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, Order-LWE, Middle-Product-LWE, ...

» Hardness supported by a web of reductions, from worst-case problems
on algebraic lattices and among the problems themselves
[SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS5'17,AD'17,RSW'18,BBPS'18,. . .|

» But these reductions are often difficult to understand and use:
* Several steps between problems of interest
* Complex analysis and parameters

* Frequently large blowup and distortion of error distributions,
across different metrics

* Sometimes non-uniform advice that appears hard to compute
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(over number-field rings)

® A unified Generalized-LWE problem class covering all proposed LWEs

(over commutative rings)

| A

Reductions

» Simpler, tighter reductions among algebraic and general LWEs

* All have easy-to-analyze effects on the error distribution

* Many are even error preserving
@ Error-preserving L-LWE < L’-LWE under mild conditions on £’ C L.
@® For any order £ = Z[a] with d < deg(a) < n,

Z]a]-LWE < MP-LWE,, 4
with error expansion [|V,]|.
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» Let K = Q(«) be a number field and R = Ok be its ring of integers.
(E.g., R=Z[z]/(z" + 1) for n = 2F))

> R-LWE, for secret s € R;/ concerns ‘noisy random products’
- v
(a(—Rq, b~s-a€Rq).

> Same, but R = O is some arbitrary order of K (not necessarily Of).

> Same, but R = Z[a] = Z[z]/ f(x) and s,a,s-a € Ry (no dual RY).
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» Let K = Q(«) be a number field and £ C K be any (full-rank) lattice.

» The coefficient ring of £, which is an order of K, is
Of ={zeK:aLCLy=(L-LY).
Note: if £ is an order O or its dual @V, then Of = O.

The £-LWE Problem

> L-LWE, for secret s € Cg concerns noisy products

(anqﬁ, b%s-aéﬁg).

> Generalizes:
Ring-LWE by taking £ = O to be the full ring of integers
Order-LWE by taking £ = O to be an order of K
Poly-LWE by taking £ = Z[a]" for some a € O
Module-LWE by allowing a, s to be vectors
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Our L-LWE Reductions

Theorem 1: L to L’

> Let £’ C L C K be lattices with respective coefficient rings O’ C O,
and |L£/L'| coprime to q. (Eg, L'=0'CL=0)
Then there is a tight error-preserving reduction

L-LWE, < £/-LWE, .

> Proof: easy using the natural inclusions £, — (£')y and O} — Oy,
which are bijections.

v

Theorem 2: @' to O-Module

» Let O be any number-field order and O = O[X]/f(X) for any monic
irreducible f(X) € O[X] of degree d.

Then there is a tight “effectively error-preserving” reduction
O'-LWE, < O-Module-LWE{ .

» Proof: @ is a rank-d O-module. Keep just first coordinate of b ~ s-a.
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> For s € ZZ"t1[z] and a € Z5"[z], the

middle product s ©®4 a

is the middle d coefficients of s - a € Zg 2"~V * 4],

» MP-LWE,, 4, for secret s concerns ‘noisy random middle products’
(a« ZMx], b s©Oqa € Z3x]).

.

Theorem 3: Z[a]-to-MP Reduction
» For any order £ = Z[a] with d < deg(a) < n, we have

Z[a]-LWE, < MP-LWE,, 4,

with error expansion ||V,|| of, e.g., spherical Gaussians.

» Proof sketch: rest of the talk. ..
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» In every LWE problem, the ‘product’ s« a is a fixed R-bilinear form
over, e.g., R = Zg or Ry.

» Fixing bases for s, a, s x a, the bilinear form may be represented as a
fixed 3-dimensional tensor T

|« ||| - Fen
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Middle-Product-LWE,, ; Tensor
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» Goal: transformation mapping Z[a|-LWE samples to MP-LWE,, 4
samples and uniform ones to uniform ones.

» Say d = deg(a) = n for simplicity. The (dual) Z[a]-LWE tensor T is
Tpjn = Te(p) - pj - pr) = Te(p) - &7*F),
where B = (1,a,a?,...,a" 1) is the power basis of Z[a].

» So, each ‘layer’ Tj;.. is a Hankel matrix, and we can factor:

§t T = §t p Y

=/t
3/

12/13



Z|a]-LWE < MP-LWE Reduction

» Goal: transformation mapping Z[a|-LWE samples to MP-LWE,, 4
samples and uniform ones to uniform ones.

» Say d = deg(a) = n for simplicity. The (dual) Z[a]-LWE tensor T is
T i = Te(p) - pj-p) = Tr(py - o7 1F),
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where = (1,a,0?, ..., is the power basis of Z[a].

» So, each ‘layer’ Tj;.. is a Hankel matrix, and we can factor:

§t T = §t p Y
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> Generally: T-LWE < M-LWE for any T, M that factor as above.
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Final Thoughts

> It is easy to use Ring-LWE as a foundation for the hardness of various
algebraic LWE problems, via simple and tight reductions.

» Open: what other LWE problems have reductions from problems over
multiple rings simultaneously?

» Open: hardness of Ring-LWE (over some fixed ring) based on multiple
“unrelated” LWE problems?
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