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1. Code based cryptography

Difficult problem in coding theory

Problem 1. [Decoding]

Input: n, k, t with k <n, matrix G € F’;X” of the code

d:ef{uG: ueF:i}, yeF?

Question: 47 e € FZL and u € IF’(; such that

uG,+e = y
ce
€| <t

where |e| = Hamming weight of e = #{i € [1,n],e; # 0}.

Problem N P-complete
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Syndrome decoding

Problem 2. [Decoding]

Input: n, k, t with k <n, matrix H € Fén_k)xn of the code

“ (cF?: HcT =0}, s € FnF

: He' = sT
Question: 47 e € F"* such that :
q e <t
equivalent version of the decoding problem:
y = C_-+te
ce
7 def T T
= s'= Hy' = He
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Rank Metric

Difficult problem in coding theory

Problem 3. [Decoding]

Input: n, k, t with k <n, matrix G € ]F’;X” of the code

d:ef{uG - uelFi}, yeF!

Question: 47 e € IFZ and u € IF’; such that

uG,+e = y
ce
e|r <t

where |e|r = rank weight of e.

Randomized reduction [Gaborit-Zemor2014| of the previous problem to it.
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> basis of FF,m over [,

L11 L12 L1in
L21 22 X2

T = (21,...,%,) € Fym — = | _ _ T e F
_Zle Lm?2 ... azmn_

where x; = > 1 B

» Rank metric = viewing an element of Fii as an m x n matrix.

* Rank (Mat(z) — Mat(y)).
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Rank /Hamming/Euclidean metric

Ambient space IFZ2

Euclidean metric

Hamming metric

Rank metric

# levels

0, (q2n2)

n?+1

n-+1
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» Projection in Hamming space, I C {1,--- ,n},

R in g
W[.Fq

%
r 331:(%')7:61

typically [7(@)lnam  ~ 2o

Phenomenon used in ISD

» Projection in rank metric, associated to a full-rank matrix P € FP>*™:

T IF;”X" — IFZX”
M — PM
typically |7(M)|rank ~ |M|Rank if |[M|Rank < p

No weight reduction
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Problem 4. [MinRank]

Input: m, n, K, t, Mq,--- ,Mg,Y € F"*"

Question: 37 E € F"*"™ and u € Fff such that

/

def

\

Decoding in Hamming metric reduces to solving MinRank.

-~

€U=(My, - M),
rank | FE|

y1 O
0 o
0

K
> uwM; +E
1=1 ,

0

<

0
0

Yn

Y

t
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Decoding [F,~ linear codes reduces to MinRank

g1
Code C generated by G = |...|, of dimension k over [F m:
|9k
C = {wig,+- - +urgy, u; € Fom}
— <gla°" 7gk>]qu

Corresponding matrix code C':

def

= Mat(C) = {Mat(c): ce€ C}
— (Mat(ozigj) 1€40,--- ,m—1}, {1, JkDr

q

€’ matrix code of dimension K = mn over F,,.

decoding C for the rank metric < solving MinRank for €’
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The complexity picture

Hamming-Decoding <, Rank-Decoding < MinRank

Hamming-Decoding < MinRank
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Rank-decoding rather than MinRank in code-based

cryptography
» public key m times shorter!
public key size
rank-dec|m, n, k, t] 91, 9 € Fym kmn log q
Mat(g, ), Mat(a™ 'g,)
MinRank[m,n, k,t] | : | km®nloggq
Mat(g,), Mat(a™ 'g;)

» Very similar to quasi-cyclic codes in code-based cryptography

homomorphism M : F,m
M(ap)

for an F,m linear code €
Mat(ac)
M (a)Mat(C)

_>

Fme

M () M ()

Mat(C) is invariant by left. mult. by M (F5)

= M(CV)M ( ) Yo € qu
= Mat(C), Va € F
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Codes with a decoding algorithm

» Gabidulin codes = rank metric analogues of Reed-Solomon codes

» LRPC codes = structured rank metric analogues of LDPC/MDPC codes
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2. LRPC codes

[Gaborit, Murat, Ruatta, Zémor 2013]

Definition 1. An LRPC code over F,n of weight w has a parity-check matrix
with entries h;; that span an IF, space of dimension w.

x|, = dim(z1, ..., Tn)F,
= all rows of H have weight < w.

» Correct t errors when tw < n — k.
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Definition 2. An LDPC code over F m of Is a code C that admits an
(n — k) X n parity-check matrix H whose rows have Hamming weight < w.
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Definition 3. | ] The of a
vector x is the set of positions 1 where x; # 0:

def

= | J Suppl(c)

ceC

Definition 4. | ] The (resp.
) Supp(X), resp. Supp,.(X), of a matrix X € F**" is the subspace of
Fy" generated by the columns of X, resp. by the rows of X.

def

Supp.(x) = Supp.(Mat(z))
def

Supp.(€) = € Supp,(c)

cel
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A parity check matrix H = | ... | whose entries H;; are all in a subspace V'
_hn_k_
of dimension w
GJ_ — <h17 B hn—k>qu
€ = (hi, - hn ),

Supp(¢’) € V
= q”_"C codewords in Crof rank < w

Corresponds to an LDPC code whose dual contains a space of subcode of dimension
n — k whose support is of size w.
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rank

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta,
Zémor, 2013]

Definition 5. [product space] FE and F two subspaces of Fm.

:<6f766E7f€F>Fq

dim F - F < dim F dim F
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rank

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta,
Zémor, 2013] (1)

Yy = c+e
= Hy' = He'
€; S E
dim F < ¢
H;; € F
dim F <w
(81,7 Sn—k>Fq =likely if n — k > tw! £ - F
A = \lz/ F

unknown
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LRPC

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta,
Zémor, 2013] (111)

Supp(e)
sT

E C

,kE -
<f17"' 7fw>]Fq
fi'A

E =ikl ﬂfz-_lA
i=1

= e by solving a linear system if nt < m(n — k)
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H = [Hl Hg}
H, : circulant matrix p X p matrix
 hy Ay hyp 1]
H, — hp—1  ho hp—2
hi  hs ho

= ho+h X+ +h, XP!
{circulant matrices in F?*7} ~ T [X]/(X? —1)

If the first row has all its entries in V' then so do the other rows.
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NTRU-MDPC-LRPC

NTRU MDPC LRPC
ambient Zq| X]/(XP —1) | FolX]/(XP —1) F,m[X]/(XP —1)
space E
. def def . def .
metric | flloo = sup; | fil | [flw=#{i: fi #0} | [flr = dimg, < fi >
public key | (1,h) € E* (1,h) € E* (1,h) € E*
message pwek pwek uwekl
oo < T il < to ulr < ts
random re kb rek rekl
7|00 < t1 7|n < 1o [(m,7)|r < t3
ciphertext | rh+ u rh + u rh + u
private key | (f,g) € E” (f,g) € E* (f,9) € E?
floos [gloo w1 | |fla, |gla < wo f, 9lr < ws
constraint | /pwit; < ¢ 2towe < P tzws < min(m, p)
the point | h = 24 S _ I
g g g
p’ small
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3. The RSL problem

Problem 5. [RSL]

Input: n, k, t, ¢, (parity-check) matrix H € Fg”"“”m 81, ,8 € ]FZ‘"C
Promise: 3 subspace V of Fym and e1,--- ,e, with Supp_.(e;) =V and He;T =
SiT

Question: Find V

Simultaneous decoding problem of ¢ errors sharing the same column support
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An authentication scheme

Lyubashevsky's “Fiat-Shamir with aborts”
» Public matrix /1 € ]F(gn_k)xn
> has a secret matrix S € Fflmx of £ small row vectors.
» = 11STis public

» Prover wants to prove his knowledge of S (he knows how to decode ¢ instances
of the decoding problem)

Prover Verifier

sT=He'T
Chooses small random e € IFZL

chooses a small ¢ € ]Fg
£
z=e+cS
z
%

lz] < el + eS|

checks { T T 1 TeT
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Verification

T = HST
Hz" = H((e"+ S'c")
= s'+Tc'
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» If ¢ and S are small, then ¢S is small.

» Adding a small random e to a small ¢S can make it random and “washes” out
the information contained on S brought by ¢S
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How to do this for the rank metric ?

» If c and S are small, then ¢S is small.

€1

_eﬁ_
Supp(e;) € FE ( RSL condition! )
dim F t

o
|

Supp(c)
Supp(cS)
S|

/NI
S = om s
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Does not completely work like this...

E-F CFE-F + Supp(e

= F

C

—typically!

—typically!

(Cla'” 7C€)
(i, fw) = F
E-F

Supp(z) = Supp(e + cS)

() /7 'Supp(z)
1=1
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Durandal, IBE both based on RSL

» IBE scheme [Gaborit-Hauteville-Phan-Tillich/CRYPTO 2017] in rank metric
based on RSL

» signature scheme Durandal [Aragon-Blazy-Gaborit-Hauteville-Ruatta-Zemor /EUROCF
2019] based on RSL
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4. Complexity of the best known algorithms

Solving the decoding problem Dec[m, n, k, t]
» Algebraic attacks (MinRank)

» Combinatorial attacks O (qt(’“+1>_m) when m = n.
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Decoding < finding a low weight codeword

y = c_+te, le/=t1
ce

ef
= et (Y.

II:?q
ecC = dmin(e/) S

Decoding t errors in C <+ finding a codeword of weight ¢ in €'
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RSL < finding a

Y

Yo

Yy

Suppc(ei)

subcode of small support

ci +te
.C1 1
ee
= co —+e
.C2 2
ee

= Gt T€
ce
C FE withdimF =t

— €+<y17 7y£>Fq

— <617 T 7e€>]Fq

C” subcode of C" with support of size < ¢
= ¢* codewords in €’ of rank weight < ¢.
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The influence of the structure

» Finding a codeword of weight ¢ in a matrix code € Fy*" of dimension K = kn
with a combinatorial approach O (¢'%)

» Finding a codeword of weight ¢ in an Fgn linear code [n, k|, with a
combinatorial approach O (q(t_l)k) : ¢" codewords of weight t!

» Finding a codeword of weight ¢ in a double-circulant code [Fyn linear code
2K, k]p n: O (q(t_Q)k) . ¢"TF codewords of weight !
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The basic principle of combinatorial attacks : rank analogue
of the simplest information set decoder

H e F" R e ¢ Fr

—k
g SEF,
He' = T (1)
|6‘Ham =t

Basic principle : hope to be lucky e; = 0 on k positions

k n—k

(

n — k equations
(1) = { n — k unknowns

Complexity : =~ 1 for a random I of size k.

™ Prob(e;=0, Vi€I)
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Matrix code C over IFZ””X” of dimension K = km.
Y=C+F

» Principle 1: (generally) we can choose arbitrarily km entries of C' in a codeword
C' of C and the rest are linear functions of these entries.

» Principle 2: we hope that the first k£ columns of the error E are zero (more
generally we hope that the first £ columns of EP are zero), prob.= O (q_kt)

k n—k k n—k
k t
. Iy 0
- M - basis of therow _ | _j5 1 ; I p= 0
| arbitrary spaceof E 0 1
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Scaling ?

QC-MDPC QC-LRPC
condition for wt = O (n) wt = O (n)
correct decoding
keysize O (n) O (n?)
security (bits) min(w, t) min(wn/2,tn/2)
scaling (w = t) A:O(\/E) A =0 (K3
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5. Algebraic attacks

» For some time the most efficient approach for solving the rank decoding problem
were combinatorial approaches. Parameters of the NIST submissions computed

with this belief

» Bardet-Briaud-Bros-Gaborit-Neiger-Ruatta-Tillich/EUROCRYPT 2020] changed
this : modelling the problem with an algebraic system and solving with a
dedicated Grobner basis approach is more efficient!

» Bardet-Bros-Cabarcas-Gaborit-PerIner-Smith-Tone-Tillich-Verbel /ASIACRYPT 2020]
changed this : modelling the problem with an algebraic system and solving a
suitable linear system is more efficent!

The last approach can really be seen as “extracting” the useful computations from
the Grobner basis approach.
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Several approaches for solving the MinRank problem

Problem 6. [MinRank (homogeneous)]
Input: m, n, K, t, Mq,--- , Mg € IFZLX”
Question: 37 x € Fff such that

K
rank (Z $1M1> =1
1=1

» Kipnis-Shamir approach : bilinear system
» Support modelling : bilinear system

» Minor modelling : system of degree t + 1 by writing that all minors of size
(t+1)x (t+1) of Zfil x; M ; are zero.
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Setting up the linear system

» Decoding y = ¢ + e with |e|] = t reduced to finding a word of weight ¢ in

i (y) : ¢ — 1 solutions : ae with a € Fj,,

é:{CEFZm:C T:O}

e = (1 a ... ozm_l)SC’
e F
c IFI;J?XTL

unknowns : entries of S and entries of C
Columns of S = basis of the support of e
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1 a ... a™)SCH =0, (2)

» Approach 1: solving the bilinear system (2) by computing a Grobner basis for

it. At degree t + 1 : degree fall we obtain new equations of degree ¢t involving
only the entries of C'...

» Approach 2: constructing directly these equations and deduce directly the Cj;
by solving a (huge) linear system

The point: (2) = CH' is of rank < ¢

Proposition 1. The maximal minors of the t x (n — k — 1) matrix CH' are all
equal to 0.

> (”_f_l) equations of degree ¢ in the Cj;'s
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A € IF;”X”
B € ]Fg‘xm

det(AB) = > det(A, s) det(Bg,,)
SC{1,---,n}:|S|=m

 det(Cyp) for TC{1,--- ,n} and [T| =t

— The maximal minors of CH ' are linear combinations of the cT

= linear system with ("~7~') equations with coefficients in Fym involving (7)
variables (the cp's)

= linear system with m(”_
variables (cp € F,!)

k—1

A ) equations with coefficients in ¥, involving (?)
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» If (S, C) solution of
1 o ... o™ SCH =0,_41

so is (SA, A7'C) for any A invertible in F{?. Therefore we may assume that

1 0 0
C— 0 .1 O
_O 0O 1 % % * |

Cij = (=1 e, iy yuis)
= solving the linear system in the cr's yields directly the C;;'s. Once we know
C' we obtain S by solving a linear system.

should work when m(n B ]; B 1) > (?) —1

(condition verified for many initial parameters of the rank based submissions).
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Further improvements

» Puncturing trick to reduce the number of variables when m(”_’:_l) > (?) —1

» Exhaustive search on a subset of variables to reduce to the previous case
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Using the MinRank formulation (with K = (k + 1)m)

K
SC = ZQ?ij
7j=1

K
= ’i—th row Of Z.Iij
j=1

r; belongs to the rowspace of C

[78,] Is of rank < ¢

all maximal minors are = 0

L T A

" [ In the 's
m inear eq. in T;C
t41 q s

Solve (3) when m( " ) >K(n> —1
t+1 t

\ 4 \ >4
~”

# eq. # var.

(3)
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m(tﬁl) (K:_bf) equations of the form

Liq Ly det [g] . =0

Y

where S is a subset of {1,--- n} of size t + 1.
Cofactor expansion = equations in the z;, -+ - x;, cr's.

Problem: not all equations are independent:

r; ’I“j
det T + det | 7rg =0
_C_ *,.S _C_ *,S

= linear relation between these equations.
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b .
n. | | E +i—I\N/K+b—17—-1
f lin. indep. relat D = z+1 n m
# of lin. indep. relations (tJM)( | -

4 of variables = () (K+b—1)

7

# ct 7 of mon. Of degree b

We expect to solve by linearization when # of lin. independent relations > # of
variables —1.
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(m,n, k,r) ("):1 a| p | b | complexity (bits)

Loidreau (128,120, 80,4) 1.28 0143 |0 65
ROLLO-I-128 (79,94,47,5) 1.97 0] 9|0 71
ROLLO-I-192 (89,106, 53,6) 1.06 0| 0[O 87
ROLLO-I-256 | (113,134,67,7) | 067 |3] 0 |1 151
ROLLO-I-128 | (83,298,149,5) | 242 |0]40]0 03
ROLLO-1I-192 | (107,302,151,6) 1.53 018 |0 111
ROLLO-I1-256 | (127,314,157,7) 0.89 0| 6 |1 159
ROLLO-II-128 | (101,94, 47, 5) 252 [0[12]0 70
ROLLO-IN1-192 | (107,118,59,6) 1.31 0| 4 |0 88
ROLLO-I1-256 | (131,134,67,7) 0.78 0| 0 |1 131
RQC-I (97,134,67,5) 2.60 018 |0 77
RQC-II (107,202,101,6) | 146 | 0] 100 101
RQC-III (137,262,131,7) 0.93 31010 144
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Multivariate schemes

Complexity
GeMSS(D,n, A, v) n/m K r n' b New | Previous Type
GeMSS128(513, 174, 12, 12) 174 | 162 | 34 || 61 | 2 || 154 522 MinRank
GeMSS192(513, 256, 22, 20) 265 | 243 | 52 o4 | 2 || 223 537 MinRank
GeMSS256(513, 354, 30, 33) 354 | 324 | 73 || 126 | 3 || 299 1254 MinRank
RedGeMSS128(17,177,15, 15) 177 162 35 62 2 156 538 MinRank
RedGeMSS192(17, 266, 23, 25) 266 | 243 | 53 95 | 2 || 224 870 MinRank
RedGeMSS256(17, 358, 34, 35) 358 | 324 | 74 || 127 | 3 || 301 1273 MinRank
BlueGeMSS128(129, 175, 13, 14) | 175 | 162 | 35 || 63 | 2 || 158 537 MinRank
BlueGeMSS192(129, 265, 22, 23) 265 243 53 95 2 224 870 MinRank
BlueGeMSS256(129, 358, 34, 32) | 358 | 324 | 74 || 127 | 3 || 301 1273 MinRank
Rainbow (G F'(q), v, 01, 02) n K r n’ b New | Previous | Best / Type
a(GF(16), 32, 32, 32) 9 | 33 | 64 || 82 | 3 || 155 161 145 / RBS
Nc(GEF(256), 68, 36, 36) 140 | 37 | 104 || 125 | 5 || 208 585 215 / DA
Vc(GF(256), 92, 48, 48) 188 | 49 | 140 || 169 | 5 || 272 778 275 / DA
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Conclusion

NIST :
Despite the development of algebraic attacks, NIST believes rank-based

cryptography should continue to be researched. The rank metric cryptosystems
offer a nice alternative to traditional hamming metric codes with comparable

bandwidth.
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