Algebraically Structured LWE, Revisited

Chris Peikert Zachary Pepin University of Michigan

London-ish Lattice Coding & Crypto 11 Dec 2020

ePrint 2019/878

A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE, ...

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE,
- Hardness supported by a web of reductions, from worst-case problems on algebraic lattices and among the problems themselves [SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS'17,AD'17,RSW'18,BBPS'18,...]

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE,
- Hardness supported by a web of reductions, from worst-case problems on algebraic lattices and among the problems themselves [SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS'17,AD'17,RSW'18,BBPS'18,...]

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE,
- Hardness supported by a web of reductions, from worst-case problems on algebraic lattices and among the problems themselves [SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS'17,AD'17,RSW'18,BBPS'18,...]
- But these reductions are often difficult to understand and use:

- A foundation of efficient lattice crypto: Ring-LWE, Module-LWE, Polynomial-LWE, Order-LWE, Middle-Product-LWE,
- Hardness supported by a web of reductions, from worst-case problems on algebraic lattices and among the problems themselves [SSTX'09,LPR'10,LS'15,L'16,PRS'17,RSSS'17,AD'17,RSW'18,BBPS'18,...]
- But these reductions are often difficult to understand and use:
 - * Several steps between problems of interest
 - ★ Complex analysis and parameters
 - Frequently large blowup and distortion of error distributions, across different metrics
 - * Sometimes non-uniform advice that appears hard to compute

$$(dual) \mathcal{O}_{K}\text{-LWE}$$

$$[LPR'10, PRS'17] \uparrow$$
worst-case approx- $\mathcal{O}_{K}\text{-SIVP}$

Definitions

• A unified *L*-LWE problem class covering all proposed algebraic LWEs (over number-field rings)

Definitions

 A unified *L*-LWE problem class covering all proposed algebraic LWEs (over number-field rings)

A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Definitions

 A unified *L*-LWE problem class covering all proposed algebraic LWEs (over number-field rings)

 A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Reductions

Simpler, tighter reductions among algebraic and general LWEs

Definitions

 A unified *L*-LWE problem class covering all proposed algebraic LWEs (over number-field rings)

 A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Reductions

Simpler, tighter reductions among algebraic and general LWEs

- * All have easy-to-analyze effects on the error distribution
- ★ Many are even error preserving

Definitions

 A unified *L*-LWE problem class covering all proposed algebraic LWEs (over number-field rings)

 A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Reductions

Simpler, tighter reductions among algebraic and general LWEs

- * All have easy-to-analyze effects on the error distribution
- ★ Many are even error preserving
- 1 Error-preserving \mathcal{L} -LWE $\leq \mathcal{L}'$ -LWE under mild conditions on $\mathcal{L}' \subseteq \mathcal{L}$.

Definitions

 A unified *L*-LWE problem class covering all proposed algebraic LWEs (over number-field rings)

 A unified Generalized-LWE problem class covering all proposed LWEs (over commutative rings)

Reductions

Simpler, tighter reductions among algebraic and general LWEs

- ★ All have easy-to-analyze effects on the error distribution
- ★ Many are even error preserving

1 Error-preserving \mathcal{L} -LWE $\leq \mathcal{L}'$ -LWE under mild conditions on $\mathcal{L}' \subseteq \mathcal{L}$.

2 For any order $\mathcal{L} = \mathbb{Z}[\alpha]$ with $d \leq \deg(\alpha) \leq n$,

 $\mathbb{Z}[\alpha]$ -LWE \leq MP-LWE_{n,d}

with error expansion $||V_{\alpha}||$.

New Hardness of MP-LWE

New Hardness of MP-LWE

New Hardness of MP-LWE

Ring-LWE

• Let $K = \mathbb{Q}(\alpha)$ be a number field and $R = \mathcal{O}_K$ be its ring of integers. (E.g., $R \cong \mathbb{Z}[x]/(x^n + 1)$ for $n = 2^k$.)

Ring-LWE

• Let $K = \mathbb{Q}(\alpha)$ be a number field and $R = \mathcal{O}_K$ be its ring of integers. (E.g., $R \cong \mathbb{Z}[x]/(x^n + 1)$ for $n = 2^k$.)

► R-LWE_q for secret $s \in R_q^{\vee}$ concerns 'noisy random products' $(a \leftarrow R_q, b \approx s \cdot a \in R_q^{\vee}).$

Ring-LWE

• Let $K = \mathbb{Q}(\alpha)$ be a number field and $R = \mathcal{O}_K$ be its ring of integers. (E.g., $R \cong \mathbb{Z}[x]/(x^n + 1)$ for $n = 2^k$.)

 $\begin{array}{l} \blacktriangleright \ R\text{-LWE}_q \text{ for secret } s \in R_q^{\vee} \text{ concerns 'noisy random products'} \\ & \left(a \leftarrow R_q \ , \ b \approx s \cdot a \in R_q^{\vee}\right). \end{array}$

Order-LWE

Same, but R = O is some arbitrary order of K (not necessarily O_K).

Ring-LWE

• Let $K = \mathbb{Q}(\alpha)$ be a number field and $R = \mathcal{O}_K$ be its ring of integers. (E.g., $R \cong \mathbb{Z}[x]/(x^n + 1)$ for $n = 2^k$.)

 $\begin{array}{l} \blacktriangleright \ R\text{-LWE}_q \text{ for secret } s \in R_q^{\vee} \text{ concerns 'noisy random products'} \\ & \left(a \leftarrow R_q \ , \ b \approx s \cdot a \in R_q^{\vee}\right). \end{array}$

Order-LWE

Same, but $R = \mathcal{O}$ is some arbitrary order of K (not necessarily \mathcal{O}_K).

Poly-LWE

Same, but $R = \mathbb{Z}[\alpha] \cong \mathbb{Z}[x]/f(x)$ and $s, a, s \cdot a \in R_q$ (no dual R_q^{\vee}).

• Let $K = \mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.

• Let $K = \mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.

• The coefficient ring of \mathcal{L} , which is an order of K, is

$$\mathcal{O}^{\mathcal{L}} := \{ x \in K : x\mathcal{L} \subseteq \mathcal{L} \} = (\mathcal{L} \cdot \mathcal{L}^{\vee})^{\vee}.$$

• Let $K = \mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.

• The coefficient ring of \mathcal{L} , which is an order of K, is

$$\mathcal{O}^{\mathcal{L}} := \{ x \in K : x\mathcal{L} \subseteq \mathcal{L} \} = (\mathcal{L} \cdot \mathcal{L}^{\vee})^{\vee}.$$

Note: if \mathcal{L} is an order \mathcal{O} or its dual \mathcal{O}^{\vee} , then $\mathcal{O}^{\mathcal{L}} = \mathcal{O}$.

• Let $K = \mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.

• The coefficient ring of \mathcal{L} , which is an order of K, is

$$\mathcal{O}^{\mathcal{L}} := \{ x \in K : x\mathcal{L} \subseteq \mathcal{L} \} = (\mathcal{L} \cdot \mathcal{L}^{\vee})^{\vee}.$$

Note: if \mathcal{L} is an order \mathcal{O} or its dual \mathcal{O}^{\vee} , then $\mathcal{O}^{\mathcal{L}} = \mathcal{O}$.

The \mathcal{L} -LWE Problem

- Let $K = \mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.
- The coefficient ring of L, which is an order of K, is

$$\mathcal{O}^{\mathcal{L}} := \{ x \in K : x\mathcal{L} \subseteq \mathcal{L} \} = (\mathcal{L} \cdot \mathcal{L}^{\vee})^{\vee}.$$

Note: if \mathcal{L} is an order \mathcal{O} or its dual \mathcal{O}^{\vee} , then $\mathcal{O}^{\mathcal{L}} = \mathcal{O}$.

The \mathcal{L} -LWE Problem

• \mathcal{L} -LWE_q for secret $s \in \mathcal{L}_q^{\vee}$ concerns noisy products

 $(a \leftarrow \mathcal{O}_q^{\mathcal{L}}, b \approx s \cdot a \in \mathcal{L}_q^{\vee}).$

- Let $K = \mathbb{Q}(\alpha)$ be a number field and $\mathcal{L} \subset K$ be any (full-rank) lattice.
- The coefficient ring of L, which is an order of K, is

$$\mathcal{O}^{\mathcal{L}} := \{ x \in K : x\mathcal{L} \subseteq \mathcal{L} \} = (\mathcal{L} \cdot \mathcal{L}^{\vee})^{\vee}.$$

Note: if \mathcal{L} is an order \mathcal{O} or its dual \mathcal{O}^{\vee} , then $\mathcal{O}^{\mathcal{L}} = \mathcal{O}$.

The \mathcal{L} -LWE Problem

► \mathcal{L} -LWE_q for secret $s \in \mathcal{L}_q^{\vee}$ concerns noisy products $(a \leftarrow \mathcal{O}_q^{\mathcal{L}}, b \approx s \cdot a \in \mathcal{L}_q^{\vee}).$

Generalizes:

Ring-LWE by taking $\mathcal{L} = \mathcal{O}_K$ to be the full ring of integers Order-LWE by taking $\mathcal{L} = \mathcal{O}$ to be an order of KPoly-LWE by taking $\mathcal{L} = \mathbb{Z}[\alpha]^{\vee}$ for some $\alpha \in \mathcal{O}_K$ Module-LWE by allowing a, s to be vectors

Theorem 1: \mathcal{L} to \mathcal{L}'

► Let $\mathcal{L}' \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}' \subseteq \mathcal{O}$, and $|\mathcal{L}/\mathcal{L}'|$ coprime to q. (E.g., $\mathcal{L}' = \mathcal{O}' \subseteq \mathcal{L} = \mathcal{O}$.)

Our \mathcal{L} -LWE Reductions

Theorem 1: \mathcal{L} to \mathcal{L}'

▶ Let $\mathcal{L}' \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}' \subseteq \mathcal{O}$, and $|\mathcal{L}/\mathcal{L}'|$ coprime to q. (E.g., $\mathcal{L}' = \mathcal{O}' \subseteq \mathcal{L} = \mathcal{O}$.) Then there is a tight error-preserving reduction

 \mathcal{L} -LWE $_q \leq \mathcal{L}'$ -LWE $_q$.

Theorem 1: \mathcal{L} to \mathcal{L}'

▶ Let $\mathcal{L}' \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}' \subseteq \mathcal{O}$, and $|\mathcal{L}/\mathcal{L}'|$ coprime to q. (E.g., $\mathcal{L}' = \mathcal{O}' \subseteq \mathcal{L} = \mathcal{O}$.) Then there is a tight error-preserving reduction \mathcal{L} -LWE $_q \leq \mathcal{L}'$ -LWE $_q$.

▶ Proof: easy using the natural inclusions $\mathcal{L}_q^{\vee} \to (\mathcal{L}')_q^{\vee}$ and $\mathcal{O}'_q \to \mathcal{O}_q$, which are bijections.

Theorem 1: \mathcal{L} to \mathcal{L}'

▶ Let $\mathcal{L}' \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}' \subseteq \mathcal{O}$, and $|\mathcal{L}/\mathcal{L}'|$ coprime to q. (E.g., $\mathcal{L}' = \mathcal{O}' \subseteq \mathcal{L} = \mathcal{O}$.)

Then there is a tight error-preserving reduction

$$\mathcal{L}$$
-LWE $_q \leq \mathcal{L}'$ -LWE $_q$.

▶ Proof: easy using the natural inclusions $\mathcal{L}_q^{\vee} \to (\mathcal{L}')_q^{\vee}$ and $\mathcal{O}'_q \to \mathcal{O}_q$, which are bijections.

Theorem 2: *O*′ to *O*-Module

▶ Let \mathcal{O} be any number-field order and $\mathcal{O}' = \mathcal{O}[X]/f(X)$ for any monic irreducible $f(X) \in \mathcal{O}[X]$ of degree d.

Theorem 1: \mathcal{L} to \mathcal{L}'

▶ Let $\mathcal{L}' \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}' \subseteq \mathcal{O}$, and $|\mathcal{L}/\mathcal{L}'|$ coprime to q. (E.g., $\mathcal{L}' = \mathcal{O}' \subseteq \mathcal{L} = \mathcal{O}$.)

Then there is a tight error-preserving reduction

$$\mathcal{L}$$
-LWE $_q \leq \mathcal{L}'$ -LWE $_q$.

▶ Proof: easy using the natural inclusions $\mathcal{L}_q^{\vee} \to (\mathcal{L}')_q^{\vee}$ and $\mathcal{O}'_q \to \mathcal{O}_q$, which are bijections.

Theorem 2: *O*′ to *O*-Module

▶ Let \mathcal{O} be any number-field order and $\mathcal{O}' = \mathcal{O}[X]/f(X)$ for any monic irreducible $f(X) \in \mathcal{O}[X]$ of degree d.

Then there is a tight "effectively error-preserving" reduction

 $\mathcal{O}'\text{-}\mathsf{LWE}_q \leq \mathcal{O}\text{-}\mathsf{Module}\text{-}\mathsf{LWE}_q^d$.

Our \mathcal{L} -LWE Reductions

Theorem 1: \mathcal{L} to \mathcal{L}'

▶ Let $\mathcal{L}' \subseteq \mathcal{L} \subset K$ be lattices with respective coefficient rings $\mathcal{O}' \subseteq \mathcal{O}$, and $|\mathcal{L}/\mathcal{L}'|$ coprime to q. (E.g., $\mathcal{L}' = \mathcal{O}' \subseteq \mathcal{L} = \mathcal{O}$.)

Then there is a tight error-preserving reduction

$$\mathcal{L}$$
-LWE $_q \leq \mathcal{L}'$ -LWE $_q$.

▶ Proof: easy using the natural inclusions $\mathcal{L}_q^{\vee} \to (\mathcal{L}')_q^{\vee}$ and $\mathcal{O}'_q \to \mathcal{O}_q$, which are bijections.

Theorem 2: *O*′ to *O*-Module

▶ Let \mathcal{O} be any number-field order and $\mathcal{O}' = \mathcal{O}[X]/f(X)$ for any monic irreducible $f(X) \in \mathcal{O}[X]$ of degree d.

Then there is a tight "effectively error-preserving" reduction $\mathcal{O}'\text{-LWE}_q \le \mathcal{O}\text{-Module-LWE}_q^d \;.$

Proof: \mathcal{O}' is a rank- $d \mathcal{O}$ -module. Keep just first coordinate of $b \approx s \cdot a$.

MP-LWE

For
$$s \in \mathbb{Z}_q^{< n+d-1}[x]$$
 and $a \in \mathbb{Z}_q^{< n}[x]$, the

middle product $s \odot_d a$

is the middle d coefficients of $s\cdot a\in \mathbb{Z}_q^{<2(n-1)+d}[x].$

MP-LWE

For
$$s \in \mathbb{Z}_q^{< n+d-1}[x]$$
 and $a \in \mathbb{Z}_q^{< n}[x]$, the

middle product $s \odot_d a$

is the middle d coefficients of $s \cdot a \in \mathbb{Z}_q^{<2(n-1)+d}[x]$.

► MP-LWE_{*n,d,q*} for secret *s* concerns 'noisy random middle products' $(a \leftarrow \mathbb{Z}_q^{< n}[x], \ b \approx s \odot_d a \in \mathbb{Z}_q^{< d}[x]).$

MP-LWE

For
$$s \in \mathbb{Z}_q^{< n+d-1}[x]$$
 and $a \in \mathbb{Z}_q^{< n}[x]$, the

middle product $s \odot_d a$

is the middle d coefficients of $s \cdot a \in \mathbb{Z}_q^{<2(n-1)+d}[x].$

▶ MP-LWE_{*n,d,q*} for secret *s* concerns 'noisy random middle products' $(a \leftarrow \mathbb{Z}_q^{< n}[x], \ b \approx s \odot_d a \in \mathbb{Z}_q^{< d}[x]).$

Theorem 3: $\mathbb{Z}[\alpha]$ -to-MP Reduction

▶ For any order $\mathcal{L} = \mathbb{Z}[\alpha]$ with $d \leq \deg(\alpha) \leq n$, we have

 $\mathbb{Z}[\alpha]\text{-}\mathsf{LWE}_q \leq \mathsf{MP}\text{-}\mathsf{LWE}_{n,d,q}$

with error expansion $||V_{\alpha}||$ of, e.g., spherical Gaussians.

MP-LWE

For
$$s \in \mathbb{Z}_q^{< n+d-1}[x]$$
 and $a \in \mathbb{Z}_q^{< n}[x]$, the

middle product $s \odot_d a$

is the middle d coefficients of $s \cdot a \in \mathbb{Z}_q^{<2(n-1)+d}[x].$

▶ MP-LWE_{*n,d,q*} for secret *s* concerns 'noisy random middle products' $(a \leftarrow \mathbb{Z}_q^{< n}[x], \ b \approx s \odot_d a \in \mathbb{Z}_q^{< d}[x]).$

Theorem 3: $\mathbb{Z}[\alpha]$ -to-MP Reduction

▶ For any order $\mathcal{L} = \mathbb{Z}[\alpha]$ with $d \leq \deg(\alpha) \leq n$, we have

 $\mathbb{Z}[\alpha]\text{-}\mathsf{LWE}_q \leq \mathsf{MP}\text{-}\mathsf{LWE}_{n,d,q}$

with error expansion $||V_{\alpha}||$ of, e.g., spherical Gaussians.

Proof sketch: rest of the talk...

• In every LWE problem, the 'product' $s \star a$ is a fixed \mathcal{R} -bilinear form

over, e.g., $\mathcal{R} = \mathbb{Z}_q$ or R_q .

• In every LWE problem, the 'product' $s \star a$ is a fixed \mathcal{R} -bilinear form

over, e.g., $\mathcal{R} = \mathbb{Z}_q$ or R_q .

Fixing bases for s, a, s * a, the bilinear form may be represented as a fixed 3-dimensional tensor T:

▶ In every LWE problem, the 'product' $s \star a$ is a fixed \mathcal{R} -bilinear form

over, e.g., $\mathcal{R}=\mathbb{Z}_q$ or $R_q.$

► Fixing bases for s, a, s ★ a, the bilinear form may be represented as a fixed 3-dimensional tensor T:

▶ In every LWE problem, the 'product' $s \star a$ is a fixed \mathcal{R} -bilinear form

over, e.g., $\mathcal{R}=\mathbb{Z}_q$ or $R_q.$

Fixing bases for s, a, s * a, the bilinear form may be represented as a fixed 3-dimensional tensor T:

a full basis of $d \times n$ Hankel matrices:

entry j, k given by j + k

(constant on anti-diagonals)

• Goal: transformation mapping $\mathbb{Z}[\alpha]$ -LWE samples to MP-LWE_{*n,d*} samples, and uniform ones to uniform ones.

• Goal: transformation mapping $\mathbb{Z}[\alpha]$ -LWE samples to MP-LWE_{*n,d*} samples, and uniform ones to uniform ones.

Say $d = \deg(\alpha) = n$ for simplicity. The (dual) $\mathbb{Z}[\alpha]$ -LWE tensor T is

$$T_{i,j,k} = \operatorname{Tr}(p_i^{\vee} \cdot p_j \cdot p_k) = \operatorname{Tr}(p_i^{\vee} \cdot \alpha^{j+k}),$$

where $\vec{p} = (1, \alpha, \alpha^2, \dots, \alpha^{n-1})$ is the power basis of $\mathbb{Z}[\alpha]$.

• Goal: transformation mapping $\mathbb{Z}[\alpha]$ -LWE samples to MP-LWE_{*n,d*} samples, and uniform ones to uniform ones.

Say $d = \deg(\alpha) = n$ for simplicity. The (dual) $\mathbb{Z}[\alpha]$ -LWE tensor T is

$$T_{i,j,k} = \operatorname{Tr}(p_i^{\vee} \cdot p_j \cdot p_k) = \operatorname{Tr}(p_i^{\vee} \cdot \alpha^{j+k}),$$

where $\vec{p} = (1, \alpha, \alpha^2, \dots, \alpha^{n-1})$ is the power basis of $\mathbb{Z}[\alpha]$.

So, each 'layer' T_i.. is a Hankel matrix, and we can factor:

• Goal: transformation mapping $\mathbb{Z}[\alpha]$ -LWE samples to MP-LWE_{*n,d*} samples, and uniform ones to uniform ones.

Say $d = \deg(\alpha) = n$ for simplicity. The (dual) $\mathbb{Z}[\alpha]$ -LWE tensor T is

$$T_{i,j,k} = \operatorname{Tr}(p_i^{\vee} \cdot p_j \cdot p_k) = \operatorname{Tr}(p_i^{\vee} \cdot \alpha^{j+k}),$$

where $\vec{p} = (1, \alpha, \alpha^2, \dots, \alpha^{n-1})$ is the power basis of $\mathbb{Z}[\alpha]$.

So, each 'layer' T_i.. is a Hankel matrix, and we can factor:

• Generally: T-LWE $\leq M$ -LWE for any T, M that factor as above.

It is easy to use Ring-LWE as a foundation for the hardness of various algebraic LWE problems, via simple and tight reductions.

- It is easy to use Ring-LWE as a foundation for the hardness of various algebraic LWE problems, via simple and tight reductions.
- Open: what other LWE problems have reductions from problems over multiple rings simultaneously?

- It is easy to use Ring-LWE as a foundation for the hardness of various algebraic LWE problems, via simple and tight reductions.
- Open: what other LWE problems have reductions from problems over multiple rings simultaneously?
- Open: hardness of Ring-LWE (over some fixed ring) based on multiple "unrelated" LWE problems?

- It is easy to use Ring-LWE as a foundation for the hardness of various algebraic LWE problems, via simple and tight reductions.
- Open: what other LWE problems have reductions from problems over multiple rings simultaneously?
- Open: hardness of Ring-LWE (over some fixed ring) based on multiple "unrelated" LWE problems?

Thanks! ePrint 2019/878