(A Quadratic Form Approach to) Construction A of Lattices
F. Oggier

Warm-up

\checkmark Construction A
\checkmark Gram matrix and quadratic form

$\mathbb{Z}^{2} \leftarrow(\mathbb{Z} / 5 \mathbb{Z})^{2}: \pi^{-1}$
$\left(x_{1}, x_{2}\right) \hookleftarrow\left(x_{1}(\bmod 5), x_{2}(\bmod 5)\right)$

First observation

Given a subset $\mathcal{C} \subset \mathbb{F}_{p}^{n}$, then $\pi^{-1}(\mathcal{C})$ is a lattice in \mathbb{R}^{n} if and only if \mathcal{C} is a linear code (a linear subspace) in \mathbb{F}_{p}^{n}.

- Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ be linearly independent vectors in \mathbb{R}^{n}. A lattice Λ with basis $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ is defined as

$$
\Lambda=\left\{u_{1} \mathbf{b}_{1}+\ldots+u_{n} \mathbf{b}_{n}, u_{1}, \ldots, u_{m} \in \mathbb{Z}\right\} .
$$

$$
\mathbb{Z}^{2} \leftarrow(\mathbb{Z} / 5 \mathbb{Z})^{2} \simeq \mathbb{F}_{5}^{2}: \pi^{-1}
$$

$$
\pi^{-1}(\mathcal{C})=\left\{u_{1}(1,2)+u_{2}(3,1), u_{1}, u_{2} \in \mathbb{Z}\right\}, \mathcal{C}=\left\{a(1,2), a \in \mathbb{F}_{5}\right\}
$$

Construction A

Let \mathcal{C} be a linear code in \mathbb{F}_{p}^{n} and π be the reduction modulo p componentwise on \mathbb{Z}^{n}. The lattice $\Lambda_{C}=\pi^{-1}(\mathcal{C})$ is said to have been obtained via Construction A.

Construction A

Let \mathcal{C} be a linear code in \mathbb{F}_{p}^{n} and π be the reduction modulo p componentwise on \mathbb{Z}^{n}. The lattice $\Lambda_{C}=\pi^{-1}(\mathcal{C})$ is said to have been obtained via Construction A.

Since $\mathbf{0} \in \mathcal{C}, p \mathbf{e}_{i} \in \Lambda_{C}$ for all canonical vectors \mathbf{e}_{i}, and hence $p \mathbb{Z}^{n}$ is a sublattice of Λ_{C} (this makes Λ a p-ary lattice).

Since $\Lambda=\left\{u_{1} \mathbf{b}_{1}+\ldots+u_{n} \mathbf{b}_{n}, u_{1}, \ldots, u_{m} \in \mathbb{Z}\right\}$, we may write

$$
\Lambda=\left\{x \in \mathbb{R}^{n}, x=\left(u_{1}, \ldots, u_{n}\right)\left(\begin{array}{c}
\mathbf{b}_{1} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right), \quad u_{1}, \ldots, u_{m} \in \mathbb{Z}\right\}
$$

Since $\Lambda=\left\{u_{1} \mathbf{b}_{1}+\ldots+u_{n} \mathbf{b}_{n}, u_{1}, \ldots, u_{m} \in \mathbb{Z}\right\}$, we may write

$$
\Lambda=\left\{x \in \mathbb{R}^{n}, x=\left(u_{1}, \ldots, u_{n}\right)\left(\begin{array}{c}
\mathbf{b}_{1} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right), \quad u_{1}, \ldots, u_{m} \in \mathbb{Z}\right\}
$$

Then for $x, y \in \Lambda$

$$
\begin{aligned}
x \cdot y & =\sum_{i=1}^{n} x_{i} y_{i}=\left(u_{1}, \ldots, u_{n}\right)\left(\begin{array}{c}
\mathbf{b}_{1} \\
\vdots \\
\mathbf{b}_{n}
\end{array}\right)\left(\begin{array}{lll}
\mathbf{b}_{1}^{T} & \ldots & \mathbf{b}_{n}^{T}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \\
& =\left(u_{1}, \ldots, u_{n}\right) \underbrace{\left(\begin{array}{ccc}
\mathbf{b}_{1} \cdot \mathbf{b}_{1} & \ldots & \mathbf{b}_{1} \cdot \mathbf{b}_{n} \\
\vdots & & \\
\mathbf{b}_{n} \cdot \mathbf{b}_{1} & \ldots & \mathbf{b}_{n} \cdot \mathbf{b}_{n}
\end{array}\right)}_{\text {Gram matrix }}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)
\end{aligned}
$$

A Gram matrix is

$$
\left(\begin{array}{cc}
5 & 5 \\
5 & 10
\end{array}\right)=5\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

$\pi^{-1}(\mathcal{C})=\left\{u_{1}(1,2)+u_{2}(3,1), u_{1}, u_{2} \in \mathbb{Z}\right\}$

We say "a" Gram matrix since it is not unique.

The Euclidean scalar product $x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}$ is a symmetric bilinear form, that is of the form $b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, such that

1. $b(x, y)=b(y, x)$ for all $x, y \in \mathbb{R}^{n}$
2. $b(x+y, z)=b(x, z)+b(y, z)$ for all $x, y, z \in \mathbb{R}^{n}$
3. $b(\lambda x, y)=\lambda b(x, y)$ for all $\lambda \in \mathbb{R}$, for all $x, y \in \mathbb{R}^{n}$.

The Euclidean scalar product $x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}$ is a symmetric bilinear form, that is of the form $b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, such that

1. $b(x, y)=b(y, x)$ for all $x, y \in \mathbb{R}^{n}$
2. $b(x+y, z)=b(x, z)+b(y, z)$ for all $x, y, z \in \mathbb{R}^{n}$
3. $b(\lambda x, y)=\lambda b(x, y)$ for all $\lambda \in \mathbb{R}$, for all $x, y \in \mathbb{R}^{n}$.

It is furthermore positive definite, namely: $b(x, x)>0$ for all $x \in \mathbb{R}^{n}, x \neq 0$.

The Euclidean scalar product $x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}$ is a symmetric bilinear form, that is of the form $b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, such that

1. $b(x, y)=b(y, x)$ for all $x, y \in \mathbb{R}^{n}$
2. $b(x+y, z)=b(x, z)+b(y, z)$ for all $x, y, z \in \mathbb{R}^{n}$
3. $b(\lambda x, y)=\lambda b(x, y)$ for all $\lambda \in \mathbb{R}$, for all $x, y \in \mathbb{R}^{n}$.

It is furthermore positive definite, namely: $b(x, x)>0$ for all $x \in \mathbb{R}^{n}, x \neq 0$.
This allows us to say

66
An integral lattice Λ is a free \mathbb{Z}-module of finite rank n endowed with a positive definite symmetric bilinear form $b: \Lambda \times \Lambda \rightarrow \mathbb{Z}$.

Given a linear code $\mathcal{C} \subset \mathbb{F}_{p}^{n}$ and π the componentwise reduction modulo p on $\mathbb{Z}^{n}, \pi^{-1}(\mathcal{C}) \subset \mathbb{R}^{n}$ is a lattice, obtained by Construction A. It is equipped with a positive definite symmetric bilinear form b given by the inner product.

$$
\left(\begin{array}{ll}
b\left(\mathbf{b}_{1}, \mathbf{b}_{1}\right) & b\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \\
b\left(\mathbf{b}_{2}, \mathbf{b}_{1}\right) & b\left(\mathbf{b}_{1}, \mathbf{b}_{1}\right)
\end{array}\right)=\left(\begin{array}{cc}
5 & 5 \\
5 & 10
\end{array}\right)
$$

$\mathbb{Z}^{2} \leftarrow(\mathbb{Z} / 5 \mathbb{Z})^{2} \simeq \mathbb{F}_{5}^{2}: \pi^{-1}$

$\pi^{-1}(\mathcal{C})=\left\{u_{1}(1,2)+u_{2}(3,1), u_{1}, u_{2} \in \mathbb{Z}\right\}, \mathcal{C}=\left\{a(1,2), a \in \mathbb{F}_{5}\right\}$

Lattices from Number Fields

\checkmark Algebraic lattices
\checkmark Construction A
\checkmark Properties

Consider the sets

$$
\begin{aligned}
\mathbb{Q}(\sqrt{2}) & =\{a+b \sqrt{2}, a, b \in \mathbb{Q}\} \\
\mathbb{Z}[\sqrt{2}] & =\{a+b \sqrt{2}, a, b \in \mathbb{Z}\}
\end{aligned}
$$

and the maps

$$
\begin{array}{ll}
\sigma_{1}: & a+b \sqrt{2} \mapsto a+b \sqrt{2} \\
\sigma_{2}: & a+b \sqrt{2} \mapsto a-b \sqrt{2}
\end{array}
$$

Create the lattice $\sigma(\mathbb{Z}[\sqrt{2}])$ with

\mathbb{Z}-basis $(1,1),(\sqrt{2},-\sqrt{2})$ and
Gram matrix
$\left[\begin{array}{cc}\sigma_{1}(1) & \sigma_{2}(1) \\ \sigma_{1}(\sqrt{2}) & \sigma_{2}(\sqrt{2})\end{array}\right]\left[\begin{array}{ll}\sigma_{1}(1) & \sigma_{1}(\sqrt{2}) \\ \sigma_{2}(1) & \sigma_{2}(\sqrt{2})\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right]$.

The set $\mathbb{Z}[\sqrt{2}]$ is a free \mathbb{Z}-module of rank 2 endowed with a positive definite symmetric bilinear form given by $(x, y) \mapsto \operatorname{Tr}(x y)$:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\operatorname{Tr}(1) & \operatorname{Tr}(\sqrt{2}) \\
\operatorname{Tr}(\sqrt{2}) & \operatorname{Tr}(2)
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\sigma_{1}(1) & \sigma_{2}(1) \\
\sigma_{1}(\sqrt{2}) & \sigma_{2}(\sqrt{2})
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1}(1) & \sigma_{1}(\sqrt{2}) \\
\sigma_{2}(1) & \sigma_{2}(\sqrt{2})
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
2 & 0 \\
0 & 4
\end{array}\right] }
\end{aligned}
$$

where $\operatorname{Tr}(x)=\sigma_{1}(x)+\sigma_{2}(x) \in \mathbb{Z}$
for $x \in \mathbb{Z}[\sqrt{2}]$.

Set $\zeta=\exp (2 \pi i / p)$. Consider the sets

$$
\begin{aligned}
\mathbb{Q}\left(\zeta_{p}\right) & =\left\{a_{0}+a_{1} \zeta+\ldots+a_{p-2} \zeta^{p-2},\right. \\
\mathbb{Z}\left[\zeta_{p}\right] & =\left\{a_{i} \in \mathbb{Q} \text { for all } i\right\} \\
a_{0}+a_{1} \zeta+\ldots+a_{p-2} \zeta^{p-2}, & \left.a_{i} \in \mathbb{Z} \text { for all } i\right\}
\end{aligned}
$$

and the maps

$$
\sigma_{r}: \zeta \mapsto \zeta^{r}, r=1, \ldots, p-1
$$

Let $\operatorname{Tr}(\alpha)=\sum_{i=1}^{p-1} \sigma_{i}(\alpha), \alpha \in \mathbb{Q}\left(\zeta_{p}\right)$.

Set $\zeta=\exp (2 \pi i / p)$. Consider the sets

$$
\begin{aligned}
\mathbb{Q}\left(\zeta_{p}\right) & =\left\{a_{0}+a_{1} \zeta+\ldots+a_{p-2} \zeta^{p-2},\right. \\
\mathbb{Z}\left[\zeta_{p}\right] & =\left\{a_{i} \in \mathbb{Q} \text { for all } i\right\} \\
a_{0}+a_{1} \zeta+\ldots+a_{p-2} \zeta^{p-2}, & \left.a_{i} \in \mathbb{Z} \text { for all } i\right\}
\end{aligned}
$$

and the maps

$$
\sigma_{r}: \zeta \mapsto \zeta^{r}, r=1, \ldots, p-1
$$

Let $\operatorname{Tr}(\alpha)=\sum_{i=1}^{p-1} \sigma_{i}(\alpha), \alpha \in \mathbb{Q}\left(\zeta_{p}\right)$. Let \bar{x} denote the complex conjugate of x for $x \in \mathbb{Z}\left(\zeta_{p}\right)$. Then $(x, y) \mapsto \operatorname{Tr}(x \bar{y})$ is a positive definite symmetric bilinear form:

$$
\operatorname{Tr}(x \bar{x})=\sum_{i=1}^{p-1} \sigma_{i}(x) \overline{\sigma_{i}(x)}>0, x \neq 0
$$

Set $\mathfrak{P}=(1-\zeta) \mathbb{Z}\left[\zeta_{p}\right]=\left\{(1-\zeta)\left(a_{0}+a_{1} \zeta+\ldots+a_{p-1} \zeta^{p-2}\right), a_{i} \in\right.$ \mathbb{Z} for all $i\}$.
Claim. \mathfrak{P} equipped with $(x, y) \mapsto \operatorname{Tr}(x \bar{y} / p)$ is an integral lattice.

Set $\mathfrak{P}=(1-\zeta) \mathbb{Z}\left[\zeta_{p}\right]=\left\{(1-\zeta)\left(a_{0}+a_{1} \zeta+\ldots+a_{p-1} \zeta^{p-2}\right), a_{i} \in\right.$ \mathbb{Z} for all $i\}$.
Claim. \mathfrak{P} equipped with $(x, y) \mapsto \operatorname{Tr}(x \bar{y} / p)$ is an integral lattice.

- $\operatorname{Tr}(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}[\zeta]$.
- $\operatorname{Tr}(x \bar{y}) \in p \mathbb{Z}$

Set $\mathfrak{P}=(1-\zeta) \mathbb{Z}\left[\zeta_{p}\right]=\left\{(1-\zeta)\left(a_{0}+a_{1} \zeta+\ldots+a_{p-1} \zeta^{p-2}\right), a_{i} \in\right.$ \mathbb{Z} for all $i\}$.
Claim. \mathfrak{P} equipped with $(x, y) \mapsto \operatorname{Tr}(x \bar{y} / p)$ is an integral lattice.

- $\operatorname{Tr}(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}[\zeta]$.
- $\operatorname{Tr}(x \bar{y}) \in p \mathbb{Z}$

For $p=3$, we have $\zeta_{3}=\frac{-1+i \sqrt{3}}{2}, \mathfrak{P}$ has \mathbb{Z}-basis
$\left(1-\zeta_{3}\right),\left(1-\zeta_{3}\right) \zeta_{3}=2 \zeta_{3}+1$. Then
$\sigma(\mathfrak{P})=\left\{u_{0}\left(1-\zeta_{3}\right)+u_{1}\left(1+2 \zeta_{3}\right), u_{0}, u_{1} \in \mathbb{Z}\right\}$ and

Set $\mathfrak{P}=(1-\zeta) \mathbb{Z}\left[\zeta_{p}\right]=\left\{(1-\zeta)\left(a_{0}+a_{1} \zeta+\ldots+a_{p-1} \zeta^{p-2}\right), a_{i} \in\right.$ \mathbb{Z} for all $i\}$.
Claim. \mathfrak{P} equipped with $(x, y) \mapsto \operatorname{Tr}(x \bar{y} / p)$ is an integral lattice.

- $\operatorname{Tr}(x) \in \mathbb{Z}$ for $x \in \mathbb{Z}[\zeta]$.
- $\operatorname{Tr}(x \bar{y}) \in p \mathbb{Z}$

For $p=3$, we have $\zeta_{3}=\frac{-1+i \sqrt{3}}{2}, \mathfrak{P}$ has \mathbb{Z}-basis $\left(1-\zeta_{3}\right),\left(1-\zeta_{3}\right) \zeta_{3}=2 \zeta_{3}+1$. Then $\sigma(\mathfrak{P})=\left\{u_{0}\left(1-\zeta_{3}\right)+u_{1}\left(1+2 \zeta_{3}\right), u_{0}, u_{1} \in \mathbb{Z}\right\}$ and

$$
\frac{1}{3}\left(\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

This is A_{2}, the hexagonal lattice.

Given a linear code $\mathcal{C} \subset \mathbb{F}_{p}^{n}$ and π the componentwise reduction modulo $1-\zeta$ on $\mathbb{Z}[\zeta]^{n}, \pi^{-1}(\mathcal{C}) \subset \mathbb{R}^{n}$ equipped with $(x, y) \mapsto \operatorname{Tr}(x \bar{y} / p)$ is an integral lattice obtained by Construction A.

Given a linear code $\mathcal{C} \subset \mathbb{F}_{p}^{n}$ and π the componentwise reduction modulo $1-\zeta$ on $\mathbb{Z}[\zeta]^{n}, \pi^{-1}(\mathcal{C}) \subset \mathbb{R}^{n}$ equipped with $(x, y) \mapsto \operatorname{Tr}(x \bar{y} / p)$ is an integral lattice obtained by Construction A.

The volume $\operatorname{vol}(\Lambda)$ of a lattice Λ is

$$
\operatorname{vol}(\Lambda)=\sqrt{\left(b\left(\mathbf{b}_{i}, \mathbf{b}_{j}\right)\right)_{i, j}}
$$

- For \mathcal{C} a linear code of dimension m

$$
\begin{gathered}
\operatorname{vol}\left(\Lambda_{C}\right)=\sqrt{p^{n-2 m}} \\
\left(\Delta_{\mathbb{Q}(\zeta)}=(-1)^{(p-1) / 2} p^{p-2}\right)
\end{gathered}
$$

The dual lattice Λ^{*} of a lattice Λ is

$$
\Lambda^{*}=\left\{x \in \mathbb{R}^{n} \mid x \cdot y \quad(b(x, y)) \in \mathbb{Z} \text { for all } y \in \Lambda\right\}
$$

If $\Lambda=\Lambda^{*}$, the lattice is called unimodular.

The dual lattice Λ^{*} of a lattice Λ is

$$
\Lambda^{*}=\left\{x \in \mathbb{R}^{n} \mid x \cdot y \quad(b(x, y)) \in \mathbb{Z} \text { for all } y \in \Lambda\right\}
$$

If $\Lambda=\Lambda^{*}$, the lattice is called unimodular.
The dual code \mathcal{C}^{\perp} of a linear code \mathcal{C} is

$$
\mathcal{C}^{\perp}=\left\{y \in \mathbb{F}_{p}^{n} \mid x \cdot y=0 \text { for all } x \in \mathcal{C}\right\}
$$

If $\mathcal{C}=\mathcal{C}^{\perp}$, the lattice is called self-dual.

The dual lattice Λ^{*} of a lattice Λ is

$$
\Lambda^{*}=\left\{x \in \mathbb{R}^{n} \mid x \cdot y \quad(b(x, y)) \in \mathbb{Z} \text { for all } y \in \Lambda\right\}
$$

If $\Lambda=\Lambda^{*}$, the lattice is called unimodular.
The dual code \mathcal{C}^{\perp} of a linear code \mathcal{C} is

$$
\mathcal{C}^{\perp}=\left\{y \in \mathbb{F}_{p}^{n} \mid x \cdot y=0 \text { for all } x \in \mathcal{C}\right\}
$$

If $\mathcal{C}=\mathcal{C}^{\perp}$, the lattice is called self-dual.
Let $\mathcal{C} \subset \mathbb{F}_{p}^{n}$ be a linear code of dimension m with $\mathcal{C} \subset \mathcal{C}^{\perp}$. Then

$$
\Lambda_{\mathcal{C}}^{*}=\Lambda_{\mathcal{C}^{\perp}}
$$

If \mathcal{C} is self-dual, then $\Lambda_{\mathcal{C}}$ is unimodular. $\left(\Gamma_{\mathcal{C}^{\perp}} \subseteq \Gamma_{\mathcal{C}}^{*}+\right.$ volume argument).

Summary

Given a linear code $\mathcal{C} \subset \mathbb{F}_{p}^{n}$ of dimension m and π the componentwise reduction modulo $1-\zeta$ on $\mathbb{Z}[\zeta]^{n}$, $\Lambda_{C}=\pi^{-1}(\mathcal{C}) \subset \mathbb{R}^{n}$ equipped with $\left(x=\left(x_{1}, \ldots, x_{n}\right), y=\right.$ $\left.\left(y_{1}, \ldots, y_{n}\right)\right) \mapsto \sum_{i=1}^{n} \operatorname{Tr}\left(x_{i} \overline{y_{i}} / p\right)$ is an integral lattice obtained by Construction A. It has rank $n(p-1)$, volume $\sqrt{p^{n-2 m}}$. If \mathcal{C} is self-dual, then $\Lambda_{\mathcal{C}}$ is unimodular.

Summary

Given a linear code $\mathcal{C} \subset \mathbb{F}_{p}^{n}$ of dimension m and π the componentwise reduction modulo $1-\zeta$ on $\mathbb{Z}[\zeta]^{n}$, $\Lambda_{C}=\pi^{-1}(\mathcal{C}) \subset \mathbb{R}^{n}$ equipped with $\left(x=\left(x_{1}, \ldots, x_{n}\right), y=\right.$ $\left.\left(y_{1}, \ldots, y_{n}\right)\right) \mapsto \sum_{i=1}^{n} \operatorname{Tr}\left(x_{i} \overline{y_{i}} / p\right)$ is an integral lattice obtained by Construction A. It has rank $n(p-1)$, volume $\sqrt{p^{n-2 m}}$. If \mathcal{C} is self-dual, then $\Lambda_{\mathcal{C}}$ is unimodular.

- May want normalization or not. If $p=2, \zeta_{p}=-1$.

Given a linear code $\mathcal{C} \subset \mathbb{F}_{p}^{n}$ of dimension m and π the componentwise reduction modulo $1-\zeta$ on $\mathbb{Z}[\zeta]^{n}$, $\Lambda_{C}=\pi^{-1}(\mathcal{C}) \subset \mathbb{R}^{n}$ equipped with $\left(x=\left(x_{1}, \ldots, x_{n}\right), y=\right.$ $\left.\left(y_{1}, \ldots, y_{n}\right)\right) \mapsto \sum_{i=1}^{n} \operatorname{Tr}\left(x_{i} \overline{y_{i}} / p\right)$ is an integral lattice obtained by Construction A. It has rank $n(p-1)$, volume $\sqrt{p^{n-2 m}}$. If \mathcal{C} is self-dual, then $\Lambda_{\mathcal{C}}$ is unimodular.

- May want normalization or not. If $p=2, \zeta_{p}=-1$.
- Applications to (not exhaustive): (1) encoder design (labelling), (2) constructions of "interesting" (extremal, dense) lattices, (3) physical network coding.

A Quadratic Form Approach to Construction A of Lattices over Cyclic Algebras
(joint work with G. Berhuy)
\checkmark Number fields (ideas)
\checkmark Cyclic algebras ("ideas")

Question: is it possible to add a multiplicative structure to Construction A?

Question: is it possible to add a multiplicative structure to Construction A?

- Lattices are inherently additive.
- Algebras and number fields (not copies of them) also come with a multiplication.
- Would like to retain "dual" properties.

First idea

$$
\begin{array}{l|l}
\Lambda: b(x, y) & \mathcal{C}: x \cdot y \\
\Lambda^{*}: b(x, y) \in \mathbb{Z} & \mathcal{C}^{\perp}: x \cdot y
\end{array}
$$

Let M be an integral lattice, and let N be a sublattice of M such that $p M \subset N \subset M$. Assume also that $b(x, y) \in p \mathbb{Z}$ for all $x \in M$ and $y \in N$. Then b induces on M a symmetric \mathbb{Z}-bilinear form $b: M \times M \rightarrow \mathbb{Z}$, which in turn induces a symmetric \mathbb{F}_{p}-bilinear form

$$
\begin{aligned}
\bar{b}: M / N \times M / N & \longrightarrow \mathbb{F}_{p} \\
\quad\left([x]_{N},[y]_{N}\right) & \longmapsto[b(x, y)]_{p}
\end{aligned}
$$

First idea

$$
\begin{array}{l|l}
\Lambda: b(x, y) & \mathcal{C}: x \cdot y \\
\Lambda^{*}: b(x, y) \in \mathbb{Z} & \mathcal{C}^{\perp}: x \cdot y
\end{array}
$$

Let M be an integral lattice, and let N be a sublattice of M such that $p M \subset N \subset M$. Assume also that $b(x, y) \in p \mathbb{Z}$ for all $x \in M$ and $y \in N$. Then b induces on M a symmetric \mathbb{Z}-bilinear form $b: M \times M \rightarrow \mathbb{Z}$, which in turn induces a symmetric \mathbb{F}_{p}-bilinear form

$$
\begin{aligned}
\bar{b}: M / N \times M / N & \longrightarrow \mathbb{F}_{p} \\
\left([x]_{N},[y]_{N}\right) & \longmapsto[b(x, y)]_{p}
\end{aligned}
$$

Furthermore \bar{b} is nondegenerate $\left(\bar{b}\left([x]_{N},[y]_{N}\right)=0\right.$ for all $[y]_{N}$ implies $\left.[x]_{N}=0\right)$ if and only if $p M^{*} \cap M=N$.

Number fields: ingredients
a number field $L \bullet$ complex conjugation * induces an automorphism of $L \bullet$ a prime number $p \bullet$ an ideal I of \mathcal{O}_{L} containing p such that $I^{*}=I \bullet$ a \mathbb{Z}-linear map $s: \mathcal{O}_{L} \rightarrow \mathbb{Z}$.
$\left(H_{1}\right)$ The linear map s induces on \mathcal{O}_{L} / I a well-defined nondegenerate symmetric \mathbb{F}_{p}-bilinear map

$$
\begin{aligned}
\mathcal{O}_{L} / I \times \mathcal{O}_{L} / I & \longrightarrow \mathbb{F}_{p} \\
\left([x]_{I},[y]_{I}\right) & \longmapsto\left[s\left(x^{*} y\right)\right]_{p}
\end{aligned}
$$

$\left(H_{2}\right)$ There exists a nonzero monic polynomial $\bar{\mu} \in \mathbb{F}_{p}[X]$ such that we have an isomorphism of \mathbb{F}_{p}-algebras

$$
\mathbb{F}_{p}[X] /(\bar{\mu}) \simeq \mathcal{O}_{L} / I
$$

Number fields: ingredients
a number field $L \bullet$ complex conjugation * induces an automorphism of $L \bullet$ a prime number $p \bullet$ an ideal I of \mathcal{O}_{L} containing p such that $I^{*}=I \bullet$ a \mathbb{Z}-linear map $s: \mathcal{O}_{L} \rightarrow \mathbb{Z}$.
$\left(H_{1}\right)$ The linear map s induces on \mathcal{O}_{L} / I a well-defined nondegenerate symmetric \mathbb{F}_{p}-bilinear map

$$
\begin{aligned}
\mathcal{O}_{L} / I \times \mathcal{O}_{L} / I & \longrightarrow \mathbb{F}_{p} \\
\left([x]_{I},[y]_{I}\right) & \longmapsto\left[s\left(x^{*} y\right)\right]_{p}
\end{aligned}
$$

$\left(H_{2}\right)$ There exists a nonzero monic polynomial $\bar{\mu} \in \mathbb{F}_{p}[X]$ such that we have an isomorphism of \mathbb{F}_{p}-algebras

$$
\mathbb{F}_{p}[X] /(\bar{\mu}) \simeq \mathcal{O}_{L} / I
$$

$\left(H_{1}\right)$ becomes finding the "right" trace form, $\left(H_{2}\right)$ is about finding number fields with "right" rings of integers.

Number fields: polynomial codes
$\left(H_{2}\right): \mathbb{F}_{p}[X] /(\bar{\mu}) \simeq \mathcal{O}_{L} / I$.
Ideals of $\mathcal{O}_{L} / I \Longleftrightarrow$ ideals of $\mathbb{F}_{p}[X]$ containing $\bar{\mu} \Longleftrightarrow$ monic divisors of $\bar{\mu} \Longleftrightarrow$ generator polynomials of polynomial codes.
$\left(H_{2}\right): \mathbb{F}_{p}[X] /(\bar{\mu}) \simeq \mathcal{O}_{L} / I$.
Ideals of $\mathcal{O}_{L} / I \Longleftrightarrow$ ideals of $\mathbb{F}_{p}[X]$ containing $\bar{\mu} \Longleftrightarrow$ monic divisors of $\bar{\mu} \Longleftrightarrow$ generator polynomials of polynomial codes.

Complex conjugation is an automorphism of $L \Rightarrow$ it induces an automorphism of $\mathcal{O}_{L} \Rightarrow$ which induces an automorphism of \mathcal{O}_{L} / I, since $I^{*}=I$, still denoted by ${ }^{*} \Rightarrow$ complex conjugation induces a correspondence between ideals, hence between monic divisors of $\bar{\mu}$. If \bar{g} is such a monic divisor, \bar{g}_{*} is the corresponding monic divisor of $\bar{\mu}$.

Theorem. If the ideal I^{\prime} / I corresponds to the ideal generated by \bar{g}, then I^{\prime} / I is self-orthogonal if and only if $\bar{\mu} \mid \bar{g}_{*} \bar{g}$, and self-dual if and only if $\bar{g}_{*} \bar{g}=\bar{\mu}$.

Number fields: An Example
$L=\mathbb{Q}\left(\zeta_{8 p}\right)=K_{1} K_{2} \bullet K_{1}=\mathbb{Q}\left(\zeta_{8}\right), K_{2}=\mathbb{Q}\left(\zeta_{p}\right), p=3,5,11,13$, 19.
$L=\mathbb{Q}\left(\zeta_{8 p}\right)=K_{1} K_{2} \bullet K_{1}=\mathbb{Q}\left(\zeta_{8}\right), K_{2}=\mathbb{Q}\left(\zeta_{p}\right), p=3,5,11,13$, 19. We will build polynomial codes over $\mathbb{F}_{p}[X] /\left(\bar{\mu}_{\alpha_{1}, \mathbb{Q}}\right)$ for $\alpha_{1}=\zeta_{8}$:

$$
\mathcal{O}_{L} / \mathfrak{p}_{2} \mathcal{O}_{L} \simeq \mathcal{O}_{K_{1}} / p \mathcal{O}_{K_{1}} \simeq \mathbb{F}_{p}[X] /\left(\bar{\mu}_{\alpha_{1}, \mathbb{Q}}\right)
$$

We have $\bar{\mu}_{\alpha_{1}, \mathbb{Q}}=X^{4}+1$. Take \bar{g} to be $X^{2}+X+\overline{2}(\bmod 3)$, $X^{2}+\overline{2}(\bmod 5), X^{2}+\overline{3} X+\overline{10}(\bmod 11), X^{2}+\overline{5}(\bmod 13)$, respectively $X^{2}+\overline{6} X+\overline{18}(\bmod 19)$. For these cases, $\bar{g}_{*} \bar{g}=\bar{\mu}_{\alpha_{1}, \mathbb{Q}}$ and it follows from the theorem that $\mathcal{C}^{\perp}=\mathcal{C}$. The volume of the lattice under the trace form of $(H 1)$ is controlled by the introduction of a twisting element $\lambda_{1}=\frac{1}{4}$ in the trace form.
The degree of L is $4(p-1)$ So for $p=3$ we get a unimodular lattice in dimension 8 which is even, namely E_{8}.

Cyclic Algebras

L / k a cyclic Galois number field extension of group $G=\langle\sigma\rangle$ and degree $n \bullet L / \mathbb{Q}$ is totally real or $\mathrm{CM} \bullet$ complex conjugation induces a ring automorphism on k (possibly trivial).

Cyclic Algebras

L / k a cyclic Galois number field extension of group $G=\langle\sigma\rangle$ and degree $n \bullet L / \mathbb{Q}$ is totally real or $\mathrm{CM} \bullet$ complex conjugation induces a ring automorphism on k (possibly trivial).
$\gamma \in k^{\times}$such that $\gamma \gamma^{*}=1 \bullet$ the cyclic algebra $B=(\gamma, L / k, \sigma)$:

$$
B=L \oplus e L \oplus \cdots \oplus e^{n-1} L=\bigoplus_{j=0}^{n-1} e^{j} L
$$

where $e^{n}=\gamma$ and $a e=e a^{\sigma}$ for all $a \in L$. Note that $e \in B^{\times}$, and that $e^{-1}=e^{n-1} \gamma^{-1}$.

Cyclic Algebras

L / k a cyclic Galois number field extension of group $G=\langle\sigma\rangle$ and degree $n \bullet L / \mathbb{Q}$ is totally real or $\mathrm{CM} \bullet$ complex conjugation induces a ring automorphism on k (possibly trivial).
$\gamma \in k^{\times}$such that $\gamma \gamma^{*}=1 \bullet$ the cyclic algebra $B=(\gamma, L / k, \sigma)$:

$$
B=L \oplus e L \oplus \cdots \oplus e^{n-1} L=\bigoplus_{j=0}^{n-1} e^{j} L
$$

where $e^{n}=\gamma$ and $a e=e a^{\sigma}$ for all $a \in L$. Note that $e \in B^{\times}$, and that $e^{-1}=e^{n-1} \gamma^{-1}$.
An involution on $B: \tau: B \rightarrow B$, such that for all $x_{j} \in L$

$$
\tau\left(\sum_{j=0}^{n-1} e^{j} x_{j}\right)=\sum_{j=0}^{n-1} x_{j}^{*} e^{-j}
$$

The order $\bigoplus_{j=0}^{n-1} e^{j} \mathcal{O}_{L}$.

1. Define a suitable trace form.
2. Consider the quotient $\bigoplus_{j=0}^{n-1} e^{j} \mathcal{O}_{L} / \mathcal{P}$ (\mathcal{P} two-sided).
3. Set $\mathbb{F}_{q}=\mathcal{O}_{L} / \mathfrak{P}$. Identify this quotient with $\mathbb{F}_{q}[X ; \bar{\sigma}] /\left(X^{n}-[\gamma]_{\mathfrak{P}}\right)$ which leads to consider skew-polynomial codes.
4. Define conditions on skew-polynomial codes for getting self-dual codes (with respect with the trace form induced by that of the algebra).
5. Use an argument of volume (and a possible twisting element) to deduce unimodularity of the lattice.

Summary

\mathbb{Z}^{n}	$\mathbb{Z}[\zeta]^{n}$	\mathcal{O}_{L}	$\bigoplus_{\substack{j=0 \\ n-1}}^{n-1} e^{j} \mathcal{O}_{L}$
\mathbb{Z} / p	$\mathbb{Z}[\zeta] /(1-\zeta)$	\mathcal{O}_{L} / I	$\bigoplus e^{j} \mathcal{O}_{L} / \mathcal{P}$
\mathbb{F}_{p}^{n}	\mathbb{F}_{p}^{n}	$\mathcal{O}_{L} / I \simeq \mathbb{F}_{p}[X] /(\bar{\mu})$	$j=0$ $\mathbb{F}_{q}[X ; \bar{\sigma}] /\left(X^{n}-[\gamma]_{\mathfrak{P}}\right)$
\mathcal{C}	P	polynomial codes	$\begin{gathered} \bar{g} \mid X^{n}-[\gamma]_{\mathfrak{P}} \\ \text { skew-polynomial codes } \end{gathered}$
$x \cdot y$	$\sum_{i} \operatorname{Tr}\left(x_{i} \bar{y}_{i}\right)$	$\operatorname{Tr}_{L / \mathbb{Q}}\left(\lambda x^{*} y\right)$	$\operatorname{Tr}_{k / \mathbb{Q}}\left(\operatorname{Trd}_{B}(\lambda \tau(x) y)\right)$

https://arxiv.org/abs/2004.01641
Ebeling, "Lattices and Codes"

