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introduction

1. Code based cryptography

Difficult problem in coding theory

Problem 1. [Decoding]
Input: n, k, t with k < n, generator matrix G ∈ Fk×n

q of the code

C
def
= {uG : u ∈ Fk

q}, y ∈ Fn
q

Question: ∃? e ∈ Fn
q and u ∈ Fk

q such that uG︸︷︷︸
∈C

+e = y

|e| 6 t

where |e| = Hamming weight of e = #{i ∈ J1, nK, ei 6= 0}.

Problem NP -complete
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introduction

Syndrome decoding

Problem 2. [Decoding]

Input: n, k, t with k < n, parity-check matrix H ∈ F(n−k)×n
q of the code

C
def
= {cFn

q : Hcᵀ = 0}, s ∈ Fn−k
q

Question: ∃? e ∈ Fn
q such that

{
Heᵀ = sᵀ

|e| 6 t
.

equivalent version of the decoding problem:

y = c︸︷︷︸
∈C

+e

⇒ sᵀ
def
= Hyᵀ = Heᵀ

2/47



introduction

Rank Metric

Difficult problem in coding theory

Problem 3. [Decoding]
Input: n, k, t with k < n, generator matrix G ∈ Fk×n

q of the code

C
def
= {uG : u ∈ Fk

q}, y ∈ Fn
q

Question: ∃? e ∈ Fn
q and u ∈ Fk

q such that uG︸︷︷︸
∈C

+e = y

|e|R 6 t

where |e|R = rank weight of e.

Randomized reduction [Gaborit-Zemor2014] of the previous problem to it.
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introduction

Rank metric

I (β1 . . . βm) basis of Fqm over Fq

x = (x1, . . . , xn) ∈ Fn
qm →Mat(x) =


x11 x12 · · · x1n

x21 x22 · · · x2n
... ... ... ...

xm1 xm2 . . . xmn

 ∈ Fm×n
q

where xj =
∑m

i=1 xijβi.

I Rank metric = viewing an element of Fn
qm as an m× n matrix.

|x− y|r
def
= Rank (Mat(x)−Mat(y)) .
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introduction

Rank/Hamming/Euclidean metric

Ambient space Fn2

q

Euclidean metric Hamming metric Rank metric
# levels O

(
q2n2

)
n2 + 1 n+ 1

5/47



introduction

A very rigid metric

I Projection in Hamming space, I ⊂ {1, · · · , n}, |I| = p

πI : Fn
q → Fp

q

x 7→ xI = (xi)i∈I

typically |πI(x)|Ham ≈ p

n
|x|Ham

Phenomenon used in ISD

I Projection in rank metric, associated to a full-rank matrix P ∈ Fp×m
q :

π : Fm×n
q → Fp×n

q

M 7→ PM

typically |π(M)|Rank ≈ |M |Rank if |M |Rank 6 p

No weight reduction
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introduction

MinRank

Problem 4. [MinRank]
Input: m, n, K, t, M1, · · · ,MK,Y ∈ Fm×n

q

Question: ∃? E ∈ Fm×n
q and u ∈ FK

q such that

K∑
i=1

uiM i︸ ︷︷ ︸
∈Cdef=〈M1,··· ,MK〉Fq

+E = Y

rank |E| 6 t

Decoding in Hamming metric reduces to solving MinRank.

Y =


y1 0 . . . 0
0 y2 . . . 0
... ... . . . ...
0 . . . 0 yn
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introduction

Decoding Fqm linear codes reduces to MinRank

Code C generated by G =

g1

. . .
gk

, of dimension k over Fqm:

C = {u1g1 + · · ·+ ukgk, ui ∈ Fqm}
= 〈g1, · · · , gk〉Fqm

Corresponding matrix code C′:

C′
def
= Mat(C) = {Mat(c) : c ∈ C}
= 〈Mat(αigj) : i ∈ {0, · · · ,m− 1}, j ∈ {1, · · · , k}〉Fq

C′ matrix code of dimension K = mn over Fq.

decoding C for the rank metric⇔ solving MinRank for C′
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introduction

The complexity picture

Hamming-Decoding 6r Rank-Decoding 6 MinRank

Hamming-Decoding 6 MinRank
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introduction

Rank-decoding rather than MinRank in code-based
cryptography

I public key m times shorter!

public key size
rank-dec[m,n, k, t] g1, · · · , gk ∈ Fn

qm kmn log q

MinRank[m,n, k, t]
Mat(g1), · · · Mat(αm−1g1)
... ... ...
Mat(gk), · · · Mat(αm−1gk)

km2n log q

I Very similar to quasi-cyclic codes in code-based cryptography

homomorphism M : Fqm → Fm×m
q

M(αβ) = M(α)M(β)

for an Fqm linear code C : Mat(C) is invariant by left. mult. by M(F×qm)

Mat(αc) = M(α)Mat(c), ∀α ∈ Fqm

M(α)Mat(C) = Mat(C), ∀α ∈ F×qm
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introduction

Codes with a decoding algorithm

I Gabidulin codes = rank metric analogues of Reed-Solomon codes

I LRPC codes = structured rank metric analogues of LDPC/MDPC codes
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LRPC

2. LRPC codes

[Gaborit, Murat, Ruatta, Zémor 2013]

Definition 1. An LRPC code over Fqm of weight w has a parity-check matrix
with entries hij that span an Fq space of dimension w.

|x|r = dim〈x1, . . . , xn〉Fq
⇒ all rows of H have weight 6 w.

I Correct t errors when tw 6 n− k.
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LRPC

LDPC codes

Definition 2. An LDPC code over Fqm of weight w is a code C that admits an
(n− k)× n parity-check matrix H whose rows have Hamming weight 6 w.
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LRPC

The notion of support

Definition 3. [Hamming Support] The (Hamming) support SuppH(x) of a
vector x is the set of positions i where xi 6= 0:

Supp(x)
def
= {i : xi 6= 0}

Supp(C)
def
=

⋃
c∈C

Supp(c)

Definition 4. [Rank Support] The column rank support (resp. row rank
support) Supp(X), resp. Suppr(X), of a matrix X ∈ Fm×n

q is the subspace of
Fm
q generated by the columns of X, resp. by the rows of X.

Suppc(x)
def
= Suppc(Mat(x))

Suppc(C)
def
=

⊕
c∈C

Suppc(c)
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LRPC

LRPC/LDPC

A parity check matrix H =

 h1

. . .
hn−k

 whose entries Hij are all in a subspace V

of dimension w

C⊥ = 〈h1, · · · ,hn−k〉Fqm
C′ = 〈h1, · · · ,hn−k〉Fq

Supp(C′) ⊆ V

⇒ qn−k codewords in C⊥of rank 6 w

Corresponds to an LDPC code whose dual contains a space of subcode of dimension
n− k whose support is of size w.
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rank

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta,
Zémor, 2013]

Definition 5. [product space] E and F two subspaces of Fqm.

E · F = 〈ef, e ∈ E, f ∈ F 〉Fq

dimE · F 6 dimE dimF
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rank

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta,
Zémor, 2013] (II)

y = c+ e

sᵀ = Hyᵀ = Heᵀ

ei ∈ E

dimE 6 t

Hij ∈ F

dimF 6 w

〈s1, · · · sn−k〉Fq =likely if n− k > tw! E · F
A = E︸︷︷︸

unknown

·F
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LRPC

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta,
Zémor, 2013] (III)

A = E︸︷︷︸
unknown

·F

F = 〈f1, · · · , fw〉Fq
E ⊂ f−1

i A

E =likely

w⋂
i=1

f−1
i A

{
E = Supp(e)
Heᵀ = sᵀ

⇒ e by solving a linear system if nt 6 m(n− k)
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LRPC

Cyclicity

H =
[
H1 H2

]
Hi : circulant matrix p× p matrix

Hi =


h0 h1 · · · hp−1

hp−1 h0 · · · hp−2
... . . . . . . ...
h1 h2 . . . h0


≡ h0 + h1X + · · ·+ hp−1X

p−1

{circulant matrices in Fp×p
q } ' Fq[X]/(Xp − 1)

If the first row has all its entries in V then so do the other rows.
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LRPC

NTRU-MDPC-LRPC

NTRU MDPC LRPC
ambient Zq[X]/(Xp − 1) F2[X]/(Xp − 1) Fqm[X]/(Xp − 1)
space E

metric ||f ||∞
def
= supi |fi| |f |H

def
= #{i : fi 6= 0} |f |R

def
= dimFq < fi >

public key (1, h) ∈ E2 (1, h) ∈ E2 (1, h) ∈ E2

message µ ∈ E µ ∈ E µ ∈ E
|µ|∞ 6 t1 |µ|H 6 t2 |µ|R 6 t3

random r ∈ E r ∈ E r ∈ E
|r|∞ 6 t1 |r|H 6 t2 |(m, r)|R 6 t3

ciphertext rh+ µ rh+ µ rh+ µ
private key (f, g) ∈ E2 (f, g) ∈ E2 (f, g) ∈ E2

|f |∞, |g|∞ 6 w1 |f |H, |g|H 6 w2 |f, g|R 6 w3

constraint
√
pw1t1 6 q 2t2w2 6 p t3w3 6 min(m, p)

the point h = p′f
g h = f

g h = f
g

p′ small
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RSL

3. The RSL problem

Problem 5. [RSL]

Input: n, k, t, `, (parity-check) matrix H ∈ F(n−k)×n
q s1, · · · , s` ∈ Fn−k

q

Promise: ∃ subspace V of Fqm and e1, · · · , e` with Suppc(ei) = V and Hei
ᵀ =

si
ᵀ

Question: Find V

Simultaneous decoding problem of ` errors sharing the same column support

21/47



RSL

An authentication scheme

Lyubashevsky’s “Fiat-Shamir with aborts”

I Public matrix H ∈ F(n−k)×n
q

I prover has a secret matrix S ∈ F`×n×
q of ` small row vectors.

I T = HSᵀ is public

I Prover wants to prove his knowledge of S (he knows how to decode ` instances
of the decoding problem)

Prover Verifier

Chooses small random e ∈ Fn
q

sᵀ=Heᵀ−−−−−→
chooses a small c ∈ F`

q
c←−

z = e+ cS
z−→

checks

{
||z|| 6 ||e||+ ||cS||
Hzᵀ = sᵀ + Tcᵀ
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RSL

Verification

T = HSᵀ

Hzᵀ = H (eᵀ + Sᵀcᵀ)

= sᵀ + Tcᵀ
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RSL

The ideas

I If c and S are small, then cS is small.

I Adding a small random e to a small cS can make it random and “washes” out
the information contained on S brought by cS
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RSL

How to do this for the rank metric ?

I If c and S are small, then cS is small.

S =

e1

· · ·
e`


Supp(ei) ⊆ E ( RSL condition! )

dimE = t

|c| = w

Supp(c) = F

Supp(cS) ⊆ E · F
|cS| 6 tw
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RSL

Does not completely work like this...

c = (c1, · · · , c`)
Supp(c) = 〈f1, · · · , fw〉 = F

Supp(cS) ⊆ E · F
E · F ⊂ E · F + Supp(e) =typically! Supp(z) = Supp(e+ cS)

⇒ E =typically!

w⋂
i=1

f−1
i Supp(z)

26/47



RSL

Durandal, IBE both based on RSL

I IBE scheme [Gaborit-Hauteville-Phan-Tillich/CRYPTO 2017] in rank metric
based on RSL

I signature scheme Durandal [Aragon-Blazy-Gaborit-Hauteville-Ruatta-Zemor/EUROCRYPT
2019] based on RSL
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attacks

4. Complexity of the best known algorithms

Solving the decoding problem Dec[m,n, k, t]

I Algebraic attacks (MinRank)

I Combinatorial attacks Õ
(
qt(k+1)−m) when m = n.
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attacks

Decoding ⇔ finding a low weight codeword

y = c︸︷︷︸
∈C

+e, |e| = t

C′
def
= C+ 〈y〉Fqm

e ∈ C′ ⇒ dmin(C
′) 6 t

Decoding t errors in C ↔ finding a codeword of weight t in C′.
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attacks

RSL ⇔ finding a subcode of small support

y1 = c1︸︷︷︸
∈C

+e1

y2 = c2︸︷︷︸
∈C

+e2

· · · = · · ·
y` = c`︸︷︷︸

∈C

+e`

Suppc(ei) ⊆ E with dimE = t

C′
def
= C+ 〈y1, · · · ,y`〉Fq

C′′
def
= 〈e1, · · · , e`〉Fq

C′′ subcode of C′ with support of size 6 t
⇒ q` codewords in C′ of rank weight 6 t.
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attacks

The influence of the structure

I Finding a codeword of weight t in a matrix code ∈ Fn×n
q of dimension K = kn

with a combinatorial approach Õ
(
qtk
)

I Finding a codeword of weight t in an Fqn linear code [n, k]Fqn with a

combinatorial approach Õ
(
q(t−1)k

)
: qn codewords of weight t!

I Finding a codeword of weight t in a double-circulant code Fqn linear code
[2k, k]Fqn: Õ

(
q(t−2)k

)
: qn+k codewords of weight t!
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attacks

The basic principle of combinatorial attacks : rank analogue
of the simplest information set decoder

H ∈ F(n−k)×n
q , e ∈ Fn

q , s ∈ Fn−k
q

Heᵀ = sᵀ (1)

|e|Ham = t

Basic principle : hope to be lucky ei = 0 on k positions

�������
�������
�������

�������
�������
�������

0 0 ...

k n−k

e

(1)⇒
{
n− k equations
n− k unknowns

Complexity : ≈ 1
Prob(ei=0, ∀i∈I) for a random I of size k.
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attacks

Rank analogue

Matrix code C over Fm×n
q of dimension K = km.

Y = C +E

I Principle 1: (generally) we can choose arbitrarily km entries of C in a codeword
C of C and the rest are linear functions of these entries.

I Principle 2: we hope that the first k columns of the error E are zero (more
generally we hope that the first k columns of EP are zero), prob.= O

(
q−kt

)
������������������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��������

������������������
n−kk

m

k

n−kk

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�
�
�
�
�

�
�
�
�
���������

L(M)
arbitrary

M
=

basis of the row

space of C E
= t

1
1

1
1

1

t

0

0
=0? 0E =
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attacks

Scaling ?

QC-MDPC QC-LRPC
condition for wt = O (n) wt = O (n)
correct decoding
keysize K O (n) O

(
n2
)

security (bits) λ min(w, t) min(wn/2, tn/2)

scaling (w = t) λ = O
(√

K
)

λ = O
(
K3/4

)
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algebraic attacks

5. Algebraic attacks

I For some time the most efficient approach for solving the rank decoding problem
were combinatorial approaches. Parameters of the NIST submissions computed
with this belief

I Bardet-Briaud-Bros-Gaborit-Neiger-Ruatta-Tillich/EUROCRYPT 2020] changed
this : modelling the problem with an algebraic system and solving with a
dedicated Gröbner basis approach is more efficient!

I Bardet-Bros-Cabarcas-Gaborit-Perlner-Smith-Tone-Tillich-Verbel/ASIACRYPT 2020]
changed this : modelling the problem with an algebraic system and solving a
suitable linear system is more efficent!

The last approach can really be seen as “extracting” the useful computations from
the Gröbner basis approach.
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attacks

Several approaches for solving the MinRank problem

Problem 6. [MinRank (homogeneous)]
Input: m, n, K, t, M1, · · · ,MK ∈ Fm×n

q

Question: ∃? x ∈ FK
q such that

rank

(
K∑
i=1

xiM i

)
= t

I Kipnis-Shamir approach : bilinear system

I Support modelling : bilinear system

I Minor modelling : system of degree t + 1 by writing that all minors of size
(t+ 1)× (t+ 1) of

∑K
i=1 xiM i are zero.
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algebraic attacks

Setting up the linear system

I Decoding y = c + e with |e| = t reduced to finding a word of weight t in

C̃
def
= C+ 〈y〉 : qm − 1 solutions : αe with α ∈ F×qm

C̃ = {c ∈ Fn
qm : cH̃

ᵀ
= 0}.

e =
(
1 α . . . αm−1

)
SC

S ∈ Fm×t
q

C ∈ Ftx×n
q

unknowns : entries of S and entries of C
Columns of S = basis of the support of e
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blue

The algebraic system

(
1 α . . . αm−1

)
SCH̃

ᵀ
= 0n−k−1 (2)

I Approach 1: solving the bilinear system (2) by computing a Gröbner basis for
it. At degree t+ 1 : degree fall we obtain new equations of degree t involving
only the entries of C...

I Approach 2: constructing directly these equations and deduce directly the Cij

by solving a (huge) linear system

The point: (2)⇒ CH̃
ᵀ

is of rank < t

Proposition 1. The maximal minors of the t× (n− k − 1) matrix CH̃
ᵀ
are all

equal to 0.

I
(
n−k−1

t

)
equations of degree t in the Cij’s
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algebraic attacks

The Cauchy-Binet Formula

A ∈ Fm×n
q

B ∈ Fn×m
q

det(AB) =
∑

S⊆{1,··· ,n}:|S|=m

det(A∗,S) det(BS,∗)

cT
def
= det(C∗,T ) for T ⊆ {1, · · · , n} and |T | = t

⇒ The maximal minors of CH̃
ᵀ

are linear combinations of the cT
⇒ linear system with

(
n−k−1

t

)
equations with coefficients in Fqm involving

(
n
t

)
variables (the cT ’s)
⇒ linear system with m

(
n−k−1

t

)
equations with coefficients in Fq involving

(
n
t

)
variables (cT ∈ Fq!)
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algebraic attacks

Specifying some entries in C
I If (S,C) solution of[

1 α . . . αm−1
]
SCHᵀ = 0n−k−1

so is (SA,A−1C) for any A invertible in Ft×t
q . Therefore we may assume that

C =


1 0 . . . 0 ∗ ∗ . . . ∗
0 1 . . . 0 ∗ ∗ . . . ∗
... . . . . . . ... ... ... ... ...
0 . . . 0 1 ∗ ∗ . . . ∗


I

Cij = (−1)t+ic{1,··· ,t}{i}∪{j}
⇒ solving the linear system in the cT ’s yields directly the Cij’s. Once we know
C we obtain S by solving a linear system.

should work when m

(
n− k − 1

t

)
>

(
n

t

)
− 1

(condition verified for many initial parameters of the rank based submissions).
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algebraic attacks

Further improvements

I Puncturing trick to reduce the number of variables when m
(
n−k−1

t

)
>
(
n
t

)
− 1

I Exhaustive search on a subset of variables to reduce to the previous case

41/47



algebraic attacks

One step beyond
Using the MinRank formulation (with K = (k + 1)m)

SC =

K∑
j=1

xjM j (3)

ri
def
= i-th row of

K∑
j=1

xjM j

(3) ⇒ ri belongs to the rowspace of C

⇒
[
ri
C

]
is of rank 6 t

⇒ all maximal minors are = 0

⇒ m

(
n

t+ 1

)
linear eq. in the xicT ’s

Solve (3) when m

(
n

t+ 1

)
︸ ︷︷ ︸

# eq.

>K

(
n

t

)
︸ ︷︷ ︸

# var.

−1
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algebraic attacks

A step further

m
(

n
t+1

)(
K+b−2
b−1

)
equations of the form

xi1 · · ·xib−1
det

[
ri
C

]
∗,S

= 0

where S is a subset of {1, · · · , n} of size t+ 1.
Cofactor expansion ⇒ equations in the xi1 · · ·xibcT ’s.

Problem: not all equations are independent:

det

rirj
C


∗,S

+ det

rjr0

C


∗,S

= 0

⇒ linear relation between these equations.
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algebraic attack

Linearization

# of lin. indep. relations D =

b∑
i=1

(−1)i+1

(
n

t+ i

)(
m+ i− 1

i

)(
K + b− i− 1

b− i

)

# of variables =

(
n

t

)
︸︷︷︸
# cT

(
K + b− 1

b

)
︸ ︷︷ ︸

# of mon. of degree b

We expect to solve by linearization when # of lin. independent relations > # of
variables −1.
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algebraic attacks

Results

(m,n, k, r)
m(n−k−1

r )
(nr)−1

a p b complexity (bits)

Loidreau (128, 120, 80, 4) 1.28 0 43 0 65

ROLLO-I-128 (79, 94, 47, 5) 1.97 0 9 0 71
ROLLO-I-192 (89, 106, 53, 6) 1.06 0 0 0 87
ROLLO-I-256 (113, 134, 67, 7) 0.67 3 0 1 151

ROLLO-II-128 (83, 298, 149, 5) 2.42 0 40 0 93
ROLLO-II-192 (107, 302, 151, 6) 1.53 0 18 0 111
ROLLO-II-256 (127, 314, 157, 7) 0.89 0 6 1 159

ROLLO-III-128 (101, 94, 47, 5) 2.52 0 12 0 70
ROLLO-III-192 (107, 118, 59, 6) 1.31 0 4 0 88
ROLLO-III-256 (131, 134, 67, 7) 0.78 0 0 1 131

RQC-I (97, 134, 67, 5) 2.60 0 18 0 77
RQC-II (107, 202, 101, 6) 1.46 0 10 0 101
RQC-III (137, 262, 131, 7) 0.93 3 0 0 144
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algebraic attacks

Multivariate schemes

Complexity

GeMSS(D,n,∆, v) n/m K r n′ b New Previous Type

GeMSS128(513, 174, 12, 12) 174 162 34 61 2 154 522 MinRank

GeMSS192(513, 256, 22, 20) 265 243 52 94 2 223 537 MinRank

GeMSS256(513, 354, 30, 33) 354 324 73 126 3 299 1254 MinRank

RedGeMSS128(17, 177, 15, 15) 177 162 35 62 2 156 538 MinRank

RedGeMSS192(17, 266, 23, 25) 266 243 53 95 2 224 870 MinRank

RedGeMSS256(17, 358, 34, 35) 358 324 74 127 3 301 1273 MinRank

BlueGeMSS128(129, 175, 13, 14) 175 162 35 63 2 158 537 MinRank

BlueGeMSS192(129, 265, 22, 23) 265 243 53 95 2 224 870 MinRank

BlueGeMSS256(129, 358, 34, 32) 358 324 74 127 3 301 1273 MinRank

Rainbow(GF (q), v1, o1, o2) n K r n′ b New Previous Best / Type

Ia(GF (16), 32, 32, 32) 96 33 64 82 3 155 161 145 / RBS

IIIc(GF (256), 68, 36, 36) 140 37 104 125 5 208 585 215 / DA

Vc(GF (256), 92, 48, 48) 188 49 140 169 5 272 778 275 / DA
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conclusion

Conclusion

NIST :
Despite the development of algebraic attacks, NIST believes rank-based
cryptography should continue to be researched. The rank metric cryptosystems
offer a nice alternative to traditional hamming metric codes with comparable
bandwidth.
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