(A Quadratic Form Approach to) Construction A of Lattices

F. Oggier

Warm-up

✓ Construction A✓ Gram matrix and quadratic form

First observation

Given a subset $\mathcal{C} \subset \mathbb{F}_p^n$, then $\pi^{-1}(\mathcal{C})$ is a lattice in \mathbb{R}^n if and only if \mathcal{C} is a linear code (a linear subspace) in \mathbb{F}_p^n .

Let b₁,..., b_n be linearly independent vectors in ℝⁿ. A lattice Λ with basis (b₁,..., b_n) is defined as

$$\Lambda = \{u_1\mathbf{b}_1 + \ldots + u_n\mathbf{b}_n, \ u_1, \ldots, u_m \in \mathbb{Z}\}.$$

 $\pi^{-1}(\mathcal{C}) = \{u_1(1,2) + u_2(3,1), u_1, u_2 \in \mathbb{Z}\}, \ \mathcal{C} = \{a(1,2), a \in \mathbb{F}_5\}$

Construction A

Let \mathcal{C} be a linear code in \mathbb{F}_p^n and π be the reduction modulo p componentwise on \mathbb{Z}^n . The lattice $\Lambda_C = \pi^{-1}(\mathcal{C})$ is said to have been obtained via Construction A.

Construction A

Let \mathcal{C} be a linear code in \mathbb{F}_p^n and π be the reduction modulo p componentwise on \mathbb{Z}^n . The lattice $\Lambda_C = \pi^{-1}(\mathcal{C})$ is said to have been obtained via Construction A.

Since $\mathbf{0} \in \mathcal{C}$, $p\mathbf{e}_i \in \Lambda_C$ for all canonical vectors \mathbf{e}_i , and hence $p\mathbb{Z}^n$ is a sublattice of Λ_C (this makes Λ a *p*-ary lattice).

Since $\Lambda = \{u_1 \mathbf{b}_1 + \ldots + u_n \mathbf{b}_n, u_1, \ldots, u_m \in \mathbb{Z}\}$, we may write

$$\Lambda = \left\{ x \in \mathbb{R}^n, \ x = (u_1, \dots, u_n) \begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_n \end{pmatrix}, \ u_1, \dots, u_m \in \mathbb{Z} \right\}$$

Since $\Lambda = \{u_1 \mathbf{b}_1 + \ldots + u_n \mathbf{b}_n, u_1, \ldots, u_m \in \mathbb{Z}\}$, we may write

$$\Lambda = \left\{ x \in \mathbb{R}^n, \ x = (u_1, \dots, u_n) \begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_n \end{pmatrix}, \ u_1, \dots, u_m \in \mathbb{Z} \right\}$$

Then for $x, y \in \Lambda$

$$\begin{aligned} x \cdot y &= \sum_{i=1}^{n} x_i y_i = (u_1, \dots, u_n) \begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_n \end{pmatrix} \begin{pmatrix} \mathbf{b}_1^T & \dots & \mathbf{b}_n^T \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \\ &= (u_1, \dots, u_n) \underbrace{\begin{pmatrix} \mathbf{b}_1 \cdot \mathbf{b}_1 & \dots & \mathbf{b}_1 \cdot \mathbf{b}_n \\ \vdots & & \\ \mathbf{b}_n \cdot \mathbf{b}_1 & \dots & \mathbf{b}_n \cdot \mathbf{b}_n \end{pmatrix}}_{\mathbf{Gram matrix}} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \end{aligned}$$

$$\pi^{-1}(\mathcal{C}) = \{ u_1(1,2) + u_2(3,1), \ u_1, u_2 \in \mathbb{Z} \}$$

We say "a" Gram matrix since it is not unique.

The Euclidean scalar product $x \cdot y = \sum_{i=1}^{n} x_i y_i$ is a symmetric bilinear form, that is of the form $b : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, such that

1.
$$b(x, y) = b(y, x)$$
 for all $x, y \in \mathbb{R}^n$
2. $b(x + y, z) = b(x, z) + b(y, z)$ for all $x, y, z \in \mathbb{R}^n$
3. $b(\lambda x, y) = \lambda b(x, y)$ for all $\lambda \in \mathbb{R}$, for all $x, y \in \mathbb{R}^n$.

The Euclidean scalar product $x \cdot y = \sum_{i=1}^{n} x_i y_i$ is a symmetric bilinear form, that is of the form $b : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, such that

1.
$$b(x, y) = b(y, x)$$
 for all $x, y \in \mathbb{R}^n$
2. $b(x + y, z) = b(x, z) + b(y, z)$ for all $x, y, z \in \mathbb{R}^n$
3. $b(\lambda x, y) = \lambda b(x, y)$ for all $\lambda \in \mathbb{R}$, for all $x, y \in \mathbb{R}^n$.

It is furthermore *positive definite*, namely: b(x, x) > 0 for all $x \in \mathbb{R}^n, x \neq 0$.

The Euclidean scalar product $x \cdot y = \sum_{i=1}^{n} x_i y_i$ is a symmetric bilinear form, that is of the form $b : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, such that

1.
$$b(x, y) = b(y, x)$$
 for all $x, y \in \mathbb{R}^n$
2. $b(x + y, z) = b(x, z) + b(y, z)$ for all $x, y, z \in \mathbb{R}^n$
3. $b(\lambda x, y) = \lambda b(x, y)$ for all $\lambda \in \mathbb{R}$, for all $x, y \in \mathbb{R}^n$.
It is furthermore *positive definite*, namely: $b(x, x) > 0$ for all $x \in \mathbb{R}^n, x \neq 0$.
This allows us to say

An integral lattice Λ is a free \mathbb{Z} -module of finite rank n endowed with a positive definite symmetric bilinear form $b : \Lambda \times \Lambda \to \mathbb{Z}$.

Given a linear code $\mathcal{C} \subset \mathbb{F}_p^n$ and π the componentwise reduction modulo p on \mathbb{Z}^n , $\pi^{-1}(\mathcal{C}) \subset \mathbb{R}^n$ is a lattice, obtained by Construction A. It is equipped with a positive definite symmetric bilinear form b given by the inner product.

$$\begin{pmatrix} b(\mathbf{b}_1,\mathbf{b}_1) & b(\mathbf{b}_1,\mathbf{b}_2) \\ b(\mathbf{b}_2,\mathbf{b}_1) & b(\mathbf{b}_1,\mathbf{b}_1) \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 5 & 10 \end{pmatrix}.$$

 $\pi^{-1}(\mathcal{C}) = \{u_1(1,2) + u_2(3,1), u_1, u_2 \in \mathbb{Z}\}, \ \mathcal{C} = \{a(1,2), a \in \mathbb{F}_5\}$

Lattices from Number Fields

- $\checkmark\,$ Algebraic lattices
- $\checkmark\,$ Construction A
- \checkmark Properties

Consider the sets

$$\begin{aligned} \mathbb{Q}(\sqrt{2}) &= \{a+b\sqrt{2}, \ a,b\in\mathbb{Q}\} \\ \mathbb{Z}[\sqrt{2}] &= \{a+b\sqrt{2}, \ a,b\in\mathbb{Z}\} \end{aligned}$$

and the maps

$$\sigma_1: \quad a + b\sqrt{2} \mapsto a + b\sqrt{2}$$

$$\sigma_2: \quad a + b\sqrt{2} \mapsto a - b\sqrt{2}.$$

Create the lattice $\sigma(\mathbb{Z}[\sqrt{2}])$ with \mathbb{Z} -basis $(1,1), (\sqrt{2}, -\sqrt{2})$ and Gram matrix

$$\begin{bmatrix} \sigma_1(1) & \sigma_2(1) \\ \sigma_1(\sqrt{2}) & \sigma_2(\sqrt{2}) \end{bmatrix} \begin{bmatrix} \sigma_1(1) & \sigma_1(\sqrt{2}) \\ \sigma_2(1) & \sigma_2(\sqrt{2}) \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

The set $\mathbb{Z}[\sqrt{2}]$ is a free \mathbb{Z} -module of rank 2 endowed with a positive definite symmetric bilinear form given by $(x, y) \mapsto \operatorname{Tr}(xy)$:

$$\begin{bmatrix} \operatorname{Tr}(1) & \operatorname{Tr}(\sqrt{2}) \\ \operatorname{Tr}(\sqrt{2}) & \operatorname{Tr}(2) \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_1(1) & \sigma_2(1) \\ \sigma_1(\sqrt{2}) & \sigma_2(\sqrt{2}) \end{bmatrix} \begin{bmatrix} \sigma_1(1) & \sigma_1(\sqrt{2}) \\ \sigma_2(1) & \sigma_2(\sqrt{2}) \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

where $\operatorname{Tr}(x) = \sigma_1(x) + \sigma_2(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}[\sqrt{2}]$. Set $\zeta = \exp(2\pi i/p)$. Consider the sets $\mathbb{Q}(\zeta_p) = \{a_0 + a_1\zeta + \ldots + a_{p-2}\zeta^{p-2}, a_i \in \mathbb{Q} \text{ for all } i\}$ $\mathbb{Z}[\zeta_p] = \{a_0 + a_1\zeta + \ldots + a_{p-2}\zeta^{p-2}, a_i \in \mathbb{Z} \text{ for all } i\}$

and the maps

$$\sigma_r: \zeta \mapsto \zeta^r, \ r = 1, \dots, p-1.$$

Let $\operatorname{Tr}(\alpha) = \sum_{i=1}^{p-1} \sigma_i(\alpha), \ \alpha \in \mathbb{Q}(\zeta_p).$

Set $\zeta = \exp(2\pi i/p)$. Consider the sets $\mathbb{Q}(\zeta_p) = \{a_0 + a_1\zeta + \ldots + a_{p-2}\zeta^{p-2}, a_i \in \mathbb{Q} \text{ for all } i\}$ $\mathbb{Z}[\zeta_p] = \{a_0 + a_1\zeta + \ldots + a_{p-2}\zeta^{p-2}, a_i \in \mathbb{Z} \text{ for all } i\}$

and the maps

$$\sigma_r: \zeta \mapsto \zeta^r, \ r = 1, \dots, p-1.$$

Let $\operatorname{Tr}(\alpha) = \sum_{i=1}^{p-1} \sigma_i(\alpha), \ \alpha \in \mathbb{Q}(\zeta_p)$. Let \overline{x} denote the complex conjugate of x for $x \in \mathbb{Z}(\zeta_p)$. Then $(x, y) \mapsto \operatorname{Tr}(x\overline{y})$ is a positive definite symmetric bilinear form:

$$\operatorname{Tr}(x\overline{x}) = \sum_{i=1}^{p-1} \sigma_i(x) \overline{\sigma_i(x)} > 0, \ x \neq 0.$$

Set $\mathfrak{P} = (1-\zeta)\mathbb{Z}[\zeta_p] = \{(1-\zeta)(a_0 + a_1\zeta + \ldots + a_{p-1}\zeta^{p-2}), a_i \in \mathbb{Z} \text{ for all } i\}.$ Claim. \mathfrak{P} equipped with $(x, y) \mapsto \operatorname{Tr}(x\overline{y}/p)$ is an integral lattice. Set $\mathfrak{P} = (1-\zeta)\mathbb{Z}[\zeta_p] = \{(1-\zeta)(a_0 + a_1\zeta + \ldots + a_{p-1}\zeta^{p-2}), a_i \in \mathbb{Z} \text{ for all } i\}.$ Claim. \mathfrak{P} equipped with $(x, y) \mapsto \operatorname{Tr}(x\overline{y}/p)$ is an integral lattice.

- $\operatorname{Tr}(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}[\zeta]$.
- $\operatorname{Tr}(x\overline{y}) \in p\mathbb{Z}$

Set $\mathfrak{P} = (1-\zeta)\mathbb{Z}[\zeta_p] = \{(1-\zeta)(a_0+a_1\zeta+\ldots+a_{p-1}\zeta^{p-2}), a_i \in \mathbb{Z} \text{ for all } i\}.$

Claim. \mathfrak{P} equipped with $(x, y) \mapsto \operatorname{Tr}(x\overline{y}/p)$ is an integral lattice.

- $\operatorname{Tr}(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}[\zeta]$.
- $\operatorname{Tr}(x\overline{y}) \in p\mathbb{Z}$

For p = 3, we have $\zeta_3 = \frac{-1+i\sqrt{3}}{2}$, \mathfrak{P} has \mathbb{Z} -basis $(1 - \zeta_3), (1 - \zeta_3)\zeta_3 = 2\zeta_3 + 1$. Then $\sigma(\mathfrak{P}) = \{u_0(1 - \zeta_3) + u_1(1 + 2\zeta_3), u_0, u_1 \in \mathbb{Z}\}$ and

Set $\mathfrak{P} = (1-\zeta)\mathbb{Z}[\zeta_p] = \{(1-\zeta)(a_0 + a_1\zeta + \ldots + a_{p-1}\zeta^{p-2}), a_i \in \mathbb{Z} \text{ for all } i\}.$ Claim. \mathfrak{P} equipped with $(x, y) \mapsto \operatorname{Tr}(x\overline{y}/p)$ is an integral lattice.

- $\operatorname{Tr}(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}[\zeta]$.
- $\operatorname{Tr}(x\overline{y}) \in p\mathbb{Z}$

For p = 3, we have $\zeta_3 = \frac{-1+i\sqrt{3}}{2}$, \mathfrak{P} has \mathbb{Z} -basis $(1 - \zeta_3), (1 - \zeta_3)\zeta_3 = 2\zeta_3 + 1$. Then $\sigma(\mathfrak{P}) = \{u_0(1 - \zeta_3) + u_1(1 + 2\zeta_3), u_0, u_1 \in \mathbb{Z}\}$ and $\frac{1}{3} \begin{pmatrix} 6 & -3 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$.

This is A_2 , the hexagonal lattice.

Given a linear code $\mathcal{C} \subset \mathbb{F}_p^n$ and π the componentwise reduction modulo $1 - \zeta$ on $\mathbb{Z}[\zeta]^n$, $\pi^{-1}(\mathcal{C}) \subset \mathbb{R}^n$ equipped with $(x, y) \mapsto \operatorname{Tr}(x\overline{y}/p)$ is an integral lattice obtained by Construction A. Given a linear code $\mathcal{C} \subset \mathbb{F}_p^n$ and π the componentwise reduction modulo $1 - \zeta$ on $\mathbb{Z}[\zeta]^n$, $\pi^{-1}(\mathcal{C}) \subset \mathbb{R}^n$ equipped with $(x, y) \mapsto \operatorname{Tr}(x\overline{y}/p)$ is an integral lattice obtained by Construction A.

The volume $vol(\Lambda)$ of a lattice Λ is

$$\operatorname{vol}(\Lambda) = \sqrt{(b(\mathbf{b}_i, \mathbf{b}_j))_{i,j}}.$$

• For \mathcal{C} a linear code of dimension m

$$\operatorname{vol}(\Lambda_C) = \sqrt{p^{n-2m}}$$

$$(\Delta_{\mathbb{Q}(\zeta)} = (-1)^{(p-1)/2} p^{p-2}).$$

The dual lattice Λ^* of a lattice Λ is

$$\Lambda^* = \{ x \in \mathbb{R}^n \mid x \cdot y \ (b(x, y)) \in \mathbb{Z} \text{ for all } y \in \Lambda \}.$$

If $\Lambda = \Lambda^*$, the lattice is called unimodular.

The dual lattice Λ^* of a lattice Λ is

$$\Lambda^* = \{ x \in \mathbb{R}^n \mid x \cdot y \ (b(x, y)) \in \mathbb{Z} \text{ for all } y \in \Lambda \}.$$

If $\Lambda = \Lambda^*$, the lattice is called unimodular.

The dual code \mathcal{C}^{\perp} of a linear code \mathcal{C} is

$$\mathcal{C}^{\perp} = \{ y \in \mathbb{F}_p^n \mid x \cdot y = 0 \text{ for all } x \in \mathcal{C} \}.$$

If $\mathcal{C} = \mathcal{C}^{\perp}$, the lattice is called self-dual.

The dual lattice Λ^* of a lattice Λ is

$$\Lambda^* = \{ x \in \mathbb{R}^n \mid x \cdot y \ (b(x, y)) \in \mathbb{Z} \text{ for all } y \in \Lambda \}.$$

If $\Lambda = \Lambda^*$, the lattice is called unimodular.

The dual code \mathcal{C}^{\perp} of a linear code \mathcal{C} is

$$\mathcal{C}^{\perp} = \{ y \in \mathbb{F}_p^n \mid x \cdot y = 0 \text{ for all } x \in \mathcal{C} \}.$$

If $\mathcal{C} = \mathcal{C}^{\perp}$, the lattice is called self-dual.

Let $\mathcal{C} \subset \mathbb{F}_p^n$ be a linear code of dimension m with $\mathcal{C} \subset \mathcal{C}^{\perp}$. Then

$$\Lambda^*_{\mathcal{C}} = \Lambda_{\mathcal{C}^{\perp}}.$$

If \mathcal{C} is self-dual, then $\Lambda_{\mathcal{C}}$ is unimodular. ($\Gamma_{\mathcal{C}^{\perp}} \subseteq \Gamma_{\mathcal{C}}^* + \text{volume}$ argument).

Given a linear code $\mathcal{C} \subset \mathbb{F}_p^n$ of dimension m and π the componentwise reduction modulo $1 - \zeta$ on $\mathbb{Z}[\zeta]^n$, $\Lambda_C = \pi^{-1}(\mathcal{C}) \subset \mathbb{R}^n$ equipped with $(x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)) \mapsto \sum_{i=1}^n \operatorname{Tr}(x_i \overline{y_i}/p)$ is an integral lattice obtained by Construction A. It has rank n(p-1), volume $\sqrt{p^{n-2m}}$. If \mathcal{C} is self-dual, then $\Lambda_{\mathcal{C}}$ is unimodular.

Given a linear code $\mathcal{C} \subset \mathbb{F}_p^n$ of dimension m and π the componentwise reduction modulo $1 - \zeta$ on $\mathbb{Z}[\zeta]^n$, $\Lambda_C = \pi^{-1}(\mathcal{C}) \subset \mathbb{R}^n$ equipped with $(x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)) \mapsto \sum_{i=1}^n \operatorname{Tr}(x_i \overline{y_i}/p)$ is an integral lattice obtained by Construction A. It has rank n(p-1), volume $\sqrt{p^{n-2m}}$. If \mathcal{C} is self-dual, then $\Lambda_{\mathcal{C}}$ is unimodular.

• May want normalization or not. If p = 2, $\zeta_p = -1$.

Given a linear code $\mathcal{C} \subset \mathbb{F}_p^n$ of dimension m and π the componentwise reduction modulo $1 - \zeta$ on $\mathbb{Z}[\zeta]^n$, $\Lambda_C = \pi^{-1}(\mathcal{C}) \subset \mathbb{R}^n$ equipped with $(x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n)) \mapsto \sum_{i=1}^n \operatorname{Tr}(x_i \overline{y_i}/p)$ is an integral lattice obtained by Construction A. It has rank n(p-1), volume $\sqrt{p^{n-2m}}$. If \mathcal{C} is self-dual, then $\Lambda_{\mathcal{C}}$ is unimodular.

- May want normalization or not. If p = 2, $\zeta_p = -1$.
- Applications to (not exhaustive): (1) encoder design (labelling), (2) constructions of "interesting" (extremal, dense) lattices, (3) physical network coding.

A Quadratic Form Approach to Construction A of Lattices over Cyclic Algebras (joint work with G. Berhuy)

- \checkmark Number fields (ideas)
- \checkmark Cyclic algebras ("ideas")

Question: is it possible to add a multiplicative structure to Construction A?

Question: is it possible to add a multiplicative structure to Construction A?

- Lattices are inherently additive.
- Algebras and number fields (not copies of them) also come with a multiplication.
- Would like to retain "dual" properties.

First idea

$$\begin{array}{c|c} \Lambda : \ b(x,y) & \mathcal{C} : \ x \cdot y \\ \Lambda^* : \ b(x,y) \in \mathbb{Z} & \mathcal{C}^\perp : \ x \cdot y \end{array}$$

Let M be an integral lattice, and let N be a sublattice of Msuch that $pM \subset N \subset M$. Assume also that $b(x, y) \in p\mathbb{Z}$ for all $x \in M$ and $y \in N$. Then b induces on M a symmetric \mathbb{Z} -bilinear form $b: M \times M \to \mathbb{Z}$, which in turn induces a symmetric \mathbb{F}_p -bilinear form

$$\overline{b} \colon \frac{M/N \times M/N \longrightarrow \mathbb{F}_p}{([x]_N, [y]_N) \longmapsto [b(x, y)]_p}.$$

First idea

$$\begin{array}{c|c} \Lambda : \ b(x,y) & \mathcal{C} : \ x \cdot y \\ \Lambda^* : \ b(x,y) \in \mathbb{Z} & \mathcal{C}^\perp : \ x \cdot y \end{array}$$

Let M be an integral lattice, and let N be a sublattice of Msuch that $pM \subset N \subset M$. Assume also that $b(x, y) \in p\mathbb{Z}$ for all $x \in M$ and $y \in N$. Then b induces on M a symmetric \mathbb{Z} -bilinear form $b: M \times M \to \mathbb{Z}$, which in turn induces a symmetric \mathbb{F}_p -bilinear form

$$\overline{b} \colon \frac{M/N \times M/N \longrightarrow \mathbb{F}_p}{([x]_N, [y]_N) \longmapsto [b(x, y)]_p}.$$

Furthermore \overline{b} is nondegenerate $(\overline{b}([x]_N, [y]_N) = 0$ for all $[y]_N$ implies $[x]_N = 0$ if and only if $pM^* \cap M = N$.

Number fields: ingredients

a number field $L \bullet$ complex conjugation * induces an automorphism of $L \bullet$ a prime number $p \bullet$ an ideal I of \mathcal{O}_L containing p such that $I^* = I \bullet$ a \mathbb{Z} -linear map $s : \mathcal{O}_L \to \mathbb{Z}$.

 (H_1) The linear map s induces on \mathcal{O}_L/I a well-defined nondegenerate symmetric \mathbb{F}_p -bilinear map

$$\varphi \colon \frac{\mathcal{O}_L/I \times \mathcal{O}_L/I \longrightarrow \mathbb{F}_p}{([x]_I, [y]_I) \longmapsto [s(x^*y)]_p}.$$

(H₂) There exists a nonzero monic polynomial $\overline{\mu} \in \mathbb{F}_p[X]$ such that we have an isomorphism of \mathbb{F}_p -algebras

 $\mathbb{F}_p[X]/(\overline{\mu}) \simeq \mathcal{O}_L/I.$

Number fields: ingredients

a number field $L \bullet$ complex conjugation * induces an automorphism of $L \bullet$ a prime number $p \bullet$ an ideal I of \mathcal{O}_L containing p such that $I^* = I \bullet$ a \mathbb{Z} -linear map $s : \mathcal{O}_L \to \mathbb{Z}$.

 (H_1) The linear map s induces on \mathcal{O}_L/I a well-defined nondegenerate symmetric \mathbb{F}_p -bilinear map

$$\varphi \colon \frac{\mathcal{O}_L/I \times \mathcal{O}_L/I \longrightarrow \mathbb{F}_p}{([x]_I, [y]_I) \longmapsto [s(x^*y)]_p}.$$

 (H_2) There exists a nonzero monic polynomial $\overline{\mu} \in \mathbb{F}_p[X]$ such that we have an isomorphism of \mathbb{F}_p -algebras

$$\mathbb{F}_p[X]/(\overline{\mu}) \simeq \mathcal{O}_L/I.$$

 (H_1) becomes finding the "right" trace form, (H_2) is about finding number fields with "right" rings of integers.

Number fields: polynomial codes

 $(H_2):\mathbb{F}_p[X]/(\overline{\mu})\simeq \mathcal{O}_L/I.$

Ideals of $\mathcal{O}_L/I \iff$ ideals of $\mathbb{F}_p[X]$ containing $\overline{\mu} \iff$ monic divisors of $\overline{\mu} \iff$ generator polynomials of polynomial codes.

Number fields: polynomial codes

 $(H_2):\mathbb{F}_p[X]/(\overline{\mu})\simeq \mathcal{O}_L/I.$

Ideals of $\mathcal{O}_L/I \iff$ ideals of $\mathbb{F}_p[X]$ containing $\overline{\mu} \iff$ monic divisors of $\overline{\mu} \iff$ generator polynomials of polynomial codes.

Complex conjugation is an automorphism of $L \Rightarrow$ it induces an automorphism of $\mathcal{O}_L \Rightarrow$ which induces an automorphism of \mathcal{O}_L/I , since $I^* = I$, still denoted by $^* \Rightarrow$ complex conjugation induces a correspondence between ideals, hence between monic divisors of $\overline{\mu}$. If \overline{g} is such a monic divisor, \overline{g}_* is the corresponding monic divisor of $\overline{\mu}$.

Theorem. If the ideal I'/I corresponds to the ideal generated by \overline{g} , then I'/I is self-orthogonal if and only if $\overline{\mu} \mid \overline{g}_*\overline{g}$, and self-dual if and only if $\overline{g}_*\overline{g} = \overline{\mu}$. Number fields: An Example

 $L = \mathbb{Q}(\zeta_{8p}) = K_1 K_2 \bullet K_1 = \mathbb{Q}(\zeta_8), K_2 = \mathbb{Q}(\zeta_p), p = 3, 5, 11, 13, 19.$

Number fields: An Example

 $L = \mathbb{Q}(\zeta_{8p}) = K_1 K_2 \bullet K_1 = \mathbb{Q}(\zeta_8), K_2 = \mathbb{Q}(\zeta_p), p = 3, 5, 11, 13,$ 19. We will build polynomial codes over $\mathbb{F}_p[X]/(\bar{\mu}_{\alpha_1,\mathbb{Q}})$ for $\alpha_1 = \zeta_8$:

$$\mathcal{O}_L/\mathfrak{p}_2\mathcal{O}_L\simeq\mathcal{O}_{K_1}/p\mathcal{O}_{K_1}\simeq\mathbb{F}_p[X]/(\overline{\mu}_{\alpha_1,\mathbb{Q}})$$

We have $\overline{\mu}_{\alpha_1,\mathbb{Q}} = X^4 + 1$. Take \overline{g} to be $X^2 + X + \overline{2} \pmod{3}$, $X^2 + \overline{2} \pmod{5}$, $X^2 + \overline{3}X + \overline{10} \pmod{11}$, $X^2 + \overline{5} \pmod{13}$, respectively $X^2 + \overline{6}X + \overline{18} \pmod{19}$. For these cases, $\overline{g}_*\overline{g} = \overline{\mu}_{\alpha_1,\mathbb{Q}}$ and it follows from the theorem that $\mathcal{C}^{\perp} = \mathcal{C}$. The volume of the lattice under the trace form of (H1) is controlled by the introduction of a twisting element $\lambda_1 = \frac{1}{4}$ in

the trace form.

The degree of L is 4(p-1) So for p = 3 we get a unimodular lattice in dimension 8 which is even, namely E_8 .

Cyclic Algebras

L/k a cyclic Galois number field extension of group $G = \langle \sigma \rangle$ and degree $n \bullet L/\mathbb{Q}$ is totally real or CM \bullet complex conjugation induces a ring automorphism on k (possibly trivial).

Cyclic Algebras

L/k a cyclic Galois number field extension of group $G = \langle \sigma \rangle$ and degree $n \bullet L/\mathbb{Q}$ is totally real or CM \bullet complex conjugation induces a ring automorphism on k (possibly trivial). $\gamma \in k^{\times}$ such that $\gamma \gamma^* = 1 \bullet$ the cyclic algebra $B = (\gamma, L/k, \sigma)$:

$$B = L \oplus eL \oplus \dots \oplus e^{n-1}L = \bigoplus_{j=0}^{n-1} e^jL$$

where $e^n = \gamma$ and $ae = ea^{\sigma}$ for all $a \in L$. Note that $e \in B^{\times}$, and that $e^{-1} = e^{n-1}\gamma^{-1}$.

Cyclic Algebras

L/k a cyclic Galois number field extension of group $G = \langle \sigma \rangle$ and degree $n \bullet L/\mathbb{Q}$ is totally real or CM \bullet complex conjugation induces a ring automorphism on k (possibly trivial). $\gamma \in k^{\times}$ such that $\gamma \gamma^* = 1 \bullet$ the cyclic algebra $B = (\gamma, L/k, \sigma)$:

$$B = L \oplus eL \oplus \dots \oplus e^{n-1}L = \bigoplus_{j=0}^{n-1} e^jL$$

where $e^n = \gamma$ and $ae = ea^{\sigma}$ for all $a \in L$. Note that $e \in B^{\times}$, and that $e^{-1} = e^{n-1}\gamma^{-1}$. An involution on $B: \tau: B \to B$, such that for all $x_j \in L$

$$\tau(\sum_{j=0}^{n-1} e^j x_j) = \sum_{j=0}^{n-1} x_j^* e^{-j}$$

The order $\bigoplus_{j=0}^{n-1} e^j \mathcal{O}_L.$

- 1. Define a suitable trace form.
- 2. Consider the quotient $\bigoplus_{j=0}^{n-1} e^j \mathcal{O}_L / \mathcal{P}$ (\mathcal{P} two-sided).
- 3. Set $\mathbb{F}_q = \mathcal{O}_L/\mathfrak{P}$. Identify this quotient with $\mathbb{F}_q[X;\overline{\sigma}]/(X^n [\gamma]_{\mathfrak{P}})$ which leads to consider skew-polynomial codes.
- 4. Define conditions on skew-polynomial codes for getting self-dual codes (with respect with the trace form induced by that of the algebra).
- 5. Use an argument of volume (and a possible twisting element) to deduce unimodularity of the lattice.

$$\begin{array}{c|c} \mathbb{Z}^{n} & \mathbb{Z}[\zeta]^{n} \\ \mathbb{Z}/p\mathbb{Z} & \mathbb{Z}[\zeta]/(1-\zeta) \\ \mathbb{F}_{p}^{n} & \mathbb{F}_{p}^{n} \\ \mathcal{C} & \mathcal{C} \\ x \cdot y & \sum_{i} \operatorname{Tr}(x_{i}\overline{y}_{i}) \end{array} \end{array} \begin{array}{c} \mathcal{O}_{L} & \bigoplus_{\substack{j=0\\ j=0\\ \mathcal{O}_{L}/I \\ \mathcal{O}_{L}/I \\ \mathcal{O}_{L}/I \\ \mathcal{O}_{L}/I \\ \mathbb{F}_{p}[X]/(\overline{\mu}) \\ \mathbb{F}_{q}[X;\overline{\sigma}]/(X^{n}-[\gamma]_{\mathfrak{P}}) \\ \mathbb{F}_{q}[X;\overline{\sigma}]/(X^{n}-[\gamma]_{\mathfrak{P}}) \\ \mathbb{F}_{q}[X;\overline{\sigma}]/(X^{n}-[\gamma]_{\mathfrak{P}}) \\ \mathbb{F}_{p}[X]/(\overline{\mu}) \\ \mathbb{F}_{p}[X]/$$

https://arxiv.org/abs/2004.01641 Ebeling, "Lattices and Codes"