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Is it really save?

Is lattice-based cryptography save against quantum attacks?
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Quantum mechanics

probability to obtain |¢;)
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measurement in basis {|¢;) } pj = |(#5]9)|" = A2k
probability to obtain |X;)

measurement in basis {|X]>} qi = \(Xj\‘I’HQ



Quantum mechanics

exponential scaling

independent measurements



Quantum mechanics

H{W;) = \;|¥;)

eigenstates

problem Hamiltonian :

an eigenstate contains the full information
on the solution of the problem



problem Hamiltonian

lattice basis vectors €;

general lattice vector X = Z n;€;
i

length of lattice vector | X|* = Z nin; €;€;
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problem Hamiltonian

prefactor n

X:n1€1+... \/




problem Hamiltonian

linear dispersion @ = Zj 7)1 —
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properties
of the lattice

problem Hamiltonian H, = Z Qi Q; [@:@J

¥,

with eigen-energies wy = E nin; €;€;
)

find first excited state, or some low-energy state



Adiabatic Quantum Computation

complicated problem Hamiltonian H,

simple driver Hamiltonian H,

adiabatic dynamics H(t) = (1 — f(¢))Ha + () Hp

101




Adiabatic Quantum Computation

occurrences 1n 900 runs
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David Joseph, Adam Callison, Cong Ling & FM, PRA 103, 032433 (2021)



AQC and QAOA

adiabatic dynamics H(t) = (1 — f(t))Hy + f(t)H,
discretise f(?)
Wq) =exp(—i((1 — fi)Ha+ f1Hp) T) Vo)

Vo) = exp (=i ((1 = fo)Ha + folp) T) |¥1)

W) = ...

1gnore non-commutativity (short times)

exp(—t (L — f)Ha+ f;Hy)T) ~ exp(—i(1l— f;)HqT) exp(—if;H,T)



AQC and QAOA

..exp (—i(1 — fo)HyT) exp (—tfoHpT) exp (—i(1 — f1)HyT) exp (—if1H,T)
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replace by  exp (—i8Hy) exp(—ivH))
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potentially really bad approximation

very few gates
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energy expectation

expectation value of problem Hamiltonian 1, = (V| H,|¥,)

difficult to construct
/—/\—

: LT i :
(Wo|exp (2vH,) exp (zsz) H, exp (—zsz) exp (—ivH,) |Wo)
—_—
feasible



SVP Hamiltonian

problem Hamiltonian coupling operator
7o > > Qi =21z, + 1
p — Qi €i€; i = ij Ty
i J
jg=1 5=72 J =09
i =1 ‘ e > first basis vector
weak interactions strong 1nteractions
=2 (@ j second basis vector
i = 3 = = = = = third basis vector
least most
significant significant

qubit qubit



energy expectation

: LT LT :
(Wo|exp (ivH,) exp (ZZHd) H,exp (—ZZHd) exp (—ivH,) |Wo)

=) F; /
/z‘j all qubits

all pairs of qubits > only significant qubits




energy expectation (simulated)

two most significant qubits

most significant qubits three most significant qubits
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David Joseph, Antonio Martinez, Cong Ling & FM, Phys. Rev. A (accepted) arXiv:2105.13106



truncation errors
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hybrid algorithm
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outlook & conclusions

perspective for quantum SVP

combination of classical and quantum elements
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optimisation  problem Hamiltonian

sampling
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