Post-quantum cryptography in the pre-quantum era

Florian Mintert Imperial College

Cryptography

prime factor decomposition

$$\begin{array}{c}
\text{easy} \\
3 \times 5 = 15 \\
\text{hard}
\end{array}$$

shortest vector problem SVP

Is it really save?

Is lattice-based cryptography save against quantum attacks?

quantum algorithm to find shortest vector

Quantum mechanics

$$i|\dot{\Psi}\rangle = H|\Psi\rangle$$
 $|\Psi(t)\rangle = U(t,t_0)|\Psi(t_0)\rangle$

$$|\Psi\rangle = \sum_{j} \Psi_{j} |\phi_{j}\rangle$$

probability to obtain $|\phi_j\rangle$

measurement in basis $\{|\phi_j\rangle\}$

$$p_j = \left| \langle \phi_j | \Psi \rangle \right|^2 = |\Psi_j|^2$$

probability to obtain $|\chi_j\rangle$

measurement in basis
$$\{|\chi_j\rangle\}$$
 $q_j = |\langle\chi_j|\Psi\rangle|^2$

Quantum mechanics

$$|\Psi\rangle = \sum_{jk...} \Psi_{jk...} |\Phi_j\rangle \otimes |\Phi_k\rangle \otimes \dots$$

exponential scaling

independent measurements

Quantum mechanics

$$H|\Psi_j\rangle = \lambda_j |\Psi_j\rangle$$

eigenstates

problem Hamiltonian:

an eigenstate contains the full information on the solution of the problem

problem Hamiltonian

lattice basis vectors \vec{e}_i

general lattice vector
$$\vec{X} = \sum_{i} n_i \vec{e_i}$$

length of lattice vector
$$|\vec{X}|^2 = \sum_{ij} n_i n_j \ \vec{e_i} \vec{e_j}$$

problem Hamiltonian

problem Hamiltonian

linear dispersion
$$Q = \sum_{j} j |j\rangle\langle j|$$

properties of the lattice

problem Hamiltonian
$$H_p = \sum_{ij} Q_i Q_j \overrightarrow{e_i e_j}$$

with eigen-energies
$$\omega_{\vec{n}} = \sum_{ij} n_i n_j \ \vec{e}_i \vec{e}_j$$

find first excited state, or some low-energy state

Adiabatic Quantum Computation

complicated problem Hamiltonian H_p simple driver Hamiltonian H_d

adiabatic dynamics $H(t) = (1 - f(t))H_d + f(t)H_p$

Adiabatic Quantum Computation

occurrences in 900 runs

David Joseph, Adam Callison, Cong Ling & FM, PRA 103, 032433 (2021)

AQC and QAOA

adiabatic dynamics
$$H(t) = (1 - f(t))H_d + f(t)H_p$$

discretise f(t)

$$|\Psi_1\rangle = \exp(-i((1-f_1)H_d + f_1H_p)T)|\Psi_0\rangle$$

$$|\Psi_2\rangle = \exp\left(-i\left((1 - f_2)H_d + f_2H_p\right)T\right)|\Psi_1\rangle$$

$$|\Psi_3\rangle = \dots$$

ignore non-commutativity (short times)

$$\exp(-i((1-f_j)H_d + f_jH_p)T) \simeq \exp(-i(1-f_j)H_dT) \exp(-if_jH_pT)$$

AQC and QAOA

...
$$\exp(-i(1-f_2)H_dT) \exp(-if_2H_pT) \exp(-i(1-f_1)H_dT) \exp(-if_1H_pT)$$

replace by
$$\exp(-i\beta H_d)$$
 $\exp(-i\gamma H_p)$

potentially really bad approximation very few gates

sampling

$$|\Psi_{\gamma}\rangle = \exp\left(-i\frac{\pi}{4}H_dT\right) \exp\left(-i\gamma H_pT\right)|\Psi_0\rangle$$

size of each subsystem (log-scale)

energy expectation

expectation value of problem Hamiltonian $\mu_{\gamma} = \langle \Psi_{\gamma} | H_p | \Psi_{\gamma} \rangle$

difficult to construct

$$\langle \Psi_0 | \exp(i\gamma H_p) \exp(i\frac{\pi}{4}H_d) H_p \exp(-i\frac{\pi}{4}H_d) \exp(-i\gamma H_p) | \Psi_0 \rangle$$

feasible

SVP Hamiltonian

problem Hamiltonian

$$H_p = \sum_{ij} Q_i Q_j \ \vec{e}_i \vec{e}_j$$

coupling operator

$$Q_i = \sum_{j} 2^{j-1} Z_{ij} + \frac{1}{2}$$

$$j = 1$$
 $j = 2$

 Q_1

$$j = 5$$

i = 1

first basis vector

strong interactions

second basis vector

$$i = 2$$

third basis vector

i = 3

most significant qubit

least significant qubit

energy expectation

$$\langle \Psi_0 | \exp(i\gamma H_p) \exp\left(i\frac{\pi}{4}H_d\right) H_p \exp\left(-i\frac{\pi}{4}H_d\right) \exp\left(-i\gamma H_p\right) |\Psi_0\rangle$$

$$= \sum_{ij} F_{ij}$$
all qubits

only significant qubits

all pairs of qubits

energy expectation (simulated)

two most significant qubits

most significant qubits

three most significant qubits

David Joseph, Antonio Martinez, Cong Ling & FM, Phys. Rev. A (accepted) arXiv:2105.13106

hybrid algorithm

Yifeng Rocky Zhu, David Joseph, Cong Ling & FM, arXiv:2204.13432

outlook & conclusions

perspective for quantum SVP

combination of classical and quantum elements

optimisation problem Hamiltonian sampling

the team

David Joseph

Adam Callison

Yifeng Zhu

Cong Ling

