Algebraically Structured LWE, Revisited

Chris Peikert Zachary Pepin University of Michigan

London-ish Lattice Coding \& Crypto
11 Dec 2020
ePrint 2019/878

'Algebraic' Learning With Errors

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE, ...

'Algebraic' Learning With Errors

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE, ...
- Hardness supported by a web of reductions, from worst-case problems on algebraic lattices and among the problems themselves [SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS'17,AD'17,RSW'18,BBPS'18,...]

'Algebraic' Learning With Errors

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE, ...
- Hardness supported by a web of reductions, from worst-case problems on algebraic lattices and among the problems themselves [SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS'17,AD'17,RSW'18,BBPS'18,...]

'Algebraic' Learning With Errors

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE, ...
- Hardness supported by a web of reductions, from worst-case problems on algebraic lattices and among the problems themselves [SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS'17,AD'17,RSW'18,BBPS'18,...]
- But these reductions are often difficult to understand and use:

'Algebraic' Learning With Errors

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE, ...
- Hardness supported by a web of reductions, from worst-case problems on algebraic lattices and among the problems themselves [SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS'17,AD'17,RSW'18,BBPS'18,...]
- But these reductions are often difficult to understand and use:
* Several steps between problems of interest
\star Complex analysis and parameters
\star Frequently large blowup and distortion of error distributions, across different metrics
* Sometimes non-uniform advice that appears hard to compute

Prior Hardness of Ring-LWE and MP-LWE

Our Contributions

Definitions

(1) A unified \mathcal{L}-LWE problem class covering all proposed algebraic LWEs
(over number-field rings)

Our Contributions

Definitions

(1) A unified \mathcal{L}-LWE problem class covering all proposed algebraic LWEs (over number-field rings)
(2) A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Our Contributions

Definitions

(1) A unified \mathcal{L}-LWE problem class covering all proposed algebraic LWEs (over number-field rings)

2 A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Reductions

- Simpler, tighter reductions among algebraic and general LWEs

Our Contributions

Definitions

(1) A unified \mathcal{L}-LWE problem class covering all proposed algebraic LWEs (over number-field rings)
(2) A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Reductions

- Simpler, tighter reductions among algebraic and general LWEs
* All have easy-to-analyze effects on the error distribution
* Many are even error preserving

Our Contributions

Definitions

(1) A unified \mathcal{L}-LWE problem class covering all proposed algebraic LWEs (over number-field rings)
(2) A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Reductions

- Simpler, tighter reductions among algebraic and general LWEs
* All have easy-to-analyze effects on the error distribution
* Many are even error preserving
(1) Error-preserving \mathcal{L}-LWE $\leq \mathcal{L}^{\prime}$-LWE under mild conditions on $\mathcal{L}^{\prime} \subseteq \mathcal{L}$.

Our Contributions

Definitions

(1) A unified \mathcal{L}-LWE problem class covering all proposed algebraic LWEs (over number-field rings)
(2) A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Reductions

- Simpler, tighter reductions among algebraic and general LWEs
* All have easy-to-analyze effects on the error distribution
* Many are even error preserving
(1) Error-preserving \mathcal{L}-LWE $\leq \mathcal{L}^{\prime}$-LWE under mild conditions on $\mathcal{L}^{\prime} \subseteq \mathcal{L}$.
(2) For any order $\mathcal{L}=\mathbb{Z}[\alpha]$ with $d \leq \operatorname{deg}(\alpha) \leq n$,

$$
\mathbb{Z}[\alpha]-\mathrm{LWE} \leq \mathrm{MP}^{-L W E} E_{n, d}
$$

with error expansion $\left\|V_{\alpha}\right\|$.

New Hardness of MP-LWE

(dual) \mathcal{O}_{K}-LWE

New Hardness of MP-LWE

$$
\text { worst-case approx- } \mathcal{O}_{K} \text {-SIVP }
$$

New Hardness of MP-LWE

worst-case approx- \mathcal{O}_{K}-SIVP

Ring-LWE and Variants

Ring-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $R=\mathcal{O}_{K}$ be its ring of integers.
(E.g., $R \cong \mathbb{Z}[x] /\left(x^{n}+1\right)$ for $n=2^{k}$.)

Ring-LWE and Variants

Ring-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $R=\mathcal{O}_{K}$ be its ring of integers.

$$
\text { (E.g., } R \cong \mathbb{Z}[x] /\left(x^{n}+1\right) \text { for } n=2^{k} \text {.) }
$$

- R-LWE $_{q}$ for secret $s \in R_{q}^{\vee}$ concerns 'noisy random products'

$$
\left(a \leftarrow R_{q}, b \approx s \cdot a \in R_{q}^{\vee}\right)
$$

Ring-LWE and Variants

Ring-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $R=\mathcal{O}_{K}$ be its ring of integers.

$$
\text { (E.g., } R \cong \mathbb{Z}[x] /\left(x^{n}+1\right) \text { for } n=2^{k} \text {.) }
$$

- R-LWE $_{q}$ for secret $s \in R_{q}^{\vee}$ concerns 'noisy random products'

$$
\left(a \leftarrow R_{q}, b \approx s \cdot a \in R_{q}^{\vee}\right)
$$

Order-LWE

- Same, but $R=\mathcal{O}$ is some arbitrary order of K (not necessarily \mathcal{O}_{K}).

Ring-LWE and Variants

Ring-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $R=\mathcal{O}_{K}$ be its ring of integers.

$$
\text { (E.g., } R \cong \mathbb{Z}[x] /\left(x^{n}+1\right) \text { for } n=2^{k} \text {.) }
$$

- R-LWE $_{q}$ for secret $s \in R_{q}^{\vee}$ concerns 'noisy random products'

$$
\left(a \leftarrow R_{q}, b \approx s \cdot a \in R_{q}^{\vee}\right)
$$

Order-LWE

- Same, but $R=\mathcal{O}$ is some arbitrary order of K (not necessarily \mathcal{O}_{K}).

Poly-LWE

- Same, but $R=\mathbb{Z}[\alpha] \cong \mathbb{Z}[x] / f(x)$ and $s, a, s \cdot a \in R_{q}$ (no dual R_{q}^{\vee}).

New Unified Problem: \mathcal{L}-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.

New Unified Problem: \mathcal{L}-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.
- The coefficient ring of \mathcal{L}, which is an order of K, is

$$
\mathcal{O}^{\mathcal{L}}:=\{x \in K: x \mathcal{L} \subseteq \mathcal{L}\}=\left(\mathcal{L} \cdot \mathcal{L}^{\vee}\right)^{\vee}
$$

New Unified Problem: \mathcal{L}-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.
- The coefficient ring of \mathcal{L}, which is an order of K, is

$$
\mathcal{O}^{\mathcal{L}}:=\{x \in K: x \mathcal{L} \subseteq \mathcal{L}\}=\left(\mathcal{L} \cdot \mathcal{L}^{\vee}\right)^{\vee}
$$

Note: if \mathcal{L} is an order \mathcal{O} or its dual \mathcal{O}^{\vee}, then $\mathcal{O}^{\mathcal{L}}=\mathcal{O}$.

New Unified Problem: \mathcal{L}-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.
- The coefficient ring of \mathcal{L}, which is an order of K, is

$$
\mathcal{O}^{\mathcal{L}}:=\{x \in K: x \mathcal{L} \subseteq \mathcal{L}\}=\left(\mathcal{L} \cdot \mathcal{L}^{\vee}\right)^{\vee}
$$

Note: if \mathcal{L} is an order \mathcal{O} or its dual \mathcal{O}^{\vee}, then $\mathcal{O}^{\mathcal{L}}=\mathcal{O}$.
The \mathcal{L}-LWE Problem

New Unified Problem: \mathcal{L}-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.
- The coefficient ring of \mathcal{L}, which is an order of K, is

$$
\mathcal{O}^{\mathcal{L}}:=\{x \in K: x \mathcal{L} \subseteq \mathcal{L}\}=\left(\mathcal{L} \cdot \mathcal{L}^{\vee}\right)^{\vee} .
$$

Note: if \mathcal{L} is an order \mathcal{O} or its dual \mathcal{O}^{\vee}, then $\mathcal{O}^{\mathcal{L}}=\mathcal{O}$.

The \mathcal{L}-LWE Problem

- $\mathcal{L}-\mathrm{LWE}_{q}$ for secret $s \in \mathcal{L}_{q}^{\vee}$ concerns noisy products

$$
\left(a \leftarrow \mathcal{O}_{q}^{\mathcal{L}}, b \approx s \cdot a \in \mathcal{L}_{q}^{\vee}\right) .
$$

New Unified Problem: \mathcal{L}-LWE

- Let $K=\mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.
- The coefficient ring of \mathcal{L}, which is an order of K, is

$$
\mathcal{O}^{\mathcal{L}}:=\{x \in K: x \mathcal{L} \subseteq \mathcal{L}\}=\left(\mathcal{L} \cdot \mathcal{L}^{\vee}\right)^{\vee} .
$$

Note: if \mathcal{L} is an order \mathcal{O} or its dual \mathcal{O}^{\vee}, then $\mathcal{O}^{\mathcal{L}}=\mathcal{O}$.

The \mathcal{L}-LWE Problem

- \mathcal{L} - LWE_{q} for secret $s \in \mathcal{L}_{q}^{\vee}$ concerns noisy products

$$
\left(a \leftarrow \mathcal{O}_{q}^{\mathcal{L}}, b \approx s \cdot a \in \mathcal{L}_{q}^{\vee}\right) .
$$

- Generalizes:

Ring-LWE by taking $\mathcal{L}=\mathcal{O}_{K}$ to be the full ring of integers
Order-LWE by taking $\mathcal{L}=\mathcal{O}$ to be an order of K
Poly-LWE by taking $\mathcal{L}=\mathbb{Z}[\alpha]^{\vee}$ for some $\alpha \in \mathcal{O}_{K}$
Module-LWE by allowing a, s to be vectors

Our \mathcal{L}-LWE Reductions

Theorem 1: \mathcal{L} to \mathcal{L}^{\prime}

- Let $\mathcal{L}^{\prime} \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}^{\prime} \subseteq \mathcal{O}$, and $\left|\mathcal{L} / \mathcal{L}^{\prime}\right|$ coprime to q.
(E.g., $\mathcal{L}^{\prime}=\mathcal{O}^{\prime} \subseteq \mathcal{L}=\mathcal{O}$.)

Our \mathcal{L}-LWE Reductions

Theorem 1: \mathcal{L} to \mathcal{L}^{\prime}

- Let $\mathcal{L}^{\prime} \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}^{\prime} \subseteq \mathcal{O}$, and $\left|\mathcal{L} / \mathcal{L}^{\prime}\right|$ coprime to q.

$$
\text { (E.g., } \mathcal{L}^{\prime}=\mathcal{O}^{\prime} \subseteq \mathcal{L}=\mathcal{O} \text {.) }
$$

Then there is a tight error-preserving reduction

$$
\mathcal{L}-\mathrm{LWE}_{q} \leq \mathcal{L}^{\prime}-\mathrm{LWE}_{q} .
$$

Our \mathcal{L}-LWE Reductions

Theorem 1: \mathcal{L} to \mathcal{L}^{\prime}

- Let $\mathcal{L}^{\prime} \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}^{\prime} \subseteq \mathcal{O}$, and $\left|\mathcal{L} / \mathcal{L}^{\prime}\right|$ coprime to q.

$$
\text { (E.g., } \mathcal{L}^{\prime}=\mathcal{O}^{\prime} \subseteq \mathcal{L}=\mathcal{O} \text {.) }
$$

Then there is a tight error-preserving reduction

$$
\mathcal{L}-\mathrm{LWE}_{q} \leq \mathcal{L}^{\prime}-\mathrm{LWE}_{q} .
$$

- Proof: easy using the natural inclusions $\mathcal{L}_{q}^{\vee} \rightarrow\left(\mathcal{L}^{\prime}\right)_{q}^{\vee}$ and $\mathcal{O}_{q}^{\prime} \rightarrow \mathcal{O}_{q}$, which are bijections.

Our \mathcal{L}-LWE Reductions

Theorem 1: \mathcal{L} to \mathcal{L}^{\prime}

- Let $\mathcal{L}^{\prime} \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}^{\prime} \subseteq \mathcal{O}$, and $\left|\mathcal{L} / \mathcal{L}^{\prime}\right|$ coprime to q. (E.g., $\mathcal{L}^{\prime}=\mathcal{O}^{\prime} \subseteq \mathcal{L}=\mathcal{O}$.)
Then there is a tight error-preserving reduction

$$
\mathcal{L}-\mathrm{LWE}_{q} \leq \mathcal{L}^{\prime}-\mathrm{LWE}_{q} .
$$

- Proof: easy using the natural inclusions $\mathcal{L}_{q}^{\vee} \rightarrow\left(\mathcal{L}^{\prime}\right)_{q}^{\vee}$ and $\mathcal{O}_{q}^{\prime} \rightarrow \mathcal{O}_{q}$, which are bijections.

Theorem 2: \mathcal{O}^{\prime} to \mathcal{O}-Module

- Let \mathcal{O} be any number-field order and $\mathcal{O}^{\prime}=\mathcal{O}[X] / f(X)$ for any monic irreducible $f(X) \in \mathcal{O}[X]$ of degree d.

Our \mathcal{L}-LWE Reductions

Theorem 1: \mathcal{L} to \mathcal{L}^{\prime}

- Let $\mathcal{L}^{\prime} \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}^{\prime} \subseteq \mathcal{O}$, and $\left|\mathcal{L} / \mathcal{L}^{\prime}\right|$ coprime to q. (E.g., $\mathcal{L}^{\prime}=\mathcal{O}^{\prime} \subseteq \mathcal{L}=\mathcal{O}$.)
Then there is a tight error-preserving reduction

$$
\mathcal{L}-\mathrm{LWE}_{q} \leq \mathcal{L}^{\prime}-\mathrm{LWE}_{q} .
$$

- Proof: easy using the natural inclusions $\mathcal{L}_{q}^{\vee} \rightarrow\left(\mathcal{L}^{\prime}\right)_{q}^{\vee}$ and $\mathcal{O}_{q}^{\prime} \rightarrow \mathcal{O}_{q}$, which are bijections.

Theorem 2: \mathcal{O}^{\prime} to \mathcal{O}-Module

- Let \mathcal{O} be any number-field order and $\mathcal{O}^{\prime}=\mathcal{O}[X] / f(X)$ for any monic irreducible $f(X) \in \mathcal{O}[X]$ of degree d.

Then there is a tight "effectively error-preserving" reduction

$$
\mathcal{O}^{\prime}-\mathrm{LWE}_{q} \leq \mathcal{O} \text {-Module-LWE }{ }_{q}^{d}
$$

Our \mathcal{L}-LWE Reductions

Theorem 1: \mathcal{L} to \mathcal{L}^{\prime}

- Let $\mathcal{L}^{\prime} \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}^{\prime} \subseteq \mathcal{O}$, and $\left|\mathcal{L} / \mathcal{L}^{\prime}\right|$ coprime to q. (E.g., $\mathcal{L}^{\prime}=\mathcal{O}^{\prime} \subseteq \mathcal{L}=\mathcal{O}$.)
Then there is a tight error-preserving reduction

$$
\mathcal{L}-\mathrm{LWE}_{q} \leq \mathcal{L}^{\prime}-\mathrm{LWE}_{q} .
$$

- Proof: easy using the natural inclusions $\mathcal{L}_{q}^{\vee} \rightarrow\left(\mathcal{L}^{\prime}\right)_{q}^{\vee}$ and $\mathcal{O}_{q}^{\prime} \rightarrow \mathcal{O}_{q}$, which are bijections.

Theorem 2: \mathcal{O}^{\prime} to \mathcal{O}-Module

- Let \mathcal{O} be any number-field order and $\mathcal{O}^{\prime}=\mathcal{O}[X] / f(X)$ for any monic irreducible $f(X) \in \mathcal{O}[X]$ of degree d.

Then there is a tight "effectively error-preserving" reduction

$$
\mathcal{O}^{\prime}-\mathrm{LWE}_{q} \leq \mathcal{O} \text {-Module-LWE }{ }_{q}^{d}
$$

- Proof: \mathcal{O}^{\prime} is a rank- $d \mathcal{O}$-module. Keep just first coordinate of $b \approx s \cdot a$.

Middle-Product-LWE

MP-LWE

- For $s \in \mathbb{Z}_{q}^{<n+d-1}[x]$ and $a \in \mathbb{Z}_{q}^{<n}[x]$, the middle product $s \odot_{d} a$
is the middle d coefficients of $s \cdot a \in \mathbb{Z}_{q}^{<2(n-1)+d}[x]$.

Middle-Product-LWE

MP-LWE

- For $s \in \mathbb{Z}_{q}^{<n+d-1}[x]$ and $a \in \mathbb{Z}_{q}^{<n}[x]$, the middle product $s \odot_{d} a$
is the middle d coefficients of $s \cdot a \in \mathbb{Z}_{q}^{<2(n-1)+d}[x]$.
- MP-LWE ${ }_{n, d, q}$ for secret s concerns 'noisy random middle products'

$$
\left(a \leftarrow \mathbb{Z}_{q}^{<n}[x], b \approx s \odot_{d} a \in \mathbb{Z}_{q}^{<d}[x]\right)
$$

Middle-Product-LWE

MP-LWE

- For $s \in \mathbb{Z}_{q}^{<n+d-1}[x]$ and $a \in \mathbb{Z}_{q}^{<n}[x]$, the middle product $s \odot_{d} a$
is the middle d coefficients of $s \cdot a \in \mathbb{Z}_{q}^{<2(n-1)+d}[x]$.
- MP-LWE ${ }_{n, d, q}$ for secret s concerns 'noisy random middle products'

$$
\left(a \leftarrow \mathbb{Z}_{q}^{<n}[x], b \approx s \odot_{d} a \in \mathbb{Z}_{q}^{<d}[x]\right)
$$

Theorem 3: $\mathbb{Z}[\alpha]$-to-MP Reduction

- For any order $\mathcal{L}=\mathbb{Z}[\alpha]$ with $d \leq \operatorname{deg}(\alpha) \leq n$, we have

$$
\mathbb{Z}[\alpha]-\mathrm{LWE}_{q} \leq \mathrm{MP}^{-\mathrm{LWE}_{n, d, q}}
$$

with error expansion $\left\|V_{\alpha}\right\|$ of, e.g., spherical Gaussians.

Middle-Product-LWE

MP-LWE

- For $s \in \mathbb{Z}_{q}^{<n+d-1}[x]$ and $a \in \mathbb{Z}_{q}^{<n}[x]$, the

$$
\text { middle product } s \odot_{d} a
$$

is the middle d coefficients of $s \cdot a \in \mathbb{Z}_{q}^{<2(n-1)+d}[x]$.

- MP-LWE ${ }_{n, d, q}$ for secret s concerns 'noisy random middle products'

$$
\left(a \leftarrow \mathbb{Z}_{q}^{<n}[x], b \approx s \odot_{d} a \in \mathbb{Z}_{q}^{<d}[x]\right)
$$

Theorem 3: $\mathbb{Z}[\alpha]$-to-MP Reduction

- For any order $\mathcal{L}=\mathbb{Z}[\alpha]$ with $d \leq \operatorname{deg}(\alpha) \leq n$, we have

$$
\mathbb{Z}[\alpha]-\mathrm{LWE}_{q} \leq \mathrm{MP}^{-\mathrm{LWE}}{ }_{n, d, q}
$$

with error expansion $\left\|V_{\alpha}\right\|$ of, e.g., spherical Gaussians.

- Proof sketch: rest of the talk...

New Problem: Generalized-LWE

- In every LWE problem, the 'product' $s \star a$ is a fixed \mathcal{R}-bilinear form over, e.g., $\mathcal{R}=\mathbb{Z}_{q}$ or R_{q}.

New Problem: Generalized-LWE

- In every LWE problem, the 'product' $s \star a$ is a fixed \mathcal{R}-bilinear form over, e.g., $\mathcal{R}=\mathbb{Z}_{q}$ or R_{q}.
- Fixing bases for $s, a, s \star a$, the bilinear form may be represented as a fixed 3-dimensional tensor T :

New Problem: Generalized-LWE

- In every LWE problem, the 'product' $s \star a$ is a fixed \mathcal{R}-bilinear form

$$
\text { over, e.g., } \mathcal{R}=\mathbb{Z}_{q} \text { or } R_{q} \text {. }
$$

- Fixing bases for $s, a, s \star a$, the bilinear form may be represented as a fixed 3-dimensional tensor T :

New Problem: Generalized-LWE

- In every LWE problem, the 'product' $s \star a$ is a fixed \mathcal{R}-bilinear form over, e.g., $\mathcal{R}=\mathbb{Z}_{q}$ or R_{q}.
- Fixing bases for $s, a, s \star a$, the bilinear form may be represented as a fixed 3-dimensional tensor T :

- E.g., plain LWE:

Middle-Product-LWE ${ }_{n, d}$ Tensor

Middle-Product-LWE ${ }_{n, d}$ Tensor

Middle-Product-LWE ${ }_{n, d}$ Tensor

Middle-Product-LWE ${ }_{n, d}$ Tensor

Middle-Product-LWE ${ }_{n, d}$ Tensor

Middle-Product-LWE ${ }_{n, d}$ Tensor

$\mathbb{Z}[\alpha]$-LWE \leq MP-LWE Reduction

- Goal: transformation mapping $\mathbb{Z}[\alpha]$-LWE samples to MP-LWE ${ }_{n, d}$ samples, and uniform ones to uniform ones.

$\mathbb{Z}[\alpha]$-LWE \leq MP-LWE Reduction

- Goal: transformation mapping $\mathbb{Z}[\alpha]$-LWE samples to MP-LWE $_{n, d}$ samples, and uniform ones to uniform ones.
- Say $d=\operatorname{deg}(\alpha)=n$ for simplicity. The (dual) $\mathbb{Z}[\alpha]$-LWE tensor T is

$$
T_{i, j, k}=\operatorname{Tr}\left(p_{i}^{\vee} \cdot p_{j} \cdot p_{k}\right)=\operatorname{Tr}\left(p_{i}^{\vee} \cdot \alpha^{j+k}\right),
$$

where $\vec{p}=\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)$ is the power basis of $\mathbb{Z}[\alpha]$.

$\mathbb{Z}[\alpha]$-LWE \leq MP-LWE Reduction

- Goal: transformation mapping $\mathbb{Z}[\alpha]$-LWE samples to MP-LWE $_{n, d}$ samples, and uniform ones to uniform ones.
- Say $d=\operatorname{deg}(\alpha)=n$ for simplicity. The (dual) $\mathbb{Z}[\alpha]$-LWE tensor T is

$$
T_{i, j, k}=\operatorname{Tr}\left(p_{i}^{\vee} \cdot p_{j} \cdot p_{k}\right)=\operatorname{Tr}\left(p_{i}^{\vee} \cdot \alpha^{j+k}\right)
$$

where $\vec{p}=\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)$ is the power basis of $\mathbb{Z}[\alpha]$.

- So, each 'layer' $T_{i .}$. is a Hankel matrix, and we can factor:

$\mathbb{Z}[\alpha]$-LWE \leq MP-LWE Reduction

- Goal: transformation mapping $\mathbb{Z}[\alpha]$-LWE samples to MP-LWE $_{n, d}$ samples, and uniform ones to uniform ones.
- Say $d=\operatorname{deg}(\alpha)=n$ for simplicity. The (dual) $\mathbb{Z}[\alpha]$-LWE tensor T is

$$
T_{i, j, k}=\operatorname{Tr}\left(p_{i}^{\vee} \cdot p_{j} \cdot p_{k}\right)=\operatorname{Tr}\left(p_{i}^{\vee} \cdot \alpha^{j+k}\right)
$$

where $\vec{p}=\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)$ is the power basis of $\mathbb{Z}[\alpha]$.

- So, each 'layer' $T_{i \text {.. }}$ is a Hankel matrix, and we can factor:

- Generally: T-LWE $\leq M$-LWE for any T, M that factor as above.

Final Thoughts

- It is easy to use Ring-LWE as a foundation for the hardness of various algebraic LWE problems, via simple and tight reductions.

Final Thoughts

- It is easy to use Ring-LWE as a foundation for the hardness of various algebraic LWE problems, via simple and tight reductions.
- Open: what other LWE problems have reductions from problems over multiple rings simultaneously?

Final Thoughts

- It is easy to use Ring-LWE as a foundation for the hardness of various algebraic LWE problems, via simple and tight reductions.
- Open: what other LWE problems have reductions from problems over multiple rings simultaneously?
- Open: hardness of Ring-LWE (over some fixed ring) based on multiple "unrelated" LWE problems?

Final Thoughts

- It is easy to use Ring-LWE as a foundation for the hardness of various algebraic LWE problems, via simple and tight reductions.
- Open: what other LWE problems have reductions from problems over multiple rings simultaneously?
- Open: hardness of Ring-LWE (over some fixed ring) based on multiple "unrelated" LWE problems?

Thanks!
ePrint 2019/878

