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Warm-up

v Construction A

v" Gram matrix and
quadratic form
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First observation

I
Given a subset C C FJ!, then 7~ 1(C) is a lattice in R” if and
only if C is a linear code (a linear subspace) in .

e Let by,..., b, be linearly independent vectors in R™. A
lattice A with basis (by,...,by,) is defined as

A ={uib; +... +upybp, u1,...,uy € Z}.

72 «+ (Z/57)? ~F%: x71

T

(z1,22) <= (21 (mod 5),z2 (mod 5))

3

1) = {u1(1,2) + u2(3,1), up,us € Z}, C={a(1,2), a € Fs5}



Construction A

|

Let C be a linear code in F)) and 7 be the reduction modulo p
componentwise on Z". The lattice Ac = 7~1(C) is said to have
been obtained via Construction A.



Construction A

|

Let C be a linear code in F)) and 7 be the reduction modulo p
componentwise on Z". The lattice Ac = 7~1(C) is said to have
been obtained via Construction A.

Since 0 € C, pe; € A¢ for all
canonical vectors e;, and hence
pZ™ is a sublattice of Ac (this
makes A a p-ary lattice).




Since A = {u1by + ... + upby, ui,...,uy € Z}, we may write

by
A=z eR" o= (u,...;upn) | * |, uly...,um €7
by,



Since A = {u1by + ... + upby, ui,...,uy € Z}, we may write

by
A=z eR" o= (u,...;upn) | * |, uly...,um €7
by,
Then for z,y € A
n bl V1
Ty = inyi:(ul,...,un) : (b? bg)
=1 b, U
b;-b; ... by-by, U1
= (ulv' 7un)
b, by ... b, b, Up,

Gram matrix



A Gram matrix is

= G n)=2( o)

7T_1(C) = {U1(1,2)+UQ(3, 1), U, Uz € Z}

[1P ]

We say “a” Gram matrix since it is not unique.



The Euclidean scalar product z -y = > 7" | x;y; is a symmetric
bilinear form, that is of the form b : R™ x R® — R, such that

1. b(z,y) = b(y,x) for all x,y € R”
2. b(x +y,z) =b(x,2) + b(y, ) for all z,y,z € R™
3. b(Az,y) = Ab(x,y) for all X € R, for all z,y € R™.
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It is furthermore positive definite, namely: b(x,z) > 0 for all
zeR™ x#0.



The Euclidean scalar product z -y = > 7" | x;y; is a symmetric
bilinear form, that is of the form b : R™ x R® — R, such that
1. b(z,y) = b(y,z) for all x,y € R™
2. b(x +y,z) =b(x,2) + b(y, ) for all z,y,z € R™
3. b(Az,y) = Ab(x,y) for all X € R, for all z,y € R™.
It is furthermore positive definite, namely: b(x,z) > 0 for all
zeR™ x#0.
This allows us to say

44
An integral lattice A is a free Z-module of

finite rank n endowed with a positive definite

symmetric bilinear form b : A x A — Z.
79



Summary

|
Given a linear code C C F)) and 7 the componentwise re-

duction modulo p on Z", 7=1(C) C R" is a lattice, obtained
by Construction A. It is equipped with a positive definite
symmetric bilinear form b given by the inner product.

(oroby oty (3 2)

72 + (Z/52)* ~F2 : n~!

T

(z1,22) <= (z1 (mod 5),zo (mod 5))

77HC) = {u1(1,2) +uz(3,1), ui,us € Z}, C = {a(1,2), a € F5}



Lattices from Number Fields

v Algebraic lattices
v' Construction A

V' Properties




Consider the sets

Q(V2) = {a+bV2, a,beQ}
ZV2] = {a+bV2, a,beZ}

and the maps

o1 a+bV2—a+bV2
g9 a+bvV2—a—bVv2.

Create the lattice o(Z[/2]) with
Z-basis (1,1),(v/2,—v/2) and

Gram matrix

|:o'1(1) 0'2(1):| |:O'1(1) 01(\[)
01(v2) a2(V2)] |o2(1) 0a2(v2)




The set Z[/2] is a free Z-module

of rank 2 endowed with a posi-
tive definite symmetric bilinear
form given by (z,y) — Tr(zy):

[ Tr(1) Tr(\@)}

Tr(v2)  Tr(2)
_ [o(D) 02(1)“01(1) 0’1(\/5)}

01(vV2) 02(V2)] [02(1) 02(V2)
2o
- 10 4]

where Tr(z) = o1(x)+o02(x) € Z
for x € Z[V/2].




Set ( = exp(2mi/p). Consider the sets

Q(G) = fao+ar+...+ap—2"? a; €Q for all i}
ZiGp) = {ao+ail+...+ a:p—QCp_Z, a; € Z for all i}

and the maps
or:C—C,r=1,...,p—1.

Let Tr(a) = 571—11 oi(a), a € Q((p).



Set ( = exp(2mi/p). Consider the sets

Q(G) = fao+ar+...+ap—2"? a; €Q for all i}
ZiGp) = {ao+ail+...+ a:p—QCp_Z, a; € Z for all i}

and the maps
or:C—C,r=1,...,p—1.

Let Tr(a) = Zf:_ll oi(a), o € Q((p). Let T denote the complex

conjugate of x for x € Z((p). Then (z,y) — Tr(zy) is a positive
definite symmetric bilinear form:

p—1
Tr(2Z) = ) oi(x)oi(x) >0,  #0.
1

(2



Set B = (1 - OZ[¢p)= {(1 = (a0 +ar + ... +ap-1¢P7?), a; €
Z for all i}.

Claim. B equipped with (z,y) — Tr(2y/p) is an integral
lattice.



Set P = (1= O)Z[G)= {(1 = O)(ao + a1 + ... + ap 1CP2), a; €
Z for all i}.
Claim. B equipped with (z,y) — Tr(2y/p) is an integral
lattice.

o Tr(z) € Z for z € Z[(].

o Tr(xy) € pZ



Set B = (1—-)Z[¢)={(1=(apo+arl+ ...+ ap-1(P72), a; €
Z for all i}.
Claim. B equipped with (z,y) — Tr(2y/p) is an integral
lattice.
o Tr(z) € Z for z € Z[(].
o Tr(xy) € pZ
For p = 3, we have (3 = *HTM, P has Z-basis
(1 —-¢3),(1 —(3)¢3 =2¢3+ 1. Then
o(B) = {uo(1 — ) + u1(1 4 2¢3), ug,u1 € Z} and



Set B = (1—-)Z[¢)={(1=(apo+arl+ ...+ ap-1(P72), a; €
Z for all i}.
Claim. B equipped with (z,y) — Tr(2y/p) is an integral
lattice.
o Tr(z) € Z for z € Z[(].
o Tr(xy) € pZ
For p = 3, we have (3 = *HTM, P has Z-basis
(1 —-¢3),(1 —(3)¢3 =2¢3+ 1. Then
o(B) = {uo(1 — ) + u1(1 4 2¢3), ug,u1 € Z} and

1/6 -3\ (2 -1y  JJSU0000
3\-3 6) \-1 2) s

This is Ao, the hexagonal lattice. ~— °.°.".". """

.......
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Given a linear code C C Fj) and 7 the componentwise reduction
modulo 1 — ¢ on Z[¢]", 771(C) C R™ equipped with

(x,y) — Tr(zy/p) is an integral lattice obtained by
Construction A.



Given a linear code C C Fj) and 7 the componentwise reduction
modulo 1 — ¢ on Z[¢]", 7= }(C) C R" equipped with

(x,y) — Tr(zy/p) is an integral lattice obtained by
Construction A.



The volume vol(A) of a lattice A is

vol(A) = 4/ (b(b;, b;))i -

e For C a linear code of dimension m

vol(Ag) = /p—2m

(Ag) = (=1)P=1/2pp=2),



The dual lattice A* of a lattice A is
N={zeR"|z-y (bzr,y)) € Zforall y € A}.

If A = A*, the lattice is called unimodular.
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|
The dual code C of a linear code C is

Cl:{yEFZ\x-yzOforallmEC}.

If C = Ct, the lattice is called self-dual.



The dual lattice A* of a lattice A is
N={zeR"|z-y (bzr,y)) € Zforall y € A}.

If A = A*, the lattice is called unimodular.
|
The dual code C* of a linear code C is

Cl:{yEIFZ\x-yzOforallmEC}.

If C = Ct, the lattice is called self-dual.

|
Let C C IFZ be a linear code of dimension m with C ¢ Ct. Then

AZ - Acl.

If C is self-dual, then A¢ is unimodular. (I'cr € I'; + volume
argument ).



Summary

Given a linear code C C F) of dimension m and w
the componentwise reduction modulo 1 — ¢ on ZI[(]",
Ac = 7 1(C) C R™ equipped with (z = (21,...,2Zn),y =
(Y1,---syn)) = >y Tr(x;yi/p) is an integral lattice ob-
tained by Construction A. It has rank n(p — 1), volume
/pr—2m. If C is self-dual, then A¢ is unimodular.
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e May want normalization or not. If p = 2, (, = —1.



Summary

Given a linear code C C F) of dimension m and w
the componentwise reduction modulo 1 — ¢ on ZI[(]",
Ac = 7 1(C) C R™ equipped with (z = (21,...,2Zn),y =
(Y1,---syn)) = >y Tr(x;yi/p) is an integral lattice ob-
tained by Construction A. It has rank n(p — 1), volume
/pr—2m. If C is self-dual, then A¢ is unimodular.

e May want normalization or not. If p = 2, (, = —1.

e Applications to (not exhaustive): (1) encoder design
(labelling), (2) constructions of “interesting” (extremal,
dense) lattices, (3) physical network coding.



A Quadratic Form Approach to Construction A of
Lattices over Cyclic Algebras
(joint work with G. Berhuy)

v Number fields (ideas)
v Cyclic algebras (“ideas”)



Question: is it possible to add a multiplicative structure to
Construction A?



Question: is it possible to add a multiplicative structure to
Construction A?
e Lattices are inherently additive.

e Algebras and number fields (not copies of them) also come
with a multiplication.

e Would like to retain “dual” properties.



First idea

A: b(x,y) C:z-y
A b(v,y) €Z | CH:x -y

Let M be an integral lattice, and let N be a sublattice of M
such that pM C N C M. Assume also that b(z,y) € pZ for all
x € M and y € N. Then b induces on M a symmetric
Z-bilinear form b : M x M — Z, which in turn induces a
symmetric [Fp-bilinear form

_ M/N x M/N —F,
([N, [yln) ¥ [b(2, y)lp-



First idea

A: b(x,y) C:z-y
A b(v,y) €Z | CH:x -y

Let M be an integral lattice, and let N be a sublattice of M
such that pM C N C M. Assume also that b(z,y) € pZ for all
x € M and y € N. Then b induces on M a symmetric
Z-bilinear form b : M x M — Z, which in turn induces a
symmetric [Fp-bilinear form

_ M/N x M/N —F,
([N, [yln) ¥ [b(2, y)lp-

Furthermore b is nondegenerate (b([z]x, [y]n) = 0 for all [y]y
implies [z]y = 0) if and only if pM* N M = N.



Number fields: ingredients

|

a number field L e complex conjugation * induces an
automorphism of L e a prime number p e an ideal I of Op,
containing p such that I* = I e a Z-linear map s : O — Z.

(H1) The linear map s induces on Or,/I a well-defined
nondegenerate symmetric F,-bilinear map

OL/IxOL/] — T,
([ ) e s

(H3) There exists a nonzero monic polynomial i € Fp[X] such
that we have an isomorphism of F,-algebras

F,[X]/(7) = Op /1.



Number fields: ingredients

|

a number field L e complex conjugation * induces an
automorphism of L e a prime number p e an ideal I of Op,
containing p such that I* = I e a Z-linear map s : O — Z.

(H1) The linear map s induces on Or,/I a well-defined
nondegenerate symmetric F,-bilinear map

OL/IxOL/] — T,
([ ) e s

(H3) There exists a nonzero monic polynomial i € Fp[X] such
that we have an isomorphism of F,-algebras

F,[X]/(7) = Op /1.

(H1) becomes finding the “right” trace form, (Hs) is about
finding number fields with “right” rings of integers.



Number fields: polynomial codes

(Ha)Fp[X]/ (1) = OL/1.

Ideals of O /1 <= ideals of F,[X] containing i <= monic
divisors of 1 <= generator polynomials of polynomial codes.



Number fields: polynomial codes

(Ha)Fp[X]/ (1) = OL/1.

Ideals of O /1 <= ideals of F,[X] containing i <= monic
divisors of 1 <= generator polynomials of polynomial codes.

Complex conjugation is an automorphism of L = it induces an
automorphism of O = which induces an automorphism of
Or/I, since I* = I, still denoted by * = complex conjugation
induces a correspondence between ideals, hence between monic
divisors of 7. If g is such a monic divisor, g, is the
corresponding monic divisor of 7.

Theorem. If the ideal I’/ corresponds to the ideal generated
by g, then I’/ is self-orthogonal if and only if & | ,g, and
self-dual if and only if g, g = L.



Number fields: An Example

L= @(CSp) - K1K2 ° Kl = Q(C8)7K2 = Q(Cp)7 p= 37 5) 117 137
19.



Number fields: An Example

I

L =Q(Gp) = K1Kz o K1 =Q(Cs), K2 = Q((p), p = 3, 5, 11, 13,
19. We will build polynomial codes over Fy,[X]/(fiq, q) for

a1 = (g:

OL/onL = OK1/pOK1 = ]FP[X:I/(HOtl,Q)

We have fi,, g = X* + 1. Take g to be X* 4+ X +2 (mod 3),
X2 +2 (mod 5), X?+3X +10 (mod 11), X2 +5 (mod 13),
respectively X2 + 6X + 18 (mod 19). For these cases,

9.9 = Hqa, @ and it follows from the theorem that ct=c.
The volume of the lattice under the trace form of (H1) is

controlled by the introduction of a twisting element A\; = 1 in

the trace form.
The degree of L is 4(p — 1) So for p = 3 we get a unimodular
lattice in dimension 8 which is even, namely FEg.



Cyclic Algebras

|

L/E a cyclic Galois number field extension of group G = (o)
and degree n e L/Q is totally real or CM e complex conjugation
induces a ring automorphism on k (possibly trivial).



Cyclic Algebras

|

L/E a cyclic Galois number field extension of group G = (o)
and degree n e L/Q is totally real or CM e complex conjugation
induces a ring automorphism on k (possibly trivial).

v € k* such that vy* = 1 e the cyclic algebra B = (v, L/k,0):

n—1
B:L@eL@---@e"*L:@eﬁL
=0

where e” = v and ae = ea’ for all a € L. Note that e € B*,
and that e™! = en~ 1471,



Cyclic Algebras

|

L/E a cyclic Galois number field extension of group G = (o)
and degree n e L/Q is totally real or CM e complex conjugation
induces a ring automorphism on k (possibly trivial).

v € k* such that vy* = 1 e the cyclic algebra B = (v, L/k,0):

n—1
B:L@dﬂy~@&*L:&%@
=0

where e” = v and ae = ea’ for all a € L. Note that e € B*,
and that e™! = en~ 1471,
An involution on B: 7: B — B, such that for all z; € L

n—1 n—1
T(E exj) = E zie .
=0 =0

n—1
The order @ JOr.
§=0



. Define a suitable trace form.
n—1

. Consider the quotient @ /O /P (P two-sided).

j=0

. Set [, = Or,/B. Identify this quotient with
Fq[X;7]/(X™ — [y]g) which leads to consider
skew-polynomial codes.

. Define conditions on skew-polynomial codes for getting

self-dual codes (with respect with the trace form induced
by that of the algebra).

. Use an argument of volume (and a possible twisting
element) to deduce unimodularity of the lattice.



Summary

| "
zn Z[c] oL Peo.
J =0
Z/pZ  Z[¢]/(1 =) OL/1 @eﬂoL/P
Fp Fp OL/T ~TFp[X]/(m) F [X 0’]/(X = [lp)
glm g1 X" =y
polynomial codes  skew-polynomial codes
z-y >, Tr(zy;) Trpo(Az*y) Try, jo(Trdp(AT(2)y))
eeee occooe
eeee ocoooe coocee
ecee ecee cssss
eece oocoo ccecee
[0 [0 ;1\ eecoe




https://arxiv.org/abs/2004.01641
Ebeling, “Lattices and Codes”



