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First observation

Given a subset C ⊂ Fnp , then π−1(C) is a lattice in Rn if and
only if C is a linear code (a linear subspace) in Fnp .

• Let b1, . . . ,bn be linearly independent vectors in Rn. A
lattice Λ with basis (b1, . . . ,bn) is defined as

Λ = {u1b1 + . . .+ unbn, u1, . . . , um ∈ Z}.

(x1, x2)← [ (x1 (mod 5), x2 (mod 5))

Z2 ← (Z/5Z)2 ' F2
5 : π−1

π−1(C) = {u1(1, 2) + u2(3, 1), u1, u2 ∈ Z}, C = {a(1, 2), a ∈ F5}



Construction A

Let C be a linear code in Fnp and π be the reduction modulo p
componentwise on Zn. The lattice ΛC = π−1(C) is said to have
been obtained via Construction A.

Since 0 ∈ C, pei ∈ ΛC for all
canonical vectors ei, and hence
pZn is a sublattice of ΛC (this
makes Λ a p-ary lattice).
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Since Λ = {u1b1 + . . .+ unbn, u1, . . . , um ∈ Z}, we may write

Λ =

x ∈ Rn, x = (u1, . . . , un)

b1
...
bn

 , u1, . . . , um ∈ Z



Then for x, y ∈ Λ

x·y =
n∑
i=1

xiyi = (u1, . . . , un)

b1
...
bn

(bT1 . . . bTn
)v1...

vn


= (u1, . . . , un)

b1 · b1 . . . b1 · bn
...

bn · b1 . . . bn · bn


︸ ︷︷ ︸

Gram matrix

v1...
vn
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π−1(C) = {u1(1, 2)+u2(3, 1), u1, u2 ∈ Z}

A Gram matrix is(
5 5
5 10

)
= 5

(
1 1
1 2

)
.

We say “a” Gram matrix since it is not unique.



The Euclidean scalar product x · y =
∑n

i=1 xiyi is a symmetric
bilinear form, that is of the form b : Rn × Rn → R, such that

1. b(x, y) = b(y, x) for all x, y ∈ Rn

2. b(x+ y, z) = b(x, z) + b(y, z) for all x, y, z ∈ Rn

3. b(λx, y) = λb(x, y) for all λ ∈ R, for all x, y ∈ Rn.

It is furthermore positive definite, namely: b(x, x) > 0 for all
x ∈ Rn, x 6= 0.
This allows us to say

“An integral lattice Λ is a free Z-module of
finite rank n endowed with a positive definite
symmetric bilinear form b : Λ × Λ → Z.

”
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Summary

Given a linear code C ⊂ Fnp and π the componentwise re-
duction modulo p on Zn, π−1(C) ⊂ Rn is a lattice, obtained
by Construction A. It is equipped with a positive definite
symmetric bilinear form b given by the inner product.(

b(b1,b1) b(b1,b2)
b(b2,b1) b(b1,b1)

)
=

(
5 5
5 10

)
.

(x1, x2)← [ (x1 (mod 5), x2 (mod 5))

Z2 ← (Z/5Z)2 ' F2
5 : π−1

π−1(C) = {u1(1, 2) + u2(3, 1), u1, u2 ∈ Z}, C = {a(1, 2), a ∈ F5}



Lattices from Number Fields

X Algebraic lattices

X Construction A

X Properties
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Consider the sets

Q(
√

2) = {a+ b
√

2, a, b ∈ Q}
Z[
√

2] = {a+ b
√

2, a, b ∈ Z}

and the maps

σ1 : a+ b
√

2 7→ a+ b
√

2

σ2 : a+ b
√

2 7→ a− b
√

2.

Create the lattice σ(Z[
√

2]) with
Z-basis (1, 1), (

√
2,−
√

2) and
Gram matrix[
σ1(1) σ2(1)

σ1(
√

2) σ2(
√

2)

] [
σ1(1) σ1(

√
2)

σ2(1) σ2(
√

2)

]
=

[
2 0
0 4

]
.
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The set Z[
√

2] is a free Z-module
of rank 2 endowed with a posi-
tive definite symmetric bilinear
form given by (x, y) 7→ Tr(xy):[

Tr(1) Tr(
√

2)

Tr(
√

2) Tr(2)

]
=

[
σ1(1) σ2(1)

σ1(
√

2) σ2(
√

2)

] [
σ1(1) σ1(

√
2)

σ2(1) σ2(
√

2)

]
=

[
2 0
0 4

]
where Tr(x) = σ1(x)+σ2(x) ∈ Z
for x ∈ Z[

√
2].
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Set ζ = exp(2πi/p). Consider the sets

Q(ζp) = {a0 + a1ζ + . . .+ ap−2ζ
p−2, ai ∈ Q for all i}

Z[ζp] = {a0 + a1ζ + . . .+ ap−2ζ
p−2, ai ∈ Z for all i}

and the maps

σr : ζ 7→ ζr, r = 1, . . . , p− 1.

Let Tr(α) =
∑p−1

i=1 σi(α), α ∈ Q(ζp).

Let x denote the complex
conjugate of x for x ∈ Z(ζp). Then (x, y) 7→ Tr(xy) is a positive
definite symmetric bilinear form:

Tr(xx) =

p−1∑
i=1

σi(x)σi(x) > 0, x 6= 0.
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Set P = (1− ζ)Z[ζp]= {(1− ζ)(a0 + a1ζ + . . .+ ap−1ζ
p−2), ai ∈

Z for all i}.
Claim. P equipped with (x, y) 7→ Tr(xy/p) is an integral
lattice.

• Tr(x) ∈ Z for x ∈ Z[ζ].

• Tr(xy) ∈ pZ
For p = 3, we have ζ3 = −1+i

√
3

2 , P has Z-basis
(1− ζ3), (1− ζ3)ζ3 = 2ζ3 + 1. Then
σ(P) = {u0(1− ζ3) + u1(1 + 2ζ3), u0, u1 ∈ Z} and

1

3

(
6 −3
−3 6

)
=

(
2 −1
−1 2

)
.

This is A2, the hexagonal lattice.
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Given a linear code C ⊂ Fnp and π the componentwise reduction
modulo 1− ζ on Z[ζ]n, π−1(C) ⊂ Rn equipped with
(x, y) 7→ Tr(xy/p) is an integral lattice obtained by
Construction A.



Given a linear code C ⊂ Fnp and π the componentwise reduction
modulo 1− ζ on Z[ζ]n, π−1(C) ⊂ Rn equipped with
(x, y) 7→ Tr(xy/p) is an integral lattice obtained by
Construction A.



The volume vol(Λ) of a lattice Λ is

vol(Λ) =
√

(b(bi,bj))i,j .

• For C a linear code of dimension m

vol(ΛC) =
√
pn−2m

(∆Q(ζ) = (−1)(p−1)/2pp−2).



The dual lattice Λ∗ of a lattice Λ is

Λ∗ = {x ∈ Rn | x · y (b(x, y)) ∈ Z for all y ∈ Λ}.

If Λ = Λ∗, the lattice is called unimodular.

The dual code C⊥ of a linear code C is

C⊥ = {y ∈ Fnp | x · y = 0 for all x ∈ C}.

If C = C⊥, the lattice is called self-dual.

Let C ⊂ Fnp be a linear code of dimension m with C ⊂ C⊥. Then

Λ∗C = ΛC⊥ .

If C is self-dual, then ΛC is unimodular. (ΓC⊥ ⊆ Γ∗C + volume
argument ).
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Summary

Given a linear code C ⊂ Fnp of dimension m and π
the componentwise reduction modulo 1 − ζ on Z[ζ]n,
ΛC = π−1(C) ⊂ Rn equipped with (x = (x1, . . . , xn), y =
(y1, . . . , yn)) 7→

∑n
i=1 Tr(xiyi/p) is an integral lattice ob-

tained by Construction A. It has rank n(p − 1), volume√
pn−2m. If C is self-dual, then ΛC is unimodular.

• May want normalization or not. If p = 2, ζp = −1.

• Applications to (not exhaustive): (1) encoder design
(labelling), (2) constructions of “interesting” (extremal,
dense) lattices, (3) physical network coding.
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A Quadratic Form Approach to Construction A of
Lattices over Cyclic Algebras
(joint work with G. Berhuy)

X Number fields (ideas)

X Cyclic algebras (“ideas”)



Question: is it possible to add a multiplicative structure to
Construction A?

• Lattices are inherently additive.

• Algebras and number fields (not copies of them) also come
with a multiplication.

• Would like to retain “dual” properties.
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First idea

Λ: b(x, y) C: x · y
Λ∗: b(x, y) ∈ Z C⊥: x · y

Let M be an integral lattice, and let N be a sublattice of M
such that pM ⊂ N ⊂M . Assume also that b(x, y) ∈ pZ for all
x ∈M and y ∈ N . Then b induces on M a symmetric
Z-bilinear form b : M ×M → Z, which in turn induces a
symmetric Fp-bilinear form

b :
M/N ×M/N −→ Fp

([x]N , [y]N ) 7−→ [b(x, y)]p.
.

Furthermore b is nondegenerate (b([x]N , [y]N ) = 0 for all [y]N
implies [x]N = 0) if and only if pM∗ ∩M = N.
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Number fields: ingredients

a number field L • complex conjugation ∗ induces an
automorphism of L • a prime number p • an ideal I of OL
containing p such that I∗ = I • a Z-linear map s : OL → Z.

(H1) The linear map s induces on OL/I a well-defined
nondegenerate symmetric Fp-bilinear map

ϕ :
OL/I ×OL/I −→ Fp

([x]I , [y]I) 7−→ [s(x∗y)]p.

(H2) There exists a nonzero monic polynomial µ ∈ Fp[X] such
that we have an isomorphism of Fp-algebras

Fp[X]/(µ) ' OL/I.

(H1) becomes finding the “right” trace form, (H2) is about
finding number fields with “right” rings of integers.



Number fields: ingredients

a number field L • complex conjugation ∗ induces an
automorphism of L • a prime number p • an ideal I of OL
containing p such that I∗ = I • a Z-linear map s : OL → Z.

(H1) The linear map s induces on OL/I a well-defined
nondegenerate symmetric Fp-bilinear map

ϕ :
OL/I ×OL/I −→ Fp

([x]I , [y]I) 7−→ [s(x∗y)]p.

(H2) There exists a nonzero monic polynomial µ ∈ Fp[X] such
that we have an isomorphism of Fp-algebras

Fp[X]/(µ) ' OL/I.

(H1) becomes finding the “right” trace form, (H2) is about
finding number fields with “right” rings of integers.



Number fields: polynomial codes

(H2):Fp[X]/(µ) ' OL/I.

Ideals of OL/I ⇐⇒ ideals of Fp[X] containing µ ⇐⇒ monic
divisors of µ ⇐⇒ generator polynomials of polynomial codes.

Complex conjugation is an automorphism of L ⇒ it induces an
automorphism of OL ⇒ which induces an automorphism of
OL/I, since I∗ = I, still denoted by ∗ ⇒ complex conjugation
induces a correspondence between ideals, hence between monic
divisors of µ. If g is such a monic divisor, g∗ is the
corresponding monic divisor of µ.

Theorem. If the ideal I ′/I corresponds to the ideal generated
by g, then I ′/I is self-orthogonal if and only if µ | g∗g, and
self-dual if and only if g∗g = µ.
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Number fields: An Example

L = Q(ζ8p) = K1K2 • K1 = Q(ζ8),K2 = Q(ζp), p = 3, 5, 11, 13,
19.

We will build polynomial codes over Fp[X]/(µ̄α1,Q) for
α1 = ζ8:

OL/p2OL ' OK1/pOK1 ' Fp[X]/(µα1,Q)

We have µα1,Q = X4 + 1. Take g to be X2 +X + 2 (mod 3),
X2 + 2 (mod 5), X2 + 3X + 10 (mod 11), X2 + 5 (mod 13),
respectively X2 + 6X + 18 (mod 19). For these cases,
g∗g = µα1,Q and it follows from the theorem that C⊥ = C.
The volume of the lattice under the trace form of (H1) is

controlled by the introduction of a twisting element λ1 =
1

4
in

the trace form.
The degree of L is 4(p− 1) So for p = 3 we get a unimodular
lattice in dimension 8 which is even, namely E8.
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Cyclic Algebras

L/k a cyclic Galois number field extension of group G = 〈σ〉
and degree n • L/Q is totally real or CM • complex conjugation
induces a ring automorphism on k (possibly trivial).

γ ∈ k× such that γγ∗ = 1 • the cyclic algebra B = (γ, L/k, σ):

B = L⊕ eL⊕ · · · ⊕ en−1L =
n−1⊕
j=0

ejL

where en = γ and ae = eaσ for all a ∈ L. Note that e ∈ B×,
and that e−1 = en−1γ−1.
An involution on B: τ : B → B, such that for all xj ∈ L

τ(
n−1∑
j=0

ejxj) =
n−1∑
j=0

x∗je
−j .

The order
n−1⊕
j=0

ejOL.
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where en = γ and ae = eaσ for all a ∈ L. Note that e ∈ B×,
and that e−1 = en−1γ−1.
An involution on B: τ : B → B, such that for all xj ∈ L

τ(

n−1∑
j=0

ejxj) =

n−1∑
j=0

x∗je
−j .

The order

n−1⊕
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ejOL.



1. Define a suitable trace form.

2. Consider the quotient

n−1⊕
j=0

ejOL/P (P two-sided).

3. Set Fq = OL/P. Identify this quotient with
Fq[X;σ]/(Xn − [γ]P) which leads to consider
skew-polynomial codes.

4. Define conditions on skew-polynomial codes for getting
self-dual codes (with respect with the trace form induced
by that of the algebra).

5. Use an argument of volume (and a possible twisting
element) to deduce unimodularity of the lattice.



Summary

Zn Z[ζ]n OL

n−1⊕
j=0

ejOL

Z/pZ Z[ζ]/(1− ζ) OL/I

n−1⊕
j=0

ejOL/P

Fn
p Fn

p OL/I ' Fp[X]/(µ) Fq[X;σ]/(Xn − [γ]P)
C C g|µ g|Xn − [γ]P

polynomial codes skew-polynomial codes
x · y

∑
i Tr(xiyi) TrL/Q(λx∗y) Trk/Q(TrdB(λτ(x)y))

π−1



https://arxiv.org/abs/2004.01641
Ebeling, “Lattices and Codes”


