	Correctness	Performance	Bibliography

Parameter Selection in Ring-LWE-based Fully Homomorphic Encryption

Rachel Player Information Security Group, Royal Holloway, University of London based on joint works with Martin R. Albrecht, Hao Chen, Kim Laine, Sam Scott, and Yuhou Xia

London-ish Lattice Coding & Crypto Meeting - September 29, 2017

Parameter selection in Ring-LWE-based FHE - Rachel Player

Motivation	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
Table of Co	ntents			

- Motivation
 FHE background
 LWE background
- 2 Security
- 3 Correctness
- 4 Performance
- 5 Bibliography

Motivation ●○○○○○○○	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
Setting the s	scene			

- Candidate for post-quantum crypto
- Parameter selection is a drawback

Motivation ●○○○○○○○	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
Setting the s	scene			

- Candidate for post-quantum crypto
- Parameter selection is a drawback

Fully Homomorphic Encryption:

Motivation ●○○○○○○○	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
Setting the	scene			

- Candidate for post-quantum crypto
- Parameter selection is a drawback

Fully Homomorphic Encryption:

the coolest application of lattice-based crypto

Motivation ●○○○○○○○	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
Setting the	scene			

- Candidate for post-quantum crypto
- Parameter selection is a drawback

Fully Homomorphic Encryption:

- the coolest application of lattice-based crypto
- an interesting setting for parameter selection

Motivation	Correctness	Performance	Bibliography
0000000			
FHE background			

What is homomorphic encryption?

F(x

Encryption of F(x)

Motivation		Correctness	Performance	Bibliography
0000000	0000000	000000000	00000000	
EHE background				

Achieving homomorphic encryption

Motivation		Correctness	Performance	Bibliography
0000000	00000000	000000000	000000000	
FHE background				

Applications of homomorphic encryption

- Healthcare
- Genomics
- Private set intersection
- Signal processing
- Machine learning
- **.**..

Motivation ○000●○○○○	Security 0000000	Correctness 000000000	Performance 000000000	Bibliography 00
FHE background				

First schemes very impractical

Motivation ○000●○○○○	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
FHE background				

- First schemes very impractical
- Many implementations now exist:
 - HElib
 - SEAL
 - FV-NFLlib, Palisade, HEAAN, cuHE, TFHE, ...

Motivation ○000●○○○○	Security 0000000	Correctness 000000000	Performance 000000000	Bibliography 00
FHE background				

- First schemes very impractical
- Many implementations now exist:
 - HElib
 - SEAL
 - FV-NFLlib, Palisade, HEAAN, cuHE, TFHE, ...
- Standardisation effort: https://homomorphicencryption.org

Motivation ○000●○○○○	Security 0000000	Correctness 000000000	Performance 000000000	Bibliography 00
FHE background				

- First schemes very impractical
- Many implementations now exist:
 - HElib
 - SEAL
 - FV-NFLlib, Palisade, HEAAN, cuHE, TFHE, ...
- Standardisation effort: https://homomorphicencryption.org
- Results for specific applications

nononon

Correctness

Performance

Bibliography 00

LWE background

Learning with Errors (LWE) [R05]

- Search: given A and b, recover s
- Decision: distinguish whether (A, b) is chosen as LWE or uniformly at random

Motivation ○○○○○●○○	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
LWE background				
Ring LWE de	efinition			

The ring $\overline{R_q}$

Let n be a power of 2 and define

$$R_q = \mathbb{Z}_q[x]/(x^n + 1)$$

Motivation ○○○○○●○○	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
LWE background				
Ring LWE de	efinition			

The ring R_q

Let n be a power of 2 and define

$$R_q = \mathbb{Z}_q[x]/(x^n + 1)$$

Ring LWE (Decision)

Let $s \in R_q$ be a secret. Let $a \leftarrow R_q$ be chosen uniformly at random. Let χ be a distribution over R_q . Let $e \leftarrow \chi$. Distinguish $(a, b = as + e) \in R_q \times R_q$ from uniformly random $(a, b) \in R_q \times R_q$.

Motivation	Correctness	Performance	Bibliography
000000000			
IWE background			

Why is *n* a power of two?

Theorem [LPR12]

There is a polynomial time quantum reduction from approximate SIVP (Shortest Independent Vector Problem) on ideal lattices in K to Decision Ring-LWE in R given a fixed number of samples, where the error distribution is a fixed spherical Gaussian over the field tensor product $K_{\mathbb{R}} = K \otimes_{\mathbb{Q}} \mathbb{R}$.

If $n = 2^k$:

- easy to implement
- performance benefit

Motivation ○○○○○○○●	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography 00
LWE background				
		า		

What are the parameters?

- A (Ring) LWE instance is specified by:
 - n dimension
 - q modulus
 - α error distribution

where the standard deviation σ of χ satisfies

$$\sigma = \frac{\alpha q}{\sqrt{2\pi}}$$

Security	Correctness	Performance	Bibliography
0000000	000000000	00000000	00

Table of Contents

2 Security

3 Correctness

4 Performance

5 Bibliography

 Motivation
 Security
 Correctness
 Performance
 Bibliography

 00000000
 000000000
 000000000
 00

Is my Ring-LWE-based scheme secure?

 Parameters n, q, α in the scheme imply an underlying Ring LWE instance

Treat Ring LWE instance as an LWE instance

Observe that LWE instance is hard to solve

Security 0000000 Correctness

Performance

Bibliography 00

LWE based FHE parameters are atypical

Typical LWE parameters (Regev)

- q polynomial in n
- $\alpha q = \sqrt{n}$

Security 0000000 Correctness

Performance

Bibliography 00

LWE based FHE parameters are atypical

Typical LWE parameters (Regev)

• q polynomial in n • $\alpha q = \sqrt{n}$

FHE parameters

- huge *q*
- tiny error distribution e.g. $\alpha q = 8$
- small secret $\|s\| = 1$
- possibly sparse secret

Security 0000000 Correctness

Performance

Bibliography 00

So how hard is (small secret) LWE, anyway?

Theory

LWE with binary secret in dimension $n \log q$ is as hard as general LWE in dimension n. [BLP+13,MP13]

Many approaches for solving LWE

Even more in the case of small and/or sparse secret

 Motivation
 Security
 Correctness
 Performance

 000000000
 000000000
 000000000
 000000000

Bibliography 00

[APS15] estimator for hardness of LWE instances

https://bitbucket.org/malb/lwe-estimator

input LWE instance n, q, α

output estimates of runtime, memory, samples

Can optionally specify:

- Limited samples [BBGS17]
- Secret distribution
- Lattice reduction cost method

Running example: SEAL [DGBL+15,LP16,CLP16,CLP17]

- Homomorphic encryption library
- Developed by Microsoft Research
- Current version v2.2, June 2017
- Implements FV scheme [FV12]

sealcrypto.org

MotivationSecurityCorrectnessPerformanceBibliography0000000000000000000000000000000

FV is IND-CPA secure if Ring LWE is hard

SecretKeyGen: Output $s \stackrel{\$}{\leftarrow} R_2$

PublicKeyGen: Sample $a \stackrel{\$}{\leftarrow} R_q$, and $e \leftarrow \chi$. Output

$$(p_0, p_1) = ([-(as + e)]_q, a)$$

Encrypt $((p_0, p_1), m)$: Sample $u \stackrel{\$}{\leftarrow} R_2$, and $e_1, e_2 \leftarrow \chi$. Output $(c_0, c_1) = ([\Delta m + p_0 u + e_1]_q, [p_1 u + e_2]_q)$

	Security	Correctness	Performance	Bibliography
00000000	00000000	000000000	00000000	00

Choosing SEAL parameters for security

Already fixed are

- n a power of two
- σ = 3.2
- \blacksquare some threshold λ

	Security	Correctness	Performance	Bibliography
00000000	00000000	000000000	00000000	00

Choosing SEAL parameters for security

Already fixed are

- n a power of two
- **σ** = 3.2
- some threshold λ

Find an acceptable bit length of q

- Choose initial bit length K
- Use [APS15] estimator to determine best attack for *n*, $q = 2^{K}$, $\alpha = 8/q$
- If best attack costs less than λ , decrement K and repeat
- If best attack costs more than λ , stop

Security 0000000 Correctness

Performance

Bibliography 00

Estimate of SEAL v2.2 security [CLP17]

n	q	α	usvp	dec	dual
2048	$2^{60} - 2^{14} + 1$	8/q	115.5	127.1	118.4
4096	$2^{116} - 2^{18} + 1$	8/q	119.7	125.3	121.2
8192	$2^{226} - 2^{26} + 1$	8/q	123.6	126.3	124.0
16384	$2^{435} - 2^{33} + 1$	8/q	129.5	130.7	130.2
32768	$2^{889} - 2^{54} - 2^{53} - 2^{52} + 1$	8/q	127.3	127.6	127.4

Table: Estimates of the cost of solving LWE instances underlying SEAL v2.2 default parameters. Obtained using commit cc5f6e8 of the estimator in [APS15].

Security 0000000	Correctness	Performance 000000000	Bibliography 00

Table of Contents

2 Security

4 Performance

5 Bibliography

Motivation	Security	Correctness	Performance	Bibliography
00000000	00000000	●000000000	000000000	00
Noise and c	orrectness			

- FHE ciphertexts all have noise
- Noise grows with homomorphic operations
- If noise too large, decryption will fail

Motivation 00000000	Security 0000000	Correctness ●000000000	Performance 000000000	Bibliography 00	
Noise and correctness					

- FHE ciphertexts all have noise
- Noise grows with homomorphic operations
- If noise too large, decryption will fail

The better our understanding of noise the easier it is to choose parameters, and we may be able to choose smaller parameters

	Security 0000000	Correctness ○●○○○○○○○○	Performance 00000000	Bibliography 00
The FV sche	eme [FV12]			

SecretKeyGen: Output $s \xleftarrow{\$} R_2$

PublicKeyGen(s): Sample $a \stackrel{\$}{\leftarrow} R_q$, and $e \leftarrow \chi$. Output

$$(p_0, p_1) = ([-(as + e)]_q, a)$$

Encrypt($(p_0, p_1), m$): Sample $u \stackrel{\$}{\leftarrow} R_2$, and $e_1, e_2 \leftarrow \chi$. Output

$$(c_0, c_1) = ([\Delta m + p_0 u + e_1]_q, [p_1 u + e_2]_q)$$

 $Decrypt(s, (c_0, c_1))$: Output

$$\left[\left\lfloor\frac{t}{q}[c_0+c_1s]_q\right]\right]_t$$

 Motivation
 Security
 Correctness
 Performance
 Bibliography

 00000000
 00000000
 00000000
 00000000
 00

Existing notions of noise in FV

Inherent Noise [FV12,CLP16]

• The inherent noise is v_{inh} such that $[c_0 + c_1 s]_q = \Delta m + v_{inh}$.

• We require
$$\|v_{inh}\|_{\infty} < \frac{q}{2t} - \frac{t}{2}$$

Critical quantity [CS16]

• The critical quantity is
$$v_{inh} - \frac{r_t(q)}{t}m$$

We require
$$\|v_{inh} - rac{r_t(q)}{t}m\|_\infty < rac{\Delta}{2}$$

 Motivation
 Security
 Correctness
 Performance
 Bibliography

 00000000
 00000000
 00000000
 00000000
 00

We want noise to be the thing which causes decryption to fail if it is too large

Recall FV Decryption:
$$m \mod t = \left[\left\lfloor \frac{t}{q} [c_0 + c_1 s]_q \right] \right]_t$$

Invariant noise [CLP17]

$$\frac{t}{q}\left(c_{0}+c_{1}s\right)=m+v+at$$

The norm $||v||_{\infty}$ is the invariant noise.

Motivation 00000000	Security 0000000	Correctness 0000●00000	Performance 00000000	Bibliography 00
Invariant n	oise			

By definition

$$\left\lfloor \frac{t}{q} [c_0 + c_1 s]_q \right\rceil = m + \lfloor v \rceil + a't$$

So FV decryption succeeds

$$\left[\left\lfloor \frac{t}{q} [c_0 + c_1 s]_q \right\rceil \right]_t = m \mod t \qquad \text{if } \|v\||_{\infty} < \frac{1}{2}$$

Motivation 00000000	Security 0000000	Correctness 0000●00000	Performance 000000000	Bibliography 00
Invariant no	oise			

By definition

$$\left\lfloor \frac{t}{q} [c_0 + c_1 s]_q \right\rceil = m + \lfloor v \rceil + a't$$

So FV decryption succeeds

$$\left[\left\lfloor \frac{t}{q} [c_0 + c_1 s]_q \right] \right]_t = m \mod t \qquad \text{if } \|v\||_{\infty} < \frac{1}{2}$$

Noise budget

Initial noise in a fresh ciphertext is very small, and even in later ciphertexts we have $2\|v\||_{\infty} < 1$ if decryption succeeds. Easier to work with the noise budget defined as $-\log_2(2\|v\|)|_{\infty}$.

Homomorphic operations in SEAL

Addition (ct_0, ct_1) : Output

$$(\mathtt{ct}_0[0] + \mathtt{ct}_1[0], \mathtt{ct}_0[1] + \mathtt{ct}_1[1])$$

Multiplication (ct_0, ct_1) : Compute

$$c_0 = \left[\left\lfloor rac{t}{q} \mathtt{ct}_0[0]\mathtt{ct}_1[0]
ight
ceil_q
ight]_q$$
 $c_1 = \left[\left\lfloor rac{t}{q} (\mathtt{ct}_0[0]\mathtt{ct}_1[1] + \mathtt{ct}_0[1]\mathtt{ct}_1[0])
ight
ceil_q
ight]_q$
 $c_2 = \left[\left\lfloor rac{t}{q} \mathtt{ct}_0[1]\mathtt{ct}_1[1]
ight
ceil_q
ight]_q.$

Output (c_0, c_1, c_2) .

Security	Correctness	Performance	Bibliography
0000000	0000000000	00000000	00

Example SEAL operations

ivation Security

Correctness

Why is invariant noise better than inherent noise?

	Inherent noise bound	Invariant noise bound
Initial	$B(1+2\delta)$	$\frac{t}{q}\ m\ + \frac{t}{q}B(1+2\delta)$
Addition	$\ v_{1_{inh}}\ +\ v_{2_{inh}}\ +t$	$\ v_1\ + \ v_2\ $
Multiplication	$\begin{array}{l} + \frac{\delta^{J+1}-1}{2(\delta-1)} \\ + \left(\delta t + \frac{\delta t(\delta^{j+1}-1)}{2(\delta-1)} + \frac{\delta t^2}{2q}\right) \ v_{1inh}\ \\ + \left(\delta t + \frac{\delta t(\delta^{j+1}-1)}{2(\delta-1)} + \frac{\delta t^2}{2q}\right) \ v_{2inh}\ \\ + \left(\frac{3\delta t}{2}\right) \ v_{1inh}\ \cdot \ v_{2inh}\ \\ + \frac{2\delta t^2 + t}{2} - \frac{3\delta t^3}{4q} + \frac{t^2\delta (\delta^{j+1}+\delta^{j+1}-2)}{4(\delta-1)} \end{array}$	$ \begin{array}{l} \frac{t(\delta^{J+1}-1)}{2q(\delta-1)} \\ + \left(\delta t + \frac{\delta t(\delta^{j_2+1}-1)}{2(\delta-1)}\right) \ v_1\ \\ + \left(\delta t + \frac{\delta t(\delta^{j_1+1}-1)}{2(\delta-1)}\right) \ v_2\ \\ + 3\delta \cdot \ v_1\ \cdot \ v_2\ \end{array} $
Relinearization	$\ v_{inh}\ + (M-N)(\ell+1)\delta Bw$	$\ v\ + \frac{t}{q}(M-N)(\ell+1)\delta Bw$
Multiply plain	$\frac{\delta t}{2} \ v_{inh}\ + \frac{t}{2} + \frac{\delta t^2}{4}$	$\frac{\delta t}{2} \ v\ $
Add plain	$\ v_{inh}\ + t$	$\ v\ + \frac{t^2}{2q}$
Negation	$\ v_{inh}\ + t$	$\ v\ $
Subtraction	$\ v_{1_{inh}}\ + \ v_{2_{inh}}\ + t$	$ v_1 + v_2 $

Motivation 000000000	Securi 0000	ty 0000	Correctness 00000000●0	Performance 000000000	Bibliography 00
Encodin	g				
•	Encoding	Encryption	Homomorphic addition	Decryption	Decoding
	\rightarrow	\rightarrow		\rightarrow	\longrightarrow

Homomorphic addition of two integers

Ciphertexts

C₀, C₁

Integers

a, b

Plaintexts

P₀, P₁

Ciphertext

Cadd

Plaintext

Padd

Integer

a + b

In SEAL, plaintext space is $R_t = \mathbb{Z}_t[x]/(x^n + 1)$

Security	Correctness	Performance	Bibliography
0000000	00000000●	00000000	00

SEAL automatic parameter selection

Input descriptions of:

- computation
- plaintext

Motivation 00000000	Security 0000000	Correctness 00000000●	Performance 00000000	Bibliography 00
SEAL autom	atic param	eter selection		
Input descri	ptions of:			
comput	ation			
plainte	< t			
T I . I .				

I he tool simulates noise growth and plaintext coefficient growth to find optimal parameters:

Motivation 00000000	Security 0000000	Correctness 00000000●	Performance 00000000	Bibliography 00
SEAL autom	hatic parame	ter selection		
	•			
Input descri	iptions of:			
compu	tation			
plainte	xt			
The tool sir	nulates noise gro	owth and plaintext	coefficient growt	h to

find optimal parameters:

Sets error distribution as default

	Security 0000000	Correctness 00000000●	Performance 00000000	Bibliography 00
SEAL autom	atic parame	ter selection		
Input descri	ptions of:			
comput	tation			
plainte	×t			
The tool sin	nulatos noiso ar	owth and plaintext	coefficient growt	h to

The tool simulates noise growth and plaintext coefficient growth to find optimal parameters:

- Sets error distribution as default
- Choose t as the smallest power of 2 such that decoding succeeds

Motivation 00000000	Security 0000000	Correctness 00000000●	Performance 00000000	Bibliography 00
SEAL autom	latic parame	ter selection		
Input descri	ptions of:			
compu ⁻	tation			
plainte	×t			
The second state	 The process of the second secon	 The second sector terms in 	and a constraint and a second second	Let a second

The tool simulates noise growth and plaintext coefficient growth to find optimal parameters:

- Sets error distribution as default
- Choose t as the smallest power of 2 such that decoding succeeds
- Choose n and q from the default pairs as the smallest such that decryption succeeds

Security 0000000	Correctness 000000000	Performance	Bibliography 00

Table of Contents

2 Security

3 Correctness

4 Performance

5 Bibliography

ation 00000

Security 00000000 Correctness

Performance

Bibliography 00

Parameter selection for performance in SEAL

Choosing *n* (and σ)

- We are essentially done
- Power of two n turns out to be good for performance

Choosing t

If t is such that
$$t|(q-1)$$
 then $r_t(q) = 1$

 Motivation
 Security
 Correctness
 Performance
 Bibliography

 000000000
 000000000
 00000000
 00

Parameter selection for performance in SEAL

n	q
8192	$2^{226} - 2^{26} + 1$
16384	$2^{435} - 2^{33} + 1$
32768	$2^{889} - 2^{54} - 2^{53} - 2^{52} + 1$

Choosing q

- Of the form $2^A B$, where B is a small integer
- Of the form 2n|(q-1)
 - In particular $4q \leq \beta$, where $\beta = 2^{64 \lceil \log(q)/64 \rceil}$

		Correctness	Performance	Bibliography
00000000	0000000	000000000	00000000	00

Homomorphic operations in SEAL

Relinearization ($ct = (c_0, c_1, c_2)$): Express c_2 in base w as

$$c_2 = \sum_{i=0}^{\ell} c_2^{(i)} w^i$$
.

Set

$$egin{split} c_0' &= c_0 + \sum_{i=0}^\ell ext{evk}[i][0]c_2^{(i)}\,, \ c_1' &= c_1 + \sum_{i=0}^\ell ext{evk}[i][1]c_2^{(i)}\,, \end{split}$$

and output (c'_0, c'_1) .

Parameter selection for performance in SEAL

Relinearization: choosing w and ℓ

- Choice only affects relinearization and evaluation key generation
- Both relinearization and lack of relinearization can introduce noise
- Typical choice is $\log w = \frac{1}{2} \log q$
- Smaller log w is worse for performance
- Automatic parameter selection allows up to log $w = \frac{1}{10} \log q$
- Essentially open problem to determine when to relinearize

 Motivation
 Security
 Correctness
 Performance
 Bibliography

 00000000
 000000000
 0000●0000
 00

Improved performance through new variant of FV [CLPX17]

- Plaintext modulus is x b rather than t [HS00]
- Plaintext space is $\mathbb{Z}/(b^n+1)\mathbb{Z}$
- Easy encoding for integers and rationals
- Performs favourably compared to FV

Motivation 00000000	Security 0000000	Correctness 000000000	Performance 000000000	Bibliography 00
The new s	cheme			

Encoding *m*

For each $m \in \mathcal{M}$ denote by \widehat{m} a shortest polynomial with $\|\widehat{m}\| \leq (b+1)/2$, such that $\widehat{m}(b) = m$ modulo $b^n + 1$

Encrypt($(p_0, p_1), m$): Sample $u \leftarrow \{-1, 0, 1\}$, and $e_0, e_1 \leftarrow \chi$. Output

$$(c_0, c_1) = (\Delta_b \widehat{m} + p_0 u + e_0, p_1 u + e_1)$$
.

Security 0000000	Correctness 000000000	Performance 00000●000	Bibliography 00

The new scheme

Encoding *m*

For each $m \in \mathcal{M}$ denote by \widehat{m} a shortest polynomial with $\|\widehat{m}\| \leq (b+1)/2$, such that $\widehat{m}(b) = m$ modulo $b^n + 1$

Encrypt($(p_0, p_1), m$): Sample $u \leftarrow \{-1, 0, 1\}$, and $e_0, e_1 \leftarrow \chi$. Output

$$(c_0, c_1) = (\Delta_b \widehat{m} + p_0 u + e_0, p_1 u + e_1)$$
.

 $Decrypt((c_0, c_1), s)$: Compute

$$\widehat{M} = \left\lfloor rac{x-b}{q} [c_0 + c_1 s]_q
ight
ceil \, .$$

Output $m' = \widehat{M}(b) \in \mathcal{M}$.

	Security 0000000	Correctness 000000000	Performance 000000●00	Bibliography 00
Comparison	to FV			

Compare evaluation of regular circuit as in [CSVW16]

- Do A additions and one multiplication, iterated D times
- Inputs are integers of norm at most L

	Security 0000000	Correctness 000000000	Performance 000000●00	Bibliography 00
Comparisor	ו to FV			

- Compare evaluation of regular circuit as in [CSVW16]
 - Do A additions and one multiplication, iterated D times
 - Inputs are integers of norm at most L
- Goal: Find (t, D) and (b, D) so D is maximised

	Security 00000000	Correctness 000000000	Performance 000000●00	Bibliography 00
Comparison	to FV			

- Compare evaluation of regular circuit as in [CSVW16]
 - Do A additions and one multiplication, iterated D times
 - Inputs are integers of norm at most L
- Goal: Find (t, D) and (b, D) so D is maximised

 Security for FV and new variant is the same so we can fix (n, q, σ)

	Security 00000000	Correctness 000000000	Performance 000000●00	Bibliography 00
Comparison	to FV			

- Compare evaluation of regular circuit as in [CSVW16]
 - Do A additions and one multiplication, iterated D times
 - Inputs are integers of norm at most L
- Goal: Find (t, D) and (b, D) so D is maximised

- Security for FV and new variant is the same so we can fix (n, q, σ)
- Noise and plaintext growth estimates give constraints

	Security 0000000	Correctness 000000000	Performance 000000000	Bibliography 00
Encoders ir	ו FV			

- Family parameterised by base B [DGBL+15] or Non-Adjacent Form
 - Small *B* enables smaller *t*
 - Large B enables shorter encodings

	Security 0000000	Correctness 000000000	Performance 000000000	Bibliography 00
Encoders i	n FV			

- Family parameterised by base B [DGBL+15] or Non-Adjacent Form
 - Small *B* enables smaller *t*
 - Large *B* enables shorter encodings

• Choose NAF since it outperforms B = 2 and B = 3 [CJLL17]

	Security 0000000	Correctness 000000000	Performance 00000000●	Bibliography 00
_				

Security	Correctness	Performance	Bibliography
0000000	000000000	00000000	00

Table of Contents

2 Security

3 Correctness

4 Performance

5 Bibliography

	Security 0000000	Correctness 000000000	Performance 00000000	Bibliography ●0
More details	;			

CLPX17 Hao Chen, Kim Laine, Rachel Player and Yuhou Xia. High-Precision Arithmetic in Homomorphic Encryption. ia.cr/2017/809

CLP17 Hao Chen, Kim Laine and Rachel Player. Simple Encrypted Arithmetic Library - SEAL (v2.2). *Technical report, 2017.* www.microsoft.com/en-us/research/publication/ simple-encrypted-arithmetic-library-seal-v2-2/

APS15 Martin R. Albrecht, Rachel Player and Sam Scott. On the concrete hardness of Learning with Errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015. ia.cr/2015/046

Thank you! / Questions?

- BLP+13 Z. Brakerski, A. Langlois, C. Peikert, O. Regev and D. Stehlé. Classical hardness of Learning with Errors. In STOC, 2013.
 - MP13 D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In Crypto, 2013.
- CJLL17 J. H. Cheon, J. Jeong, J. Lee and K. Lee. Privacy-preserving computations of predictive medical models with minimax approximation and Non-Adjacent Form. In WAHC, 2017.
- CLP16 H. Chen, K. Laine and R. Player. Simple Encrypted Arithmetic Library SEAL. In WAHC, 2017.
- CS16 A. Costache and N. P. Smart. Which ring based somewhat homomorphic encryption scheme is best? In CT-RSA, 2016.
- CSVW16 A Costache, N. P. Smart, S. Vivek and A. Waller. Fixed point arithmetic in SHE scheme. In SAC, 2016.
- DGBL+15 N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig and J. Wernsing. Manual for using homomorphic encryption for bioinformatics. *Proceedings of the IEEE 105(3): 552–567*, 2017.
 - FV12 J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Eprint 2012/144.
 - HS00 Jeffrey Hoffstein and Joseph Silverman. Optimizations for NTRU. In Public Key Cryptography and Computational Number Theory, 2001
 - LP16 K. Laine and R. Player. Simple Encrypted Arithmetic Library SEAL (v2.0). Technical report, 2016.
 - LPR12 V. Lyubashevsky, C. Peikert and O. Regev. On ideal lattices and Learning with Errors over rings. Eprint 2012/230 — Full version of paper appearing at Eurocrypt, 2010.
 - R05 O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, 2005.
 - BBGS17 N. Bindel, J. Buchmann, F. Göpfert and M. Schmidt. Estimation of the hardness of the Learning with Errors problem with a restricted number of samples. *Eprint 2017/140*