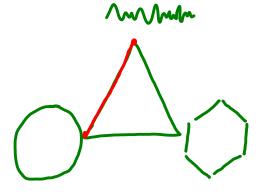
Sphere limits:

$$G_{N}(Ball) \rightarrow \frac{1}{2\pi e}$$

$$U_{N}(Ball, p_{e}) \rightarrow 2\pi e$$

as
$$\mathcal{U} \rightarrow \infty$$

Shannon's AEP: W.G.N. -> ball

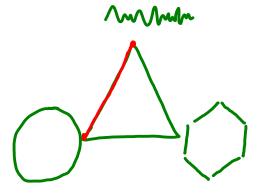


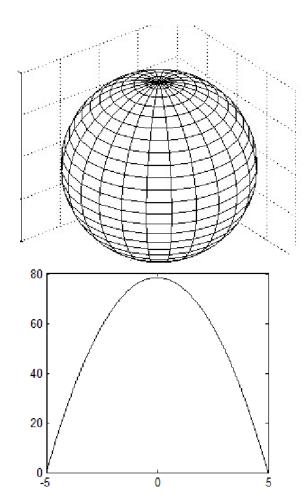
$$Z_1 \dots Z_n \sim AWGN N(o, c^2)$$

$$A_{\varepsilon} = \left\{ z : \frac{1}{n} \log f_{z}(z) = h \pm \varepsilon \right\}$$

$$\frac{ANGN}{\int_{S^{-1}}^{N} \int_{S^{-1}}^{N} \left| \frac{1}{2} \right|} = \left\{ \underline{z} : ||\underline{z}|| = \sqrt{n(c^{2} + \varepsilon^{2})} \right\}$$

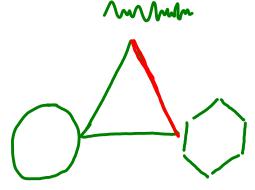
Reverse AEP:
W.G.N. \ ball





If
$$(Z_1,...,Z_n) \sim \text{Unif}\left(\text{Ball}(\underline{o},\sqrt{n}c^2)\right)$$
,
then $Z_1 \stackrel{\text{dist}}{\longrightarrow} N(\underline{o},c^2)$ as $n \to \infty$

A Random Lattice Ensemble: Minkowski-Hlawka - Siegel



M(S) \ number of nonzero points of \\
inside a body S'

Theorem: For every dimension N,

there exists an ensemble EA?

of Pattices with a constant point lensity &= 1/4

(= a prob. measure over all generator matrices & with determinant 1/4) such that for every bounded body S

 $E_{MHS}\left\{N_{\lambda}(S)\right\} = \gamma \cdot V_{0}\ell(S)$

Just like a uniformly distributed random code ?

Simultaneous Goodness

Thm. [Erez-Litsyn-Z 2004] There exists a sequence of lattices In in dim. n=1,2,..., such that as N=0 $P_{cov}(\Lambda_n) \longrightarrow 1$ lim Ppack (In) > 1 $G(\Lambda_n) \rightarrow \frac{1}{2\pi e}$ M(In, pe) -> 2Th + pe>0

Error Exponents

$$\exists \Lambda_n : \mu(\Lambda_n, p_e) \longrightarrow 2\pi e \qquad \forall p_e > 0$$

4TT &

2TTe

We'll talk about...

- 1. lattices: representation & partition
- 2. Construction from linear codes
- 3. figures of merit
- 4. asymptotic goodness
- 5. multi-level constructions
 - 6. dithering (lattice randomization)
 - 7. Side-information problems
 - ?. distributed lattice coding

5. Multi-level Constructions

Construction C

- * Multi-level coded modulation
- * Natural extension (?) et construction A to L levels
- * Bound on minimum distance $2 \rightarrow 2^{-1}$
- * Super-position of L binary codes: G1,..., GL

$$\Gamma = C_1 + 2 \cdot C_2 + 4 \cdot C_{13} + ... + 2 \cdot C_L + 2 \cdot Z^n$$
coded levels uncoded levels

* Equivalent definitions:

binary expansion $\left\{ x \in \mathbb{Z}^n : LSB(x) \in C_1, MSB_1(x) \in C_2, \dots, MSB_{l-1}(x) \in C_{l-1} \right\}$

recursive law $\begin{cases} \chi \in \mathbb{Z}^n : \end{cases}$ $\hat{C}_1 \triangleq X \mod 2 \in C_1$ $\hat{C}_2 \triangleq 1_2(X - \hat{C}_1) \mod 2 \in C_2$ $\hat{C}_3 \triangleq 1_4(X - \hat{C}_1 - 2\hat{C}_2) \mod 2 \in C_3$ ĈL = 1/2-1 (x-2,-2c2-4c3-...) mod2 € C1

Construction C: general context

* Multiple levels
$$(L>1) \Rightarrow$$
 not necessarily a lettice even if all component codes are linear V

Special case where
$$\Lambda_n/\Lambda_2/.../\Lambda_L = \mathbb{Z}/2\mathbb{Z}/.../2^{l-1}\mathbb{Z}$$

Multi-Stage Decoding

Let $g_i(\cdot) = \text{soft-decision}^* \text{ decoder for } \subseteq \in C_i$ in a modulo-2 channel: $J = [C + N/2^{i-1}] \text{ mod } 2$.

Construction D

- * Multi-level luttice construction
- * Natural extension (?) of construction A (Del III)
- * Similar to (non-lattice) construction C (same dmin, allows MSD)
- * Based on a chain of nested linear binary codes:

 $Ci_1 \subset \cdots \subset Ci_2$, where $Ci_j = (n, k_j, d_i)$ code, $k_1 \leq \cdots \leq k_L$

- * Super-position of basis vectors (rather than of the codes)
- *Let $f_n ... g_n$ be a basis for $\xi_0, 13^n$, such that the $k_j \times n$ matrix $G_j = \begin{bmatrix} -\frac{g_n}{j} \\ -\frac{g_k}{j} \end{bmatrix}$ is a generator matrix for G_j , j=1...L.

real (not modulo 2) multiplication

code nesting -> closed under mod- & addition -> 10 is a lattice

Uniformity Properties of Construction C

Majara Bollauf & RZ

* ISIT 2016 *

Classification of "almost"-lattice cooles (infinite constellations)

Lattice 1.

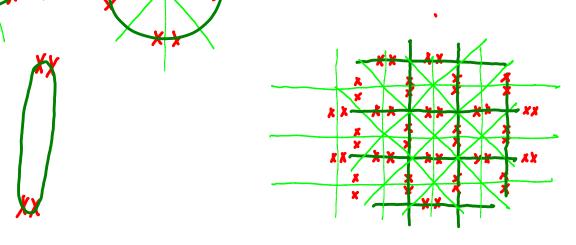
Geometrically Uniform

Equi-Distance Spectrum

Equi - Minimum distance
(& Equi - kissing number)

Random, n - 00

Reminder: Geometrically Uniform Constellation
[Forney 1991]



Definition: M is GU if for any two codewords c, $c' \in P$, there exists a distance-preserving transformation T (translation, reflection, rotation) such that C' = T(c) and T(P) = P.

- The world seen by any coleword is the same, up to rotation and reflection.
- > Same Voronoi cells (Enclidean distance)
 Same Pe(c) (Under AWGN).

Assume that $G_1, ..., G_L$ are linear, then ...

Construction G is Y geometrically uniform for $L \leq 2$

The struction of is V geometrically uniform for $L \ge 3$

We'll talk about...

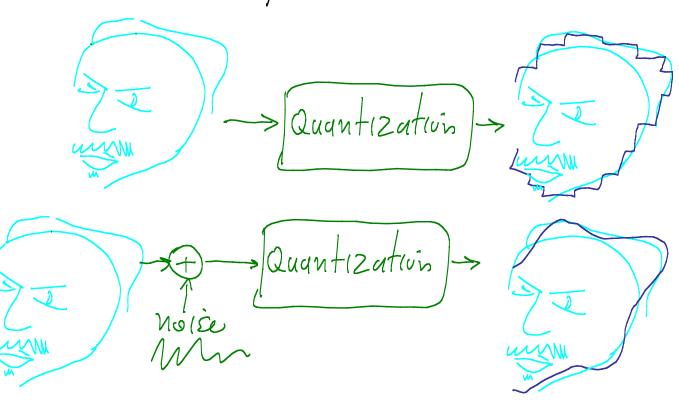
- 1. lattices: representation & partition
- 2. Construction from linear codes
- 3. figures of merit
- 4. asymptotic goodness
- 5. multi-level constructions
- 6. dithering (lattice randomization)
- 7. Side-information problems
- ?. distributed lattice coding

6. Dither & estimation

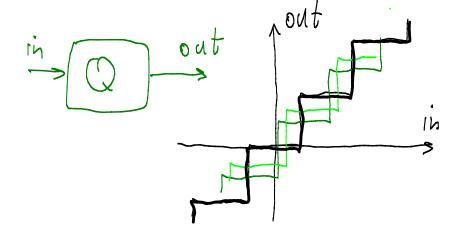
noise (1)

Dithered Quantization

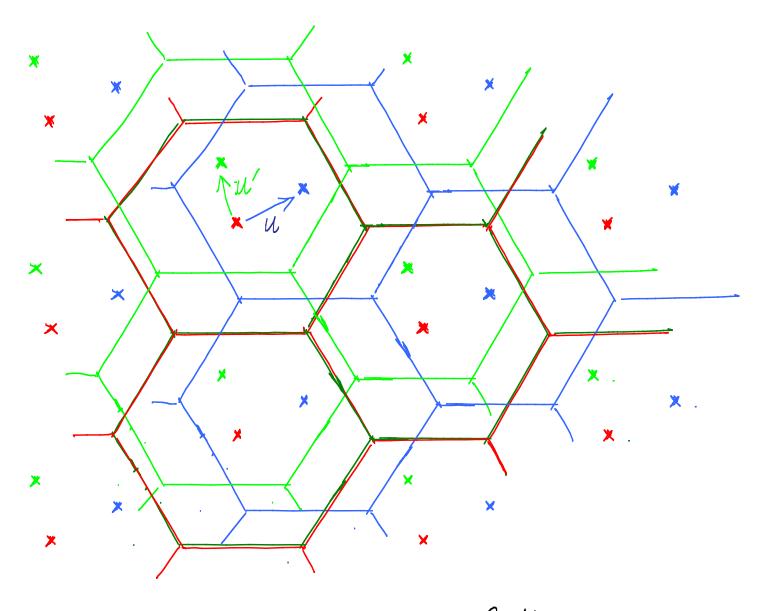
· ditler for perceptual reasons:



· dither for analytical reasons:



$Q_{\Lambda}(x+U)-U$



>> Random shift of the lattice quantizer

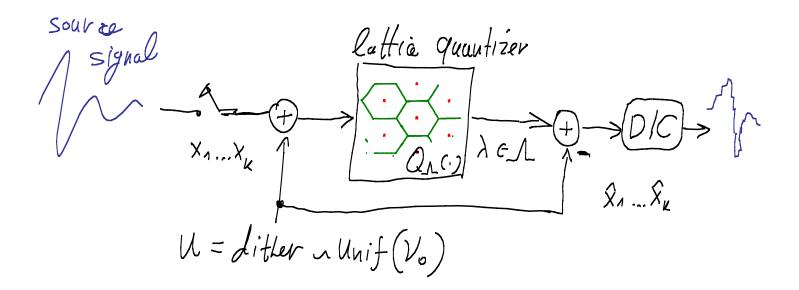
The Crypto-Lemma

Let $x \mod \Lambda \triangleq x - Q_{\Lambda}(x)$

If $U \sim unif(p_0)$, then $(x+U) \mod A \sim unif(p_0)$, $\forall x$

Proof: View as a modulo-additive noise channel, with a uniform noise,

Dithered Quantization Error



Crypto Lemma >>

Thm. 1: quantization error Q(x+u)-x-u is independent of input x, and uniform over (reflection of) lattice cell:

Weg = -U

X

Equivalent Additive-Noise Channel

Generalized Dither

Def. U is G.D. if (S+U) mod 1 ~ Unif (po) +s

Necessary condition on fu() for G.D.?

Generalized Dither

Def. U is G.D. if (s+U) mod 1 ~ Unif(po) +s

Necessary condition for G.D.?

- 1. U is G.D. iff U mod A ~ Unif (po)
- 2. U is G.D. iff furep(x) = constant where,

3. U is G.D. iff its characteristic function is zero on the dual lattice:

 $\mathcal{F} \{ f_u(\cdot) \} = 0 \quad \text{on} \quad \Lambda^* \setminus 0$

where $\Lambda^{\pm} = dual lattice = \Lambda (G^{-t})$

Generalized Dither

Def. U is G.D. if (S+U) mod 1 ~ Unif(po) +s

Recessary condition for G.D.?

claims

- 1. frep(x) is periodici-1 in space
- 2. If $X \sim f(x)$, and $P_o = fundmental cell of <math>\Lambda$, then

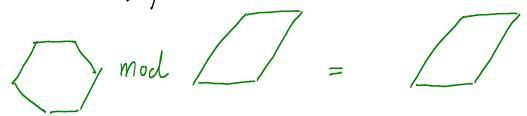
$$f_{X,mod} \Lambda(x) = \begin{cases} f_{rep}(x), & x \in P_0 \\ 0, & 0.\omega, \end{cases}$$

- 3. Xmod 1 ~ Unif (po) iff frep (x) = constant
- 4. U is generalized dither iff furep(x) = constant

Generalized Dither: Excemples

1. Uniform over any fundmental cell

Unif(Qo) mod po A ~ Unif (Po) where Qo, Po = fundmental cells of A.



2. Uniform over a <u>nested</u> coarse latia cell

Qo = fundamental cell of $A_C \subset A$ x...x.

_		•	•	•	•	•
		•	•	•	•	•
mod	[]	×		•	•	X

3. Spreading $\left\{ fu(\cdot) \right\}_{rep} = constant \implies \left\{ fu(\cdot) * f(\cdot) \right\}_{rep} = constant$

Generalized Dither => Zeroes on Dual Lattice

Def.
$$\Lambda^* = dual \ lattice \ of \ \Lambda(G)$$

$$= \Lambda(G^{-t})$$

$$\Lambda^* = \Lambda(G^$$

Claim: U is G.D. iff its characteristic function is zero on the dual lattice:

$$F\{f_u(\cdot)\}=0 \quad \text{on} \quad \Lambda^*\setminus 0$$

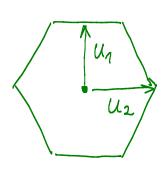
Good Pattice => white dither

 $\mathbb{R}_{Q} \triangleq \text{dither auto-correlation} = \mathbb{E} \{ \mathcal{U} \cdot \mathcal{U}^{t} \}$ $= \max_{i \in \mathcal{U}} \mathbb{E} \{ \mathcal{U} \cdot \mathcal{U}^{t} \}$

Mu \(\frac{1}{n} \) trace \(\lambde{E}_{\alpha} \rightarrow \) \(\lambde{N} \) equality if Voronoi cells

Thm: If A is an optimal lattice quantizer in 12" (minimizes NS.M. GCA), then It is white:

 $RQ = O(1) \cdot I_n$

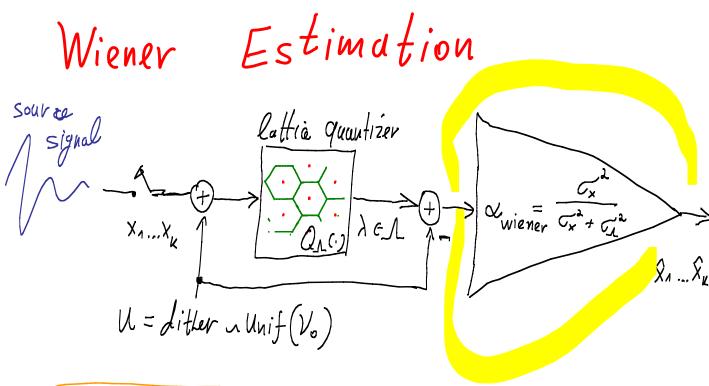


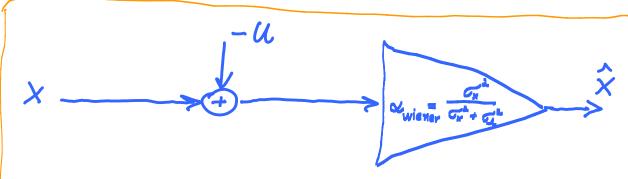
Un and U_2 are dependent but $Var(U_1) = Var(U_2)$ $= \{U_1 : U_2\} = 0$

Proof:

$$\Rightarrow$$
 $G(\Lambda) \ge G(\Lambda') \ge G(\Lambda'') \ge ...$

w. equality if Λ is white γ





Equivalent Additine-Norse Wiener-Estimated Channel

$$\Rightarrow$$
 distortion: $C_{\lambda}^{2} \rightarrow \frac{C_{x}^{2} C_{x}^{2}}{C_{x}^{2} + C_{x}^{2}}$

We'll talk about...

- 1. lattices: representation & partition
- 2. Construction from linear codes
- 3. figures of merit
- 4. asymptotic goodness
- 5. multi-level constructions
- 6. dithering (lattice randomization)
- 7. Side-information problems
- ?. distributed lattice coding

7. Sile-information problems

Modulo (1)

Why L	Hices in	Commun	ication ?
1) a brid = non-asy			
2) Algebi = structi			
	V		

bridge from Analog - to - Digital

= Robust joint source - channel coding

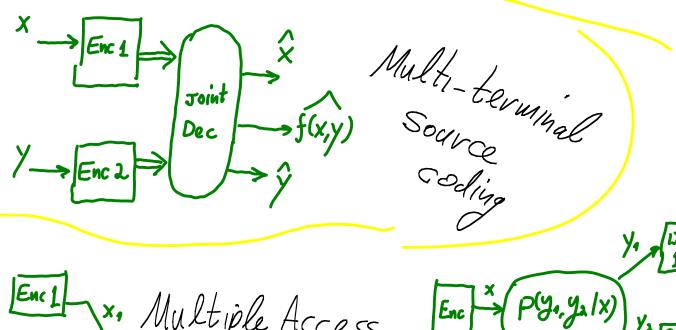
Better than Random-Coding of in distributed side-information problems

Lattices in Multi-Terminal Problems

X > Enc > Doc > Source coding with

Side Information

Channel Coding
with
Side Information > Enc x p(y/x,s) > Dec >



Encl x, Multiple Access Enc P(y, y, 1x) y, Dec & Broadcast Channels

The Slepian-Wolf Problem Temprature X
Tomorrow

R

Message

R

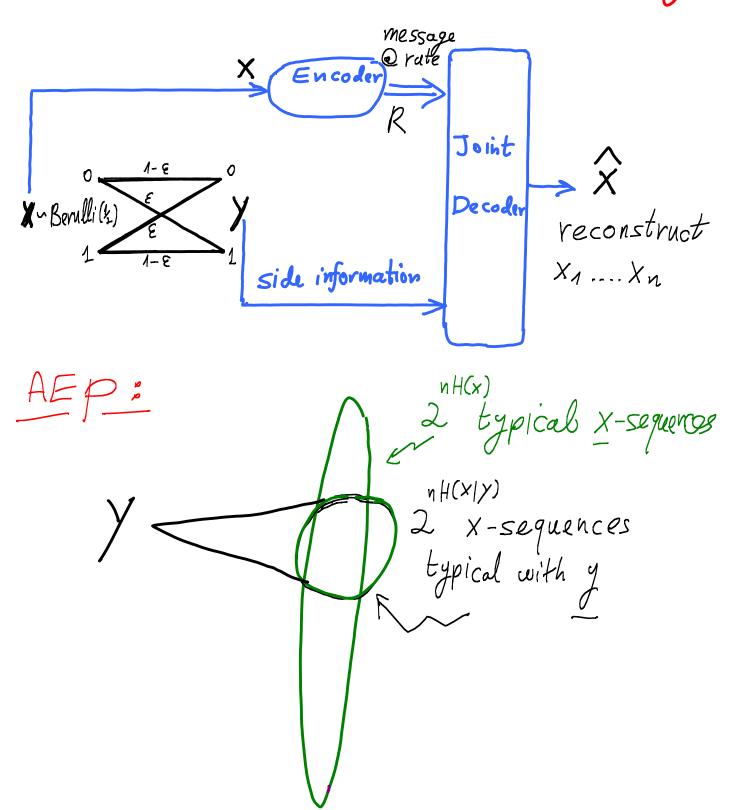
Tomorrow Temprature Side information
Today 170 Ttomorrow = Ttoday + 1°c

Can we send Ttomorrow Using only one bit?

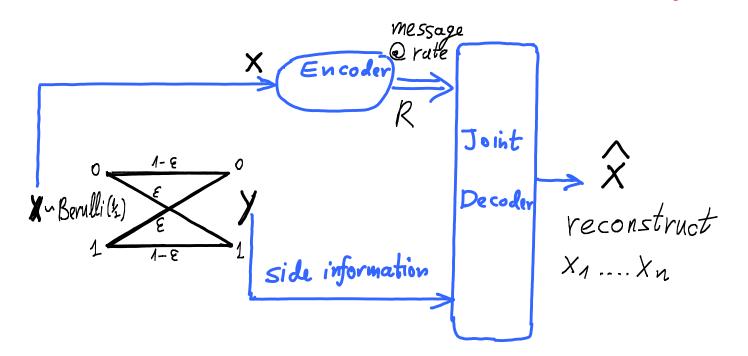
The Slepian-Wolf Problem

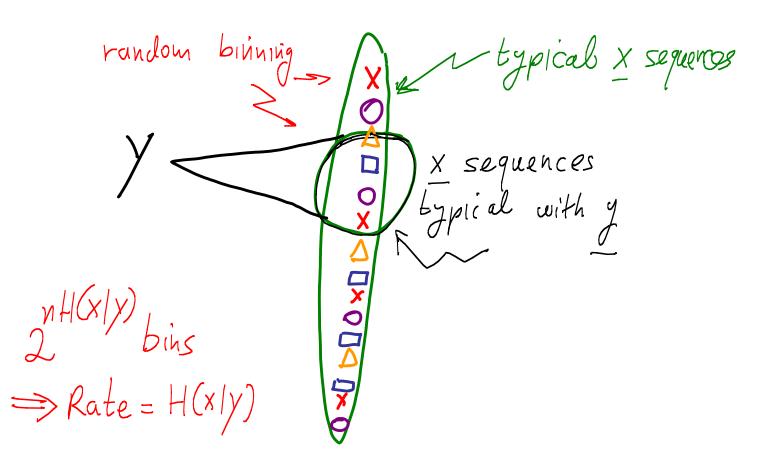
$$R = H(X|Y) = H(Z) = H_B(E) = 0.1 \text{ Bit}$$
as if Y were available @ both encoder + decoder ?

The SW Problem: Random Binning



The SW Problem: Random Binning





From random" Back to "Structure"...

Syndrome Soding 1. Good Linear Linary codes:

general properties:

$$X = X + Z$$
 $Z \sim \text{Remaulli(z)}$

$$\hat{Z}_{M.L.} = error(y, \mathbb{C}) = f(H.y) \triangleq y \mod C$$

$$Pe = Pr\{ \hat{Z}_{ML} \neq Z \} \longrightarrow 0$$
 for "good" codes

Syndrome Coding

2. -11 - -11 - for binary Slepian - Wolf of $X_1 ... X_n = \begin{cases} S_1 ... S_{n-k} \\ S = H \cdot X \end{cases}$ $S = H \cdot X$ $S = H \cdot X = H_g(\varepsilon)$ $S = H \cdot X = H_g(\varepsilon)$

$$C_s = coset \stackrel{\triangle}{=} f(\underline{s}) \oplus C$$

Syndrome Coding

$$X_1 \dots X_n > \underbrace{\begin{cases} encoder \\ \leq = H \cdot X \end{cases}}$$

Rate =
$$\frac{n-\kappa}{n} = H_R(\varepsilon)$$

$$Rate = \frac{n_{-K}}{n} = H_{g}(\varepsilon)$$

$$\stackrel{?}{Z} = error(y, C_{s})$$

$$\stackrel{?}{X} = y \Leftrightarrow \stackrel{?}{Z}$$

$$\stackrel{?}{X} = y \Leftrightarrow \stackrel{?}{Z}$$

$$\stackrel{\wedge}{\geq} = error(y, C_s)$$

$$\frac{\hat{x}}{\hat{x}} = \frac{y}{\hat{y}} + \frac{\hat{x}}{\hat{z}}$$

$$C_s = coset = f(\underline{s}) \oplus C$$

Equivalent scheme

$$\iff$$

$$\times$$
 mod

$$\mathbb{C}'$$

$$= (\underline{X} \oplus \underline{y})$$

From random" Back to Structure"...

- (i) Hamming space
- (ii) Euclidean space =

The Wyner-Ziv Problem (lossy Source Coding with S.I. @ Decooler)

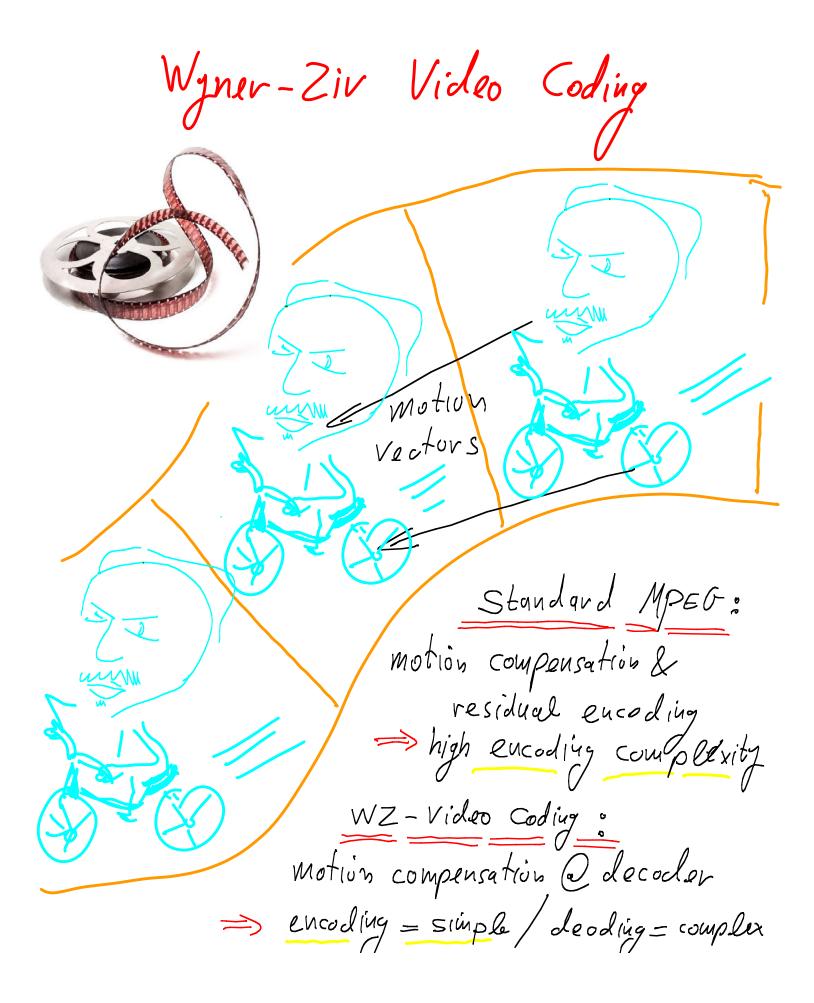
$$\begin{array}{c|c}
X & \Rightarrow Enc \\
\parallel & \\
Y+Z \\
Z \sim N(0, CZ^2)
\end{array}$$

* The information - theoretic limit:

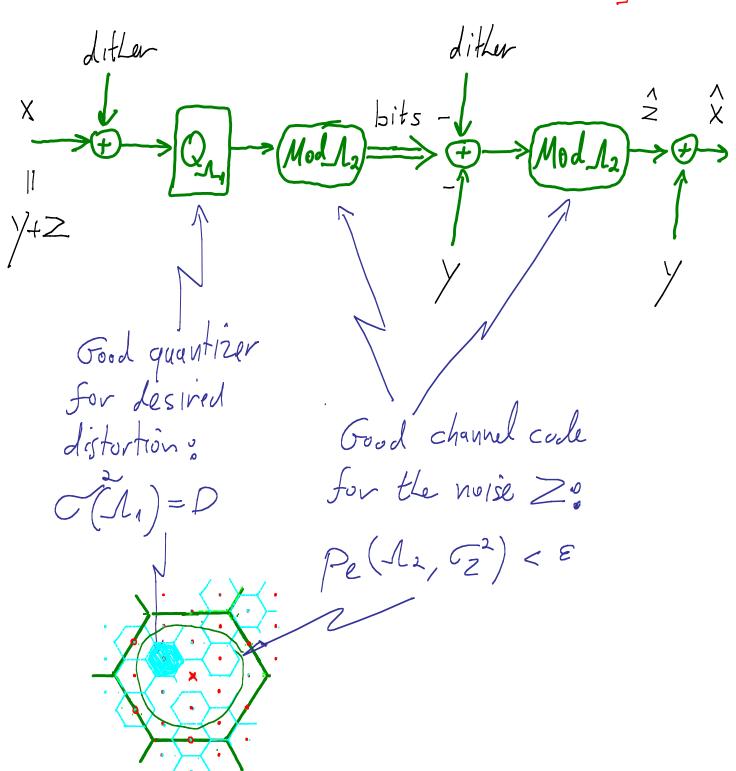
$$R_{xy}^{WZ}(D) = R_{Z}(D) = \frac{1}{2} \log \left(\frac{C_{Z}^{2}}{D}\right) \frac{bit}{Source}$$

Wyner-Ziv 1976

Wyner-Ziv 1976 Wyner 1978



Lattice Wyner-Ziv Coding [28 Shamai Verdu]



Lattice Wyner-Ziv Coding

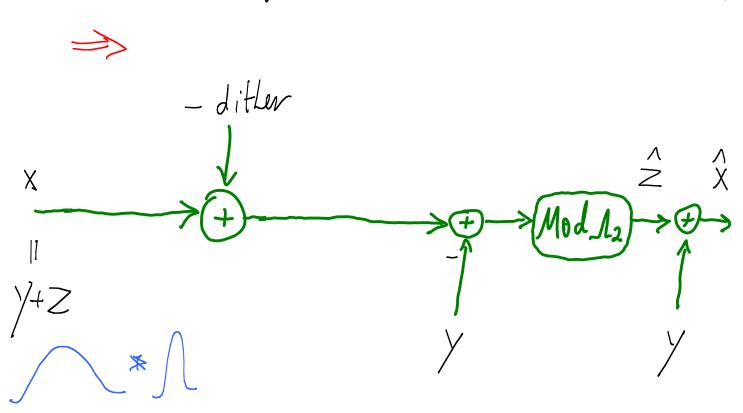
 $(A \mod \Lambda + B) \mod \Lambda = (A+R) \mod \Lambda$

 \Rightarrow

 $\begin{array}{c} \text{differ} \\ \text{X} \\ \text{P} \\ \text{Q} \\ \text{P} \\ \text{P}$

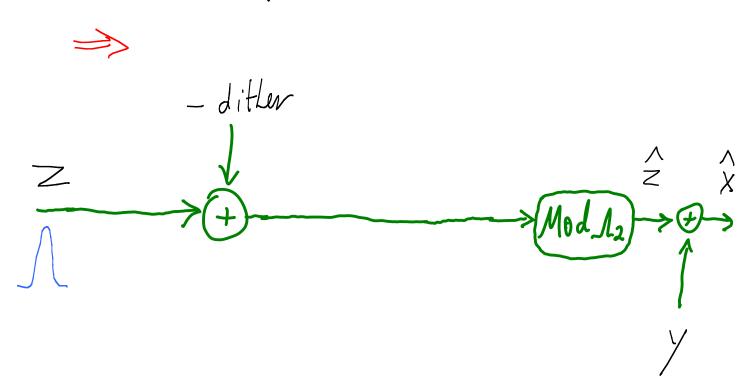
Lattice Wyner-Ziv Coding

dithered quantization = additive noise



Lattice Wyner-Ziv Coding

dithered quantization = additive noise



Lattice Wyner-Ziv Coding $\Lambda_2 = good$ channel code for $Z \sim N(o_1 c_2^2)$. $D \ll c_2^2$. > with prob. >1-E, - difler $\hat{X} = X - dither$, $\omega.p. > 1-E$ \Rightarrow distortion = $\mathcal{C}(\Lambda_1) = D$

Wyner-Ziv Coding Lattice

Nesting Ratios

$$C(\Lambda_1) = D$$

$$P_e(\Lambda_2, C_2^2) < \varepsilon$$

Rate =
$$\frac{1}{n} \log \left(\frac{V_2}{V_1} \right)$$
 bit sample

$$=\frac{1}{2}\log\left(\frac{\sigma_z^2}{D}\right)+\frac{1}{2}\log\left(G(\Lambda_1)\cdot\mathcal{M}(\Lambda_2,\varepsilon)\right)$$

Rz(D) NSM (ILA)

VNR (La)

Redundancy -> 0

for good lattices

"Writing on Dirty Paper"

(AWGN channel coding with Interference known @ trunsmiter) bits Enc Dec > Exisp

* The information-theoretic limit:

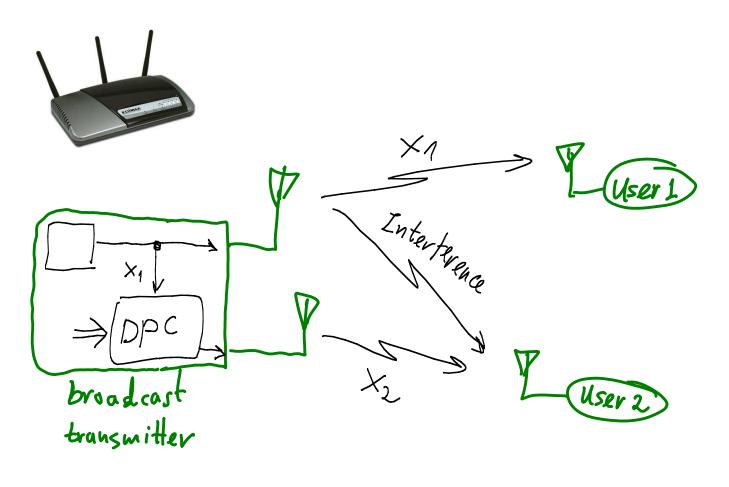
CSIQTE = 1 By (1+ P) = CAWGN

Falfand-Pińsker 1980

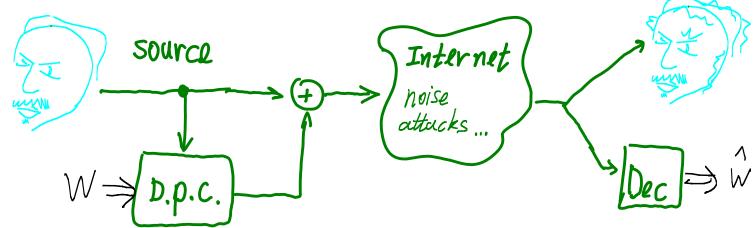
Costa 1983

Surprising: interference cancellation with no

Mimo-Broadcast using



Information Embedding (Watermarking)



Lattice Dirty Paper Coding

Lattice Dirty Paper Coding

Modulo property =>

Tx

Tx

Tx

Tx

Ty

Modulo

Nodulo

No

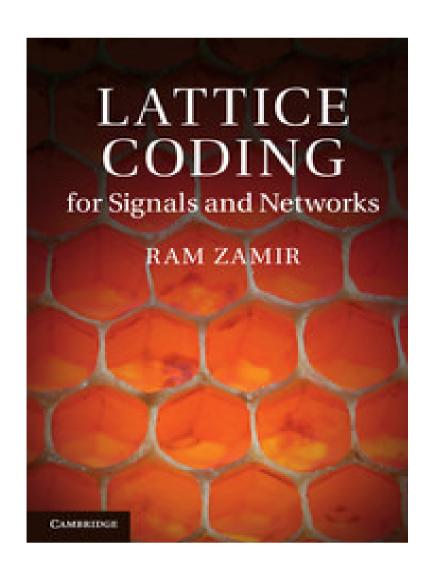
We'll talk about...

- 1. lattices: representation & partition
- 2. Construction from linear codes
- 3. figures et merit
- 4. asymptotic goodness
- 5. multi-level constructions
- 6. dithering (lattice randomization)
- 7. Side-information problems
- 8. distributed lattice coding

8. Distributed lattice coding

Modulo (1)

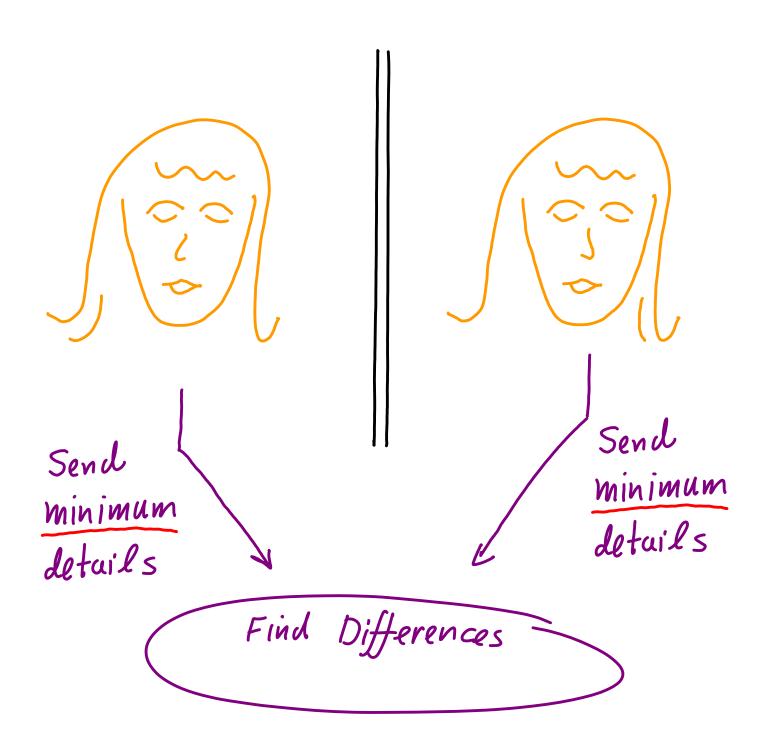
Lattices in Network Information Theory



Can structure beat random 2

Find the Differences

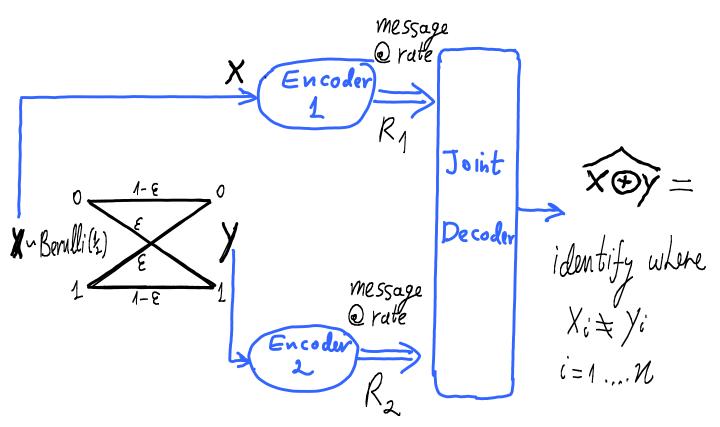
Communicate the Differences



Korner-Marton Problem Message Q rate Encoder R_1 X~Berulli(1/2) Message Qrate $\chi^{c} \neq \chi_{c}$ $i=1...\mathcal{N}$ Z=X(E)

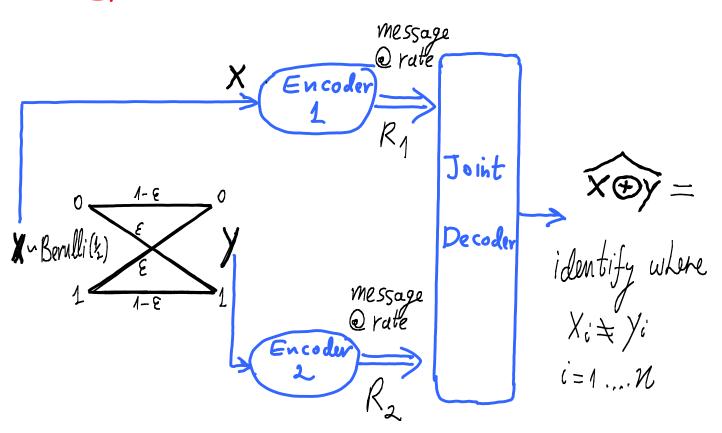
 \mathcal{R}_3

The Korner-Marton Problem



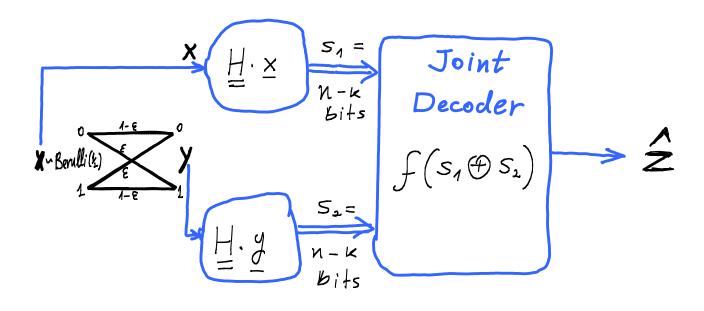
$$H(x) + H(y) = 1 + 1 = 2$$
 Bit

The Korner-Marton Problem



Compress & estimate: $Rate = \begin{cases}
 H(x) + H(y) = 1 + 1 = 2 \text{ Bit} \\
 \text{compress well } & \text{estimate} \implies \text{Slepian-Wolf:} \\
 H(x, y) = H(x) + H(z) = 1 + H_B(\epsilon) = 1.1 \text{ Bit}
\end{cases}$ $estimate & \text{compress:} \\
 H(z) = H_B(\epsilon) = 0.1 \text{ Bit}
\end{cases}$

A syndrome - Coding Solution [KM 1979]:



$$S_1 \iff X \mod C$$

$$S_2 \iff Y \mod C$$

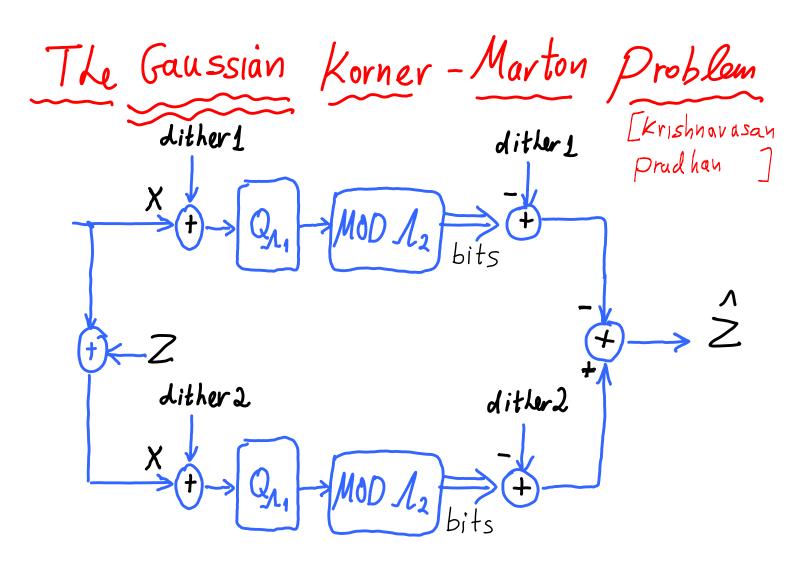
$$= (X \oplus Y) \mod C$$

$$= Z \mod C = Z \text{ w.h.p.}$$
Total

Total
$$Rate = 2 \times \frac{N - K}{N} = 2 \times H_{R}(E) = 0.2 \text{ bits}$$

A comment by KM: best known random coding solution ("single letter" solution) = Slepian Wolf \Rightarrow Rate=1.1 bit

Gaussian Korner-Marton Problem Decoder reonstruct the difference Z (w distortion D) Vandom Coding $R_{x,y}(D_1,D_2)$ where $D_1+D_2=D^{-1}$ over optimistic $2R_{z}(D)$, $< 2\cdot R_{z}(D\Delta)$ outer/in A smart lattice coding



* modulo distributive law >

$$\Rightarrow R_1 = R_2 = R_2(D/2) + \frac{1}{2} \log(NSM_1 * VNR_2)$$

$$\text{gap of } 1/2 \text{ bit} \qquad \text{redundancy} \rightarrow \infty$$

$$\text{from outer bound} \qquad \text{@ dim} \rightarrow \infty$$

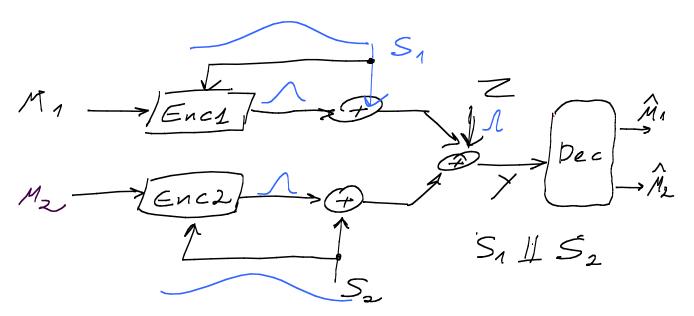
Distributed Lattice Coding Problems

- 1. Korner-Marton (distributed computation)
- 2. Dirty Multiple-Access channel (distributed state)
 @ Encoders
- 3. Lattice network coding (distributed relaying)
- 4. Lattice interference alignment
- => Structure > random ?

Distributed Lattice Coding Problems

- 1. Korner-Marton (distributel computation)
- 2. Dirty Multiple-Access channel (distributed state)

 @ Encoders

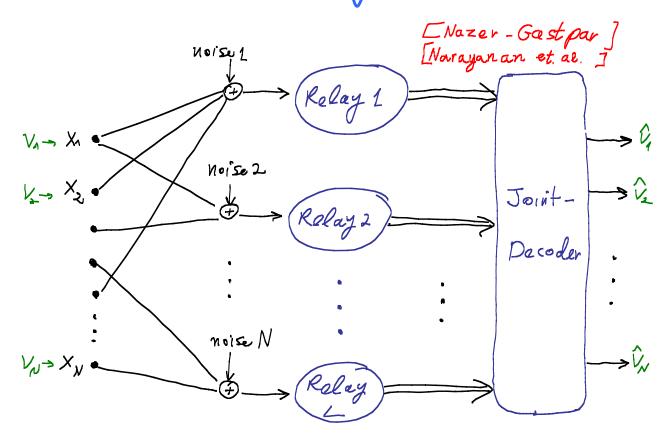


Knowledge of the interference (51, 52) is split between two independent encoders

- 3. Lattice network coding (distributed relaying)
- 4. Lattice interference alignment

Distributed Lattice Coding Problems 1. Korner-Marton (distributed compatation)

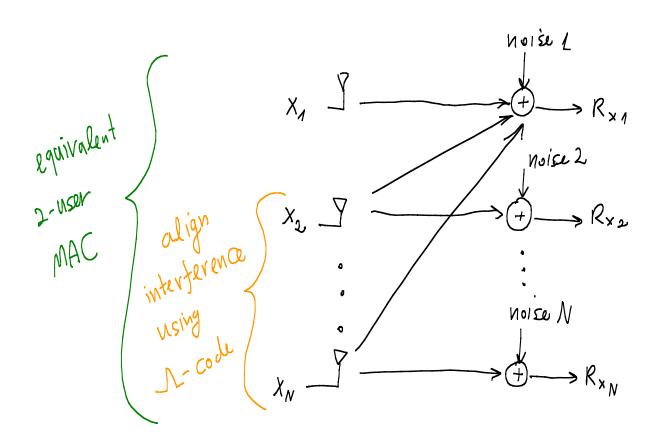
- 2. Dirty Multiple-Access channel (distributed state)
- 3. Lattice network coding (distributed relaying)



4. Lattice interference alignment

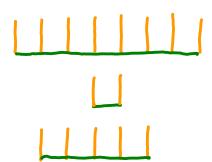
Distributed Lattice Coding Problems 1. Korner-Marton (distributed computation)

- 2. Dirty Multiple-Access channel (distributed state)
- 3. Lattice network coding (distributed relaying)
- 4. Lattice interference alignment



Lattice Alignment

	Align	must be linear	can be random	
KM	reference signals =>	coarse lattice	fine (quantize) code	
DMAC	i concentration points	=> coarse lattice	fine (channel) code	
CO&F	desired codewords =	> fine lattice	coarse (shaping) code	
IC	interefer codewords =	> fine lattice	coarse (shaping) code	



Lattice Alignment

	Align	must be linear	can be random
KM	reference signals =>	coarse lattice	fine (quantize) code
DMAC	i concentration points	=> coarse lattice	fine (channel) code
CO&F	desired codewords =	=> fine lattice	coarse (shaping) code
IC	interefer codewords =	> fine lattice	coarse (shaping) code

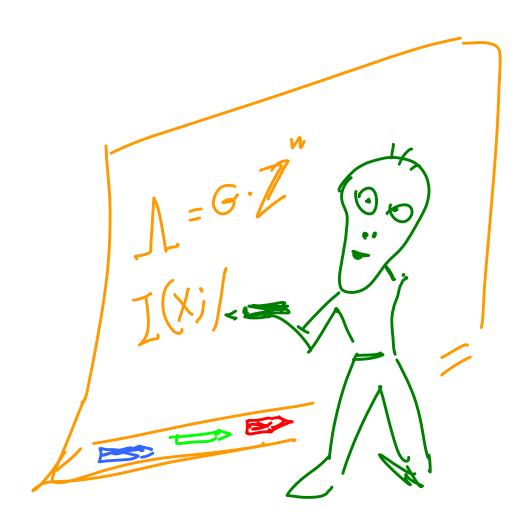
Open Q:

More cases?...

Thank Jou

Appendix

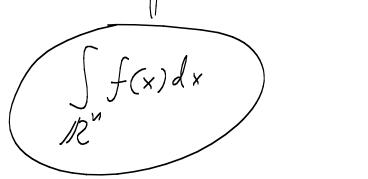
On-Board Calculation...

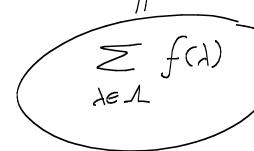


Minkowski - Hlawka - Siegel

1. For any Riemann integrable function f(.)

integral = \frac{1}{7} \cdot \int_{MHS} \{ \lambda \text{lattice-samples} \} \}

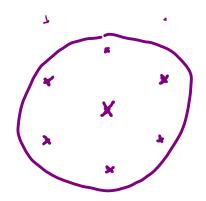




2. There exists (at least one) lattice which is (at least) as "good" as (1.)

Implication 1: packing Goodness

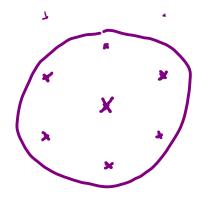
$$S = Ball(o,r)$$



Implication 1 : packing Goodness

$$S = Ball(o,r)$$

$$E_{MHS} \left\{ N_{L}(Ball) \right\} = \gamma \cdot V_{N} \cdot r^{N}$$



$$\sim$$
 $r < r_{eff}$ (*)

Alternative Ensemble: Random Construction A (Loelgier97, Erez et al)

Let
$$G = q$$
-ary (n,k) liner code over $Q = \{0, \dots q-1\}$

$$= \{G : L : L \in Q^k\}$$

$$n \times k$$

Let
$$\Lambda_G = modulo - q$$
 lattice

$$= \{\lambda \in \mathbb{R}^n : \lambda \mod q \in C\}$$

$$G \text{ random (iid uniform on Q)}$$

$$\Lambda_G = random \text{ lattice}$$

$$G(\Lambda_{G})$$
, $\mu(\Lambda_{G}, Pe) = func {9, k, n}$