Rank Metric Code Based Cryptography

J.-P. Tillich
Inria, team-project Cosmiq

October 2, 2020

1. Code based cryptography

Difficult problem in coding theory

Problem 1. [Decoding]

Input: n, k, t with $k<n$, generator matrix $G \in \mathbb{F}_{q}^{k \times n}$ of the code $\varrho \stackrel{\text { def }}{=}\left\{\boldsymbol{u} \boldsymbol{G}: \boldsymbol{u} \in \mathbb{F}_{q}^{k}\right\}, \boldsymbol{y} \in \mathbb{F}_{q}^{n}$
Question: \exists ? $\boldsymbol{e} \in \mathbb{F}_{q}^{n}$ and $\boldsymbol{u} \in \mathbb{F}_{q}^{k}$ such that

$$
\left\{\begin{array}{l}
\underbrace{\boldsymbol{u}}_{\underset{\in \mathcal{C}}{u G}+\boldsymbol{e}}=\boldsymbol{y} \\
|\boldsymbol{e}|
\end{array} \leqslant t\right.
$$

where $|\boldsymbol{e}|=$ Hamming weight of $\boldsymbol{e}=\#\left\{i \in \llbracket 1, n \rrbracket, e_{i} \neq 0\right\}$.
Problem $N P$-complete

Syndrome decoding

Problem 2. [Decoding]

Input: n, k, t with $k<n$, parity-check matrix $\boldsymbol{H} \in \mathbb{F}_{q}^{(n-k) \times n}$ of the code $\varrho \stackrel{\text { def }}{=}\left\{\boldsymbol{c} \mathbb{F}_{q}^{n}: \boldsymbol{H} \boldsymbol{c}^{\top}=0\right\}, s \in \mathbb{F}_{q}^{n-k}$
Question: \exists ? $\boldsymbol{e} \in \mathbb{F}_{q}^{n}$ such that $\left\{\begin{array}{lll}\boldsymbol{H} \boldsymbol{e}^{\top} & = & \boldsymbol{s}^{\top} \\ |\boldsymbol{e}| & \leqslant & t\end{array}\right.$.
equivalent version of the decoding problem:

$$
\begin{aligned}
\boldsymbol{y} & =\underbrace{\boldsymbol{c}}_{\in \mathrm{e}}+\boldsymbol{e} \\
\Rightarrow \boldsymbol{s}^{\top} \stackrel{\text { def }}{=} \boldsymbol{H} \boldsymbol{y}^{\top} & =\boldsymbol{H} \boldsymbol{e}^{\top}
\end{aligned}
$$

Rank Metric

Difficult problem in coding theory

Problem 3. [Decoding]

Input: n, k, t with $k<n$, generator matrix $G \in \mathbb{F}_{q}^{k \times n}$ of the code e def $\left.\xlongequal[=]{=} \boldsymbol{u} \boldsymbol{G}: \boldsymbol{u} \in \mathbb{F}_{q}^{k}\right\}, \boldsymbol{y} \in \mathbb{F}_{q}^{n}$
Question: \exists ? $\boldsymbol{e} \in \mathbb{F}_{q}^{n}$ and $\boldsymbol{u} \in \mathbb{F}_{q}^{k}$ such that

$$
\left\{\begin{array}{l}
\underbrace{u \boldsymbol{G}}_{\in \mathcal{E}}+\boldsymbol{e}=\boldsymbol{y} \\
|\boldsymbol{e}|_{R}
\end{array} \leqslant t\right.
$$

where $|\boldsymbol{e}|_{R}=$ rank weight of \boldsymbol{e}.
Randomized reduction [Gaborit-Zemor2014] of the previous problem to it.

Rank metric

- $\left(\beta_{1} \ldots \beta_{m}\right)$ basis of $\mathbb{F}_{q^{m}}$ over \mathbb{F}_{q}

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n} \rightarrow \operatorname{Mat}(x)=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m 1} & x_{m 2} & \cdots & x_{m n}
\end{array}\right] \in \mathbb{F}_{q}^{m \times n}
$$

where $x_{j}=\sum_{i=1}^{m} x_{i j} \beta_{i}$.

- Rank metric $=$ viewing an element of $\mathbb{F}_{q^{m}}^{n}$ as an $m \times n$ matrix.

$$
|x-y|_{r}^{\text {def }} \boldsymbol{\operatorname { R a n }}(\boldsymbol{\operatorname { M a t }}(\boldsymbol{x})-\boldsymbol{\operatorname { M a t }}(\boldsymbol{y})) .
$$

Rank/Hamming/Euclidean metric

Ambient space $\mathbb{F}_{q}^{n^{2}}$

	Euclidean metric	Hamming metric	Rank metric
\# levels	$O\left(q^{2} n^{2}\right)$	$n^{2}+1$	$n+1$

A very rigid metric

- Projection in Hamming space, $I \subset\{1, \cdots, n\},|I|=p$

$$
\begin{aligned}
\pi_{I}: \mathbb{F}_{q}^{n} & \rightarrow \mathbb{F}_{q}^{p} \\
\boldsymbol{x} & \mapsto \boldsymbol{x}_{I}=\left(x_{i}\right)_{i \in I} \\
\text { typically }\left|\pi_{I}(\boldsymbol{x})\right|_{\mathrm{Ham}} & \approx \frac{p}{n}|\boldsymbol{x}|_{\mathrm{Ham}}
\end{aligned}
$$

Phenomenon used in ISD

- Projection in rank metric, associated to a full-rank matrix $\boldsymbol{P} \in \mathbb{F}_{q}^{p \times m}$:

$$
\begin{aligned}
\pi: \mathbb{F}_{q}^{m \times n} & \rightarrow \mathbb{F}_{q}^{p \times n} \\
\boldsymbol{M} & \mapsto \boldsymbol{P} \boldsymbol{M} \\
\text { typically }|\pi(\boldsymbol{M})|_{\text {Rank }} & \approx|\boldsymbol{M}|_{\text {Rank }} \text { if }|\boldsymbol{M}|_{\text {Rank }} \leqslant p
\end{aligned}
$$

No weight reduction

MinRank

Problem 4. [MinRank]

Input: $m, n, K, t, \boldsymbol{M}_{1}, \cdots, \boldsymbol{M}_{K}, \boldsymbol{Y} \in \mathbb{F}_{q}^{m \times n}$
Question: \exists ? $\boldsymbol{E} \in \mathbb{F}_{q}^{m \times n}$ and $\boldsymbol{u} \in \mathbb{F}_{q}^{K}$ such that

$$
\begin{cases}\underbrace{\sum_{i=¢}^{K} u_{i} \boldsymbol{M}_{i}}_{i=1}+\boldsymbol{E} & =\boldsymbol{Y} \\ \in \stackrel{\text { def }}{=}\left\langle\boldsymbol{M}_{1}, \cdots, \boldsymbol{M}_{K}\right\rangle_{\mathbb{F}_{q}} \\ \operatorname{rank}|\boldsymbol{E}| & \leqslant t\end{cases}
$$

Decoding in Hamming metric reduces to solving MinRank.

$$
\boldsymbol{Y}=\left[\begin{array}{cccc}
y_{1} & 0 & \ldots & 0 \\
0 & y_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & y_{n}
\end{array}\right]
$$

Decoding $\mathbb{F}_{q^{m}}$ linear codes reduces to MinRank

Code \mathcal{C} generated by $\boldsymbol{G}=\left[\begin{array}{c}\boldsymbol{g}_{1} \\ \ldots \\ \boldsymbol{g}_{k}\end{array}\right]$, of dimension k over $\mathbb{F}_{q^{m}}$:

$$
\begin{aligned}
\mathcal{C} & =\left\{u_{1} \boldsymbol{g}_{1}+\cdots+u_{k} \boldsymbol{g}_{k}, u_{i} \in \mathbb{F}_{q^{m}}\right\} \\
& =\left\langle\boldsymbol{g}_{1}, \cdots, \boldsymbol{g}_{k}\right\rangle_{\mathbb{F}_{q^{m}}}
\end{aligned}
$$

Corresponding matrix code C^{\prime} :

$$
\begin{aligned}
\mathcal{C}^{\prime} & \stackrel{\text { def }}{=} \operatorname{Mat}(\mathcal{C})=\{\boldsymbol{\operatorname { M a t }}(\boldsymbol{c}): \boldsymbol{c} \in \mathcal{C}\} \\
& =\left\langle\boldsymbol{\operatorname { M a t }}\left(\alpha^{i} \boldsymbol{g}_{j}\right): i \in\{0, \cdots, m-1\}, j \in\{1, \cdots, k\}\right\rangle_{\mathbb{F}_{q}}
\end{aligned}
$$

\mathcal{C}^{\prime} matrix code of dimension $K=m n$ over \mathbb{F}_{q}.
decoding \mathcal{C} for the rank metric \Leftrightarrow solving MinRank for \mathcal{C}^{\prime}

The complexity picture

Hamming-Decoding $\leqslant r$ Rank-Decoding \leqslant MinRank
Hamming-Decoding \leqslant MinRank

Rank-decoding rather than MinRank in code-based cryptography

- public key m times shorter!

	public key	size
rank-dec $[m, n, k, t]$	$\boldsymbol{g}_{1}, \cdots, \boldsymbol{g}_{k} \in \mathbb{F}_{q^{m}}^{n}$	$k m n \log q$
MinRank $[m, n, k, t]$	$\operatorname{Mat}\left(\boldsymbol{g}_{1}\right), \quad \cdots \quad \operatorname{Mat}\left(\alpha^{m-1} \boldsymbol{g}_{1}\right)$	$k m^{2} n \log q$
	$\boldsymbol{\operatorname { M a t }}\left(\boldsymbol{g}_{k}\right), \quad \cdots \quad \operatorname{Mat}\left(\alpha^{m-1} \boldsymbol{g}_{k}\right)$	

- Very similar to quasi-cyclic codes in code-based cryptography
homomorphism $M: \mathbb{F}_{q^{m}} \rightarrow \mathbb{F}_{q}^{m \times m}$

$$
M(\alpha \beta)=M(\alpha) M(\beta)
$$

for an $\mathbb{F}_{q^{m}}$ linear code \mathcal{C} : $\operatorname{Mat}(\mathcal{C})$ is invariant by left. mult. by $M\left(\mathbb{F}_{q^{m}}^{\times}\right)$

$$
\begin{aligned}
\operatorname{Mat}(\alpha \boldsymbol{c}) & =M(\alpha) \operatorname{Mat}(\boldsymbol{c}), \forall \alpha \in \mathbb{F}_{q^{m}} \\
M(\alpha) \operatorname{Mat}(\mathcal{C}) & =\boldsymbol{\operatorname { M a t }}(\mathcal{C}), \forall \alpha \in \mathbb{F}_{q^{m}}^{\times}
\end{aligned}
$$

Codes with a decoding algorithm

- Gabidulin codes $=$ rank metric analogues of Reed-Solomon codes
- LRPC codes $=$ structured rank metric analogues of LDPC/MDPC codes

2. LRPC codes

[Gaborit, Murat, Ruatta, Zémor 2013]
Definition 1. An LRPC code over $\mathbb{F}_{q^{m}}$ of weight w has a parity-check matrix with entries $h_{i j}$ that span an \mathbb{F}_{q} space of dimension w.

$$
|\boldsymbol{x}|_{r}=\operatorname{dim}\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\mathbb{F}_{q}}
$$

\Rightarrow all rows of \boldsymbol{H} have weight $\leqslant w$.

- Correct t errors when $t w \leqslant n-k$.

LDPC codes

Definition 2. An LDPC code over $\mathbb{F}_{q^{m}}$ of weight w is a code \mathcal{C} that admits an $(n-k) \times n$ parity-check matrix \boldsymbol{H} whose rows have Hamming weight $\leqslant w$.

The notion of support

Definition 3. [Hamming Support] The (Hamming) support $\operatorname{Supp}_{H}(x)$ of a vector \boldsymbol{x} is the set of positions i where $x_{i} \neq 0$:

$$
\begin{aligned}
& \operatorname{Supp}(x) \stackrel{\text { def }}{=}\left\{i: x_{i} \neq 0\right\} \\
& \operatorname{Supp}(\mathrm{C}) \stackrel{\text { def }}{=} \bigcup_{\boldsymbol{c} \in \mathrm{C}} \operatorname{Supp}(\boldsymbol{c})
\end{aligned}
$$

Definition 4. [Rank Support] The column rank support (resp. row rank support) $\boldsymbol{\operatorname { S u p p }}(\boldsymbol{X})$, resp. $\operatorname{Supp}_{r}(\boldsymbol{X})$, of a matrix $\boldsymbol{X} \in \mathbb{F}_{q}^{m \times n}$ is the subspace of \mathbb{F}_{q}^{m} generated by the columns of \boldsymbol{X}, resp. by the rows of \boldsymbol{X}.

$$
\begin{array}{ll}
\operatorname{Supp}_{c}(\boldsymbol{x}) & \stackrel{\text { def }}{=} \operatorname{Supp}_{c}(\operatorname{Mat}(\boldsymbol{x})) \\
\operatorname{Supp}_{c}(\mathrm{C}) & \stackrel{\text { def }}{=} \bigoplus_{c \in \mathrm{C}} \operatorname{Supp}_{c}(\boldsymbol{c})
\end{array}
$$

LRPC/LDPC

A parity check matrix $\boldsymbol{H}=\left[\begin{array}{c}\boldsymbol{h}_{1} \\ \ldots \\ \boldsymbol{h}_{n-k}\end{array}\right]$ whose entries $H_{i j}$ are all in a subspace V of dimension w

$$
\begin{aligned}
& \mathcal{C}^{\perp}=\left\langle\boldsymbol{h}_{1}, \cdots, \boldsymbol{h}_{n-k}\right\rangle_{\mathbb{F}_{q^{m}}} \\
& \mathcal{C}^{\prime}=\left\langle\boldsymbol{h}_{1}, \cdots, \boldsymbol{h}_{n-k}\right\rangle_{\mathbb{F}_{q}} \\
& \operatorname{Supp}\left(\mathcal{C}^{\prime}\right) \subseteq V \\
& \Rightarrow q^{n-k} \text { codewords in } \mathcal{C}^{\perp} \text { of rank } \leqslant w
\end{aligned}
$$

Corresponds to an LDPC code whose dual contains a space of subcode of dimension $n-k$ whose support is of size w.

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta,

 Zémor, 2013]Definition 5. [product space] E and F two subspaces of $\mathbb{F}_{q^{m}}$.

$$
\begin{gathered}
E \cdot F=\langle e f, e \in E, f \in F\rangle_{\mathbb{F}_{q}} \\
\operatorname{dim} E \cdot F \leqslant \operatorname{dim} E \operatorname{dim} F
\end{gathered}
$$

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta, Zémor, 2013] (II)

$$
\begin{array}{rll}
\boldsymbol{y} & = & \boldsymbol{c}+\boldsymbol{e} \\
s^{\top}=\boldsymbol{H} \boldsymbol{y}^{\top} & = & \boldsymbol{H} \boldsymbol{e}^{\top} \\
e_{i} & \in & E \\
\operatorname{dim} E & \leqslant & t \\
H_{i j} & \in & F \\
\operatorname{dim} F & \leqslant w & \\
\left\langle s_{1}, \cdots s_{n-k}\right\rangle_{\mathbb{F}_{q}} & =\text { likely if } n-k \geqslant t w! & E \cdot F \\
A & = & \underbrace{E}_{\text {unknown }} \cdot F
\end{array}
$$

Decoding algorithm for LRPC codes [Gaborit, Murat, Ruatta, Zémor, 2013] (III)

$$
\begin{aligned}
& A=\underbrace{E}_{\text {unknown }} \cdot F \\
& F=\left\langle f_{1}, \cdots, f_{w}\right\rangle_{\mathbb{F}_{q}} \\
& E \subset f_{i}^{-1} A \\
& E=\text { ilikely } \bigcap_{i=1}^{w} f_{i}^{-1} A \\
& \left\{\begin{array}{ll}
E \\
H e^{\top}= & \operatorname{Supp}(e) \\
s^{\top}
\end{array} \Rightarrow e \text { by solving a linear system if } n t \leqslant m(n-k)\right.
\end{aligned}
$$

Cyclicity

$$
\begin{aligned}
\boldsymbol{H} & =\left[\begin{array}{ll}
\boldsymbol{H}_{1} & \boldsymbol{H}_{2}
\end{array}\right] \\
\boldsymbol{H}_{i} & : \text { circulant matrix } p \times p \text { matrix } \\
\boldsymbol{H}_{i} & =\left[\begin{array}{cccc}
h_{0} & h_{1} & \cdots & h_{p-1} \\
h_{p-1} & h_{0} & \cdots & h_{p-2} \\
\vdots & \cdots & \cdots & \vdots \\
h_{1} & h_{2} & \cdots & h_{0}
\end{array}\right] \\
& \equiv h_{0}+h_{1} X+\cdots+h_{p-1} X^{p-1} \\
\text { \{circulant matrices in } \left.\mathbb{F}_{q}^{p \times p}\right\} & \simeq \mathbb{F}_{q}[X] /\left(X^{p}-1\right)
\end{aligned}
$$

If the first row has all its entries in V then so do the other rows.

NTRU-MDPC-LRPC

	NTRU	MDPC	LRPC		
ambient space E	$\mathbb{Z}_{q}[X] /\left(X^{p}-1\right)$	$\mathbb{F}_{2}[X] /\left(X^{p}-1\right)$	$\mathbb{F}_{q^{m}}[X] /\left(X^{p}-1\right)$		
metric	$\\|f\\|_{\infty} \stackrel{\text { def }}{=} \sup _{i}\left\|f_{i}\right\|$	$\|f\|_{H} \stackrel{\text { def }}{=} \#\left\{i: f_{i} \neq 0\right\}$	$\|f\|_{\mathrm{R}} \stackrel{\text { def }}{=} \operatorname{dim}_{\mathbb{F}_{q}}<f_{i}>$		
public key	$(1, h) \in E^{2}$	$(1, h) \in E^{2}$	$(1, h) \in E^{2}$		
message	$\begin{aligned} & \mu \in E \\ & \|\mu\|_{\infty} \leqslant t_{1} \end{aligned}$	$\begin{aligned} & \mu \in E \\ & \|\mu\|_{H} \leqslant t_{2} \end{aligned}$	$\begin{aligned} & \mu \in E \\ & \|\mu\|_{\mathrm{R}} \leqslant t_{3} \end{aligned}$		
random	$\begin{aligned} & r \in E \\ & \|r\|_{\infty} \leqslant t_{1} \end{aligned}$	$\begin{aligned} & r \in E \\ & \|r\|_{\mathrm{H}} \leqslant t_{2} \end{aligned}$	$\begin{aligned} & r \in E \\ & \|(m, r)\|_{\mathrm{R}} \leqslant t_{3} \end{aligned}$		
ciphertext	$r h+\mu$	$r h+\mu$	$r h+\mu$		
private key	$\begin{aligned} & (f, g) \in E^{2} \\ & \|f\|_{\infty},\|g\|_{\infty} \leqslant w_{1} \end{aligned}$	$\begin{aligned} & (f, g) \in E^{2} \\ & \|f\|_{H},\|g\|_{H} \leqslant w_{2} \end{aligned}$	$\begin{aligned} & (f, g) \in E^{2} \\ & \|f, g\|_{R} \leqslant w_{3} \end{aligned}$		
constraint	$\sqrt{p w_{1} t_{1}} \leqslant q$	$2 t_{2} w_{2} \leqslant p$	$t_{3} w_{3} \leqslant \min (m, p)$		
the point	$\begin{aligned} & h=\frac{p^{\prime} f}{g} \\ & p^{\prime} \text { small } \end{aligned}$	$h=\frac{f}{g}$	$h=\frac{f}{g}$		

3. The RSL problem

Problem 5. [RSL]

Input: n, k, t, ℓ, (parity-check) matrix $\boldsymbol{H} \in \mathbb{F}_{q}^{(n-k) \times n} s_{1}, \cdots, s_{\ell} \in \mathbb{F}_{q}^{n-k}$ Promise: \exists subspace V of $\mathbb{F}_{q^{m}}$ and $\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{\ell}$ with $\boldsymbol{S u p p}_{c}\left(\boldsymbol{e}_{i}\right)=V$ and $\boldsymbol{H} \boldsymbol{e}_{i}{ }^{\top}=$ $s_{i}{ }^{\top}$
Question: Find V
Simultaneous decoding problem of ℓ errors sharing the same column support

An authentication scheme

Lyubashevsky's "Fiat-Shamir with aborts"

- Public matrix $H \in \mathbb{F}_{q}^{(n-k) \times n}$
- prover has a secret matrix $S \in \mathbb{F}_{q}^{\ell \times n \times}$ of ℓ small row vectors.
- $T=H \boldsymbol{S}^{\boldsymbol{\top}}$ is public
- Prover wants to prove his knowledge of S (he knows how to decode ℓ instances of the decoding problem)

Verification

$$
\begin{aligned}
\boldsymbol{T} & =\boldsymbol{H} \boldsymbol{S}^{\top} \\
\boldsymbol{H} \boldsymbol{z}^{\top} & =\boldsymbol{H}\left(\boldsymbol{e}^{\top}+\boldsymbol{S}^{\top} \boldsymbol{c}^{\top}\right) \\
& =\boldsymbol{s}^{\top}+\boldsymbol{T} \boldsymbol{c}^{\top}
\end{aligned}
$$

The ideas

- If c and S are small, then $c S$ is small.
- Adding a small random \boldsymbol{e} to a small $\boldsymbol{c S}$ can make it random and "washes" out the information contained on S brought by $c S$

How to do this for the rank metric ?

- If c and S are small, then $c S$ is small.

$$
\begin{aligned}
\boldsymbol{S} & =\left[\begin{array}{l}
e_{1} \\
\cdots \\
e_{\ell}
\end{array}\right] \\
\operatorname{Supp}\left(e_{i}\right) & \subseteq E \quad(\mathrm{RSL} \text { condition! }) \\
\operatorname{dim} E & =t \\
|\boldsymbol{c}| & =w \\
\operatorname{Supp}(\boldsymbol{c}) & =F \\
\operatorname{Supp}(c \boldsymbol{S}) & \subseteq E \cdot F \\
|c \boldsymbol{S}| & \leqslant t w
\end{aligned}
$$

Does not completely work like this...

$$
\begin{aligned}
& \boldsymbol{c} \quad=\quad\left(c_{1}, \cdots, c_{\ell}\right) \\
& \operatorname{Supp}(c) \quad=\quad\left\langle f_{1}, \cdots, f_{w}\right\rangle=F \\
& \operatorname{Supp}(c S) \quad \subseteq \quad E \cdot F \\
& E \cdot F \subset E \cdot F+\operatorname{Supp}(e) \quad{ }_{\text {typically! }} \quad \operatorname{Supp}(z)=\operatorname{Supp}(e+c S) \\
& \Rightarrow E \quad=\text { typically! } \quad \bigcap_{i=1}^{w} f_{i}^{-1} \operatorname{Supp}(\boldsymbol{z})
\end{aligned}
$$

Durandal, IBE both based on RSL

- IBE scheme [Gaborit-Hauteville-Phan-Tillich/CRYPTO 2017] in rank metric based on RSL
- signature scheme Durandal [Aragon-Blazy-Gaborit-Hauteville-Ruatta-Zemor/EUROCF 2019] based on RSL

4. Complexity of the best known algorithms

Solving the decoding problem $\operatorname{Dec}[m, n, k, t]$

- Algebraic attacks (MinRank)
- Combinatorial attacks $\tilde{O}\left(q^{t(k+1)-m}\right)$ when $m=n$.

Decoding \Leftrightarrow finding a low weight codeword

$$
\begin{aligned}
\boldsymbol{y} & =\underbrace{\boldsymbol{c}}_{\in \mathrm{C}}+\boldsymbol{e}, \quad|\boldsymbol{e}|=t \\
\complement^{\prime} & \stackrel{\text { def }}{=} \mathcal{C}+\langle\boldsymbol{y}\rangle_{\mathbb{F}_{q^{m}}} \\
\boldsymbol{e} \in \mathrm{C}^{\prime} & \Rightarrow d_{\min }\left(\complement^{\prime}\right) \leqslant t
\end{aligned}
$$

Decoding t errors in $\mathcal{C} \leftrightarrow$ finding a codeword of weight t in \mathcal{C}^{\prime}.

RSL \Leftrightarrow finding a subcode of small support

$$
\begin{aligned}
\boldsymbol{y}_{1} & =\underbrace{\boldsymbol{c}_{1}}_{\in \mathbb{e}}+\boldsymbol{e}_{1} \\
\boldsymbol{y}_{2} & =\underbrace{\boldsymbol{c}_{2}}_{\in \mathbb{e}}+\boldsymbol{e}_{2} \\
\cdots & =\cdots \\
\boldsymbol{y}_{\ell} & =\underbrace{\boldsymbol{c}_{\ell}}_{\in \mathbb{e}}+\boldsymbol{e}_{\ell} \\
\operatorname{Supp}_{c}\left(\boldsymbol{e}_{i}\right) & \subseteq E \text { with } \operatorname{dim} E=t \\
\mathbb{C}^{\prime} & \stackrel{\text { def }}{=} \mathrm{C}+\left\langle\boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{\ell}\right\rangle_{\mathbb{F}_{q}} \\
e^{\prime \prime} & \stackrel{\text { def }}{=}\left\langle\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{\ell}\right\rangle_{\mathbb{F}_{q}}
\end{aligned}
$$

$\mathcal{C}^{\prime \prime}$ subcode of \mathcal{C}^{\prime} with support of size $\leqslant t$
$\Rightarrow q^{\ell}$ codewords in \mathbb{C}^{\prime} of rank weight $\leqslant t$.

The influence of the structure

- Finding a codeword of weight t in a matrix code $\in \mathbb{F}_{q}^{n \times n}$ of dimension $K=k n$ with a combinatorial approach $\tilde{O}\left(q^{t k}\right)$
- Finding a codeword of weight t in an $\mathbb{F}_{q^{n}}$ linear code $[n, k]_{\mathbb{F}_{q^{n}}}$ with a combinatorial approach $\tilde{O}\left(q^{(t-1) k}\right): q^{n}$ codewords of weight t !
- Finding a codeword of weight t in a double-circulant code $\mathbb{F}_{q^{n}}$ linear code $[2 k, k]_{\mathbb{F}_{q^{n}}}: \tilde{O}\left(q^{(t-2) k}\right): q^{n+k}$ codewords of weight t !

The basic principle of combinatorial attacks : rank analogue of the simplest information set decoder

$$
\begin{align*}
\boldsymbol{H} \in \mathbb{F}_{q}^{(n-k) \times n}, \boldsymbol{e} & \in \mathbb{F}_{q}^{n}, \boldsymbol{s} \in \mathbb{F}_{q}^{n-k} \\
\boldsymbol{H} \boldsymbol{e}^{\top} & =\boldsymbol{s}^{\top} \tag{1}\\
|\boldsymbol{e}|_{\text {Ham }} & =t
\end{align*}
$$

Basic principle : hope to be lucky $e_{i}=0$ on k positions

$$
(1) \Rightarrow\left\{\begin{array}{l}
n-k \text { equations } \\
n-k \text { unknowns }
\end{array}\right.
$$

Complexity : $\approx \frac{1}{\operatorname{Prob}\left(e_{i}=0, \forall i \in I\right)}$ for a random I of size k.

Rank analogue

Matrix code \mathcal{C} over $\mathbb{F}_{q}^{m \times n}$ of dimension $K=k m$.

$$
\boldsymbol{Y}=\boldsymbol{C}+\boldsymbol{E}
$$

- Principle 1: (generally) we can choose arbitrarily $k m$ entries of C in a codeword C of \mathcal{C} and the rest are linear functions of these entries.
- Principle 2: we hope that the first k columns of the error \boldsymbol{E} are zero (more generally we hope that the first k columns of $\boldsymbol{E} \boldsymbol{P}$ are zero), prob. $=O\left(q^{-k t}\right)$

Scaling ?

	QC-MDPC	QC-LRPC
condition for correct decoding	$w t=O(n)$	$w t=O(n)$
keysize K	$O(n)$	$O\left(n^{2}\right)$
security (bits) λ	$\min (w, t)$	$\min (w n / 2, t n / 2)$
scaling $(w=t)$	$\lambda=O(\sqrt{K})$	$\lambda=O\left(K^{3 / 4}\right)$

5. Algebraic attacks

- For some time the most efficient approach for solving the rank decoding problem were combinatorial approaches. Parameters of the NIST submissions computed with this belief
- Bardet-Briaud-Bros-Gaborit-Neiger-Ruatta-Tillich/EUROCRYPT 2020] changed this : modelling the problem with an algebraic system and solving with a dedicated Gröbner basis approach is more efficient!
- Bardet-Bros-Cabarcas-Gaborit-PerIner-Smith-Tone-Tillich-Verbel/ASIACRYPT 2020] changed this: modelling the problem with an algebraic system and solving a suitable linear system is more efficent!

The last approach can really be seen as "extracting" the useful computations from the Gröbner basis approach.

Several approaches for solving the MinRank problem

Problem 6. [MinRank (homogeneous)]

Input: $m, n, K, t, \boldsymbol{M}_{1}, \cdots, \boldsymbol{M}_{K} \in \mathbb{F}_{q}^{m \times n}$
Question: \exists ? $\boldsymbol{x} \in \mathbb{F}_{q}^{K}$ such that

$$
\operatorname{rank}\left(\sum_{i=1}^{K} x_{i} \boldsymbol{M}_{i}\right)=t
$$

- Kipnis-Shamir approach : bilinear system
- Support modelling : bilinear system
- Minor modelling : system of degree $t+1$ by writing that all minors of size $(t+1) \times(t+1)$ of $\sum_{i=1}^{K} x_{i} \boldsymbol{M}_{i}$ are zero.

Setting up the linear system

- Decoding $\boldsymbol{y}=\boldsymbol{c}+\boldsymbol{e}$ with $|\boldsymbol{e}|=t$ reduced to finding a word of weight t in $\tilde{\mathrm{C}} \stackrel{\text { def }}{=} \mathcal{C}+\langle\boldsymbol{y}\rangle: q^{m}-1$ solutions : $\alpha \boldsymbol{e}$ with $\alpha \in \mathbb{F}_{q^{m}}^{\times}$

$$
\left.\begin{array}{rl}
\tilde{\mathfrak{C}} & =\left\{\boldsymbol{c} \in \mathbb{F}_{q^{m}}^{n}: \boldsymbol{c} \tilde{H}^{\top}=0\right.
\end{array}\right\} .
$$

unknowns: entries of S and entries of C
Columns of $S=$ basis of the support of e

The algebraic system

$$
\left(\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{m-1} \tag{2}
\end{array}\right) \boldsymbol{S} \boldsymbol{C} \tilde{\boldsymbol{H}}^{\top}=\mathbf{0}_{n-k-1}
$$

- Approach 1: solving the bilinear system (2) by computing a Gröbner basis for it. At degree $t+1$: degree fall we obtain new equations of degree t involving only the entries of C...
- Approach 2: constructing directly these equations and deduce directly the $C_{i j}$ by solving a (huge) linear system

$$
\text { The point: } \quad(2) \Rightarrow \boldsymbol{C} \tilde{\boldsymbol{H}}^{\top} \text { is of rank }<t
$$

Proposition 1. The maximal minors of the $t \times(n-k-1)$ matrix $\boldsymbol{C} \tilde{\boldsymbol{H}}^{\top}$ are all equal to 0 .

- $\binom{n-k-1}{t}$ equations of degree t in the $C_{i j}$'s

The Cauchy-Binet Formula

$$
\begin{aligned}
& \boldsymbol{A} \in \mathbb{F}_{q}^{m \times n} \\
& \boldsymbol{B} \in \mathbb{F}_{q}^{n \times m} \\
& \operatorname{det}(\boldsymbol{A} \boldsymbol{B})=\sum_{S \subseteq\{1, \cdots, n\}:|S|=m} \operatorname{det}\left(\boldsymbol{A}_{*, S}\right) \operatorname{det}\left(\boldsymbol{B}_{S, *}\right) \\
& c_{T} \stackrel{\operatorname{def}}{=} \operatorname{det}\left(\boldsymbol{C}_{*, T}\right) \text { for } T \subseteq\{1, \cdots, n\} \text { and }|T|=t
\end{aligned}
$$

\Rightarrow The maximal minors of $\boldsymbol{C} \tilde{\boldsymbol{H}}^{\top}$ are linear combinations of the c_{T}
\Rightarrow linear system with $\binom{n-k-1}{t}$ equations with coefficients in $\mathbb{F}_{q^{m}}$ involving $\binom{n}{t}$ variables (the c_{T} 's)
\Rightarrow linear system with $m\binom{n-k-1}{t}$ equations with coefficients in \mathbb{F}_{q} involving $\binom{n}{t}$ variables $\left(c_{T} \in \mathbb{F}_{q}\right.$!)

Specifying some entries in C

- If $(\boldsymbol{S}, \boldsymbol{C})$ solution of

$$
\left[\begin{array}{llll}
1 & \alpha & \ldots & \alpha^{m-1}
\end{array}\right] \boldsymbol{S} \boldsymbol{C} \boldsymbol{H}^{\top}=\mathbf{0}_{n-k-1}
$$

so is $\left(\boldsymbol{S} \boldsymbol{A}, \boldsymbol{A}^{-1} \boldsymbol{C}\right)$ for any \boldsymbol{A} invertible in $\mathbb{F}_{q}^{t \times t}$. Therefore we may assume that

$$
\begin{gathered}
\boldsymbol{C}=\left[\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & * & * & \ldots & * \\
0 & 1 & \ddots & 0 & * & * & \ldots & * \\
\vdots & \ddots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 1 & * & * & \ldots & *
\end{array}\right] \\
C_{i j}=(-1)^{t+i} c_{\{1, \cdots, t\}\{i\} \cup\{j\}}
\end{gathered}
$$

\Rightarrow solving the linear system in the c_{T} 's yields directly the $C_{i j}$'s. Once we know
\boldsymbol{C} we obtain \boldsymbol{S} by solving a linear system.

$$
\text { should work when } m\binom{n-k-1}{t} \geqslant\binom{ n}{t}-1
$$

(condition verified for many initial parameters of the rank based submissions).

Further improvements

- Puncturing trick to reduce the number of variables when $m\binom{n-k-1}{t} \geqslant\binom{ n}{t}-1$
- Exhaustive search on a subset of variables to reduce to the previous case

One step beyond

Using the MinRank formulation (with $K=(k+1) m$)

$$
\begin{align*}
\boldsymbol{S C} & =\sum_{j=1}^{K} x_{j} \boldsymbol{M}_{j} \tag{3}\\
r_{i} & \stackrel{\text { def }}{=} i \text {-th row of } \sum_{j=1}^{K} x_{j} \boldsymbol{M}_{j} \\
(3) & \Rightarrow r_{i} \text { belongs to the rowspace of } \boldsymbol{C}
\end{align*}
$$

$\Rightarrow\left[\begin{array}{l}\boldsymbol{r}_{i} \\ \boldsymbol{C}\end{array}\right]$ is of rank $\leqslant t$
\Rightarrow all maximal minors are $=0$
$\Rightarrow \quad m\binom{n}{t+1}$ linear eq. in the $x_{i} c_{T}$'s
Solve (3) when $\underbrace{m\binom{n}{t+1}}_{\# \text { eq. }} \geqslant \underbrace{K\binom{n}{t}}_{\# \text { var. }}-1$

A step further

$m\binom{n}{t+1}\binom{K+b-2}{b-1}$ equations of the form

$$
x_{i_{1}} \cdots x_{i_{b-1}} \operatorname{det}\left[\begin{array}{l}
\boldsymbol{r}_{i} \\
\boldsymbol{C}
\end{array}\right]_{*, S}=0
$$

where S is a subset of $\{1, \cdots, n\}$ of size $t+1$.
Cofactor expansion \Rightarrow equations in the $x_{i_{1}} \cdots x_{i_{b}} c_{T}$'s.
Problem: not all equations are independent:

$$
\operatorname{det}\left[\begin{array}{l}
\boldsymbol{r}_{i} \\
\boldsymbol{r}_{j} \\
\boldsymbol{C}
\end{array}\right]_{*, S}+\operatorname{det}\left[\begin{array}{l}
\boldsymbol{r}_{j} \\
\boldsymbol{r}_{0} \\
\boldsymbol{C}
\end{array}\right]_{*, S}=0
$$

\Rightarrow linear relation between these equations.

Linearization

\# of lin. indep. relations $D=\sum_{i=1}^{b}(-1)^{i+1}\binom{n}{t+i}\binom{m+i-1}{i}\binom{K+b-i-1}{b-i}$

$$
\# \text { of variables }=\underbrace{\binom{n}{t}}_{\# c_{T}} \underbrace{\binom{K+b-1}{b}}_{\# \text { of mon. of degree } b}
$$

We expect to solve by linearization when \# of lin. independent relations $\geqslant \#$ of variables -1 .

Results

	(m, n, k, r)	$\left.\frac{m(n)}{(n-k-1} \begin{array}{c}r \\ r\end{array}\right)-1$	a	p	b	complexity (bits)
Loidreau	$(128,120,80,4)$	1.28	0	43	0	$\mathbf{6 5}$
ROLLO-I-128	$(79,94,47,5)$	1.97	0	9	0	$\mathbf{7 1}$
ROLLO-I-192	$(89,106,53,6)$	1.06	0	0	0	$\mathbf{8 7}$
ROLLO-I-256	$(113,134,67,7)$	0.67	3	0	1	$\mathbf{1 5 1}$
ROLLO-II-128	$(83,298,149,5)$	2.42	0	40	0	$\mathbf{9 3}$
ROLLO-II-192	$(107,302,151,6)$	1.53	0	18	0	$\mathbf{1 1 1}$
ROLLO-II-256	$(127,314,157,7)$	0.89	0	6	1	$\mathbf{1 5 9}$
ROLLO-III-128	$(101,94,47,5)$	2.52	0	12	0	$\mathbf{7 0}$
ROLLO-III-192	$(107,118,59,6)$	1.31	0	4	0	$\mathbf{8 8}$
ROLLO-III-256	$(131,134,67,7)$	0.78	0	0	1	$\mathbf{1 3 1}$
RQC-I	$(97,134,67,5)$	2.60	0	18	0	$\mathbf{7 7}$
RQC-II	$(107,202,101,6)$	1.46	0	10	0	$\mathbf{1 0 1}$
RQC-III	$(137,262,131,7)$	0.93	3	0	0	$\mathbf{1 4 4}$

Multivariate schemes

						Complexity		
GeMSS (D, n, Δ, v)	n / m	K	r	n^{\prime}	b	New	Previous	Type
GeMSS128 $(513,174,12,12)$	174	162	34	61	2	$\mathbf{1 5 4}$	522	MinRank
GeMSS192(513, 256, 22, 20)	265	243	52	94	2	$\mathbf{2 2 3}$	537	MinRank
GeMSS256(513, 354, 30, 33)	354	324	73	126	3	$\mathbf{2 9 9}$	1254	MinRank
RedGeMSS128(17, 177, 15, 15)	177	162	35	62	2	$\mathbf{1 5 6}$	538	MinRank
RedGeMSS192(17, 266, 23, 25)	266	243	53	95	2	$\mathbf{2 2 4}$	870	MinRank
RedGeMSS256(17, 358, 34, 35)	358	324	74	127	3	$\mathbf{3 0 1}$	1273	MinRank
BlueGeMSS128(129, 175, 13, 14)	175	162	35	63	2	$\mathbf{1 5 8}$	537	MinRank
BlueGeMSS192(129, 265, 22, 23)	265	243	53	95	2	$\mathbf{2 2 4}$	870	MinRank
BlueGeMSS256(129, 358, 34, 32)	358	324	74	127	3	$\mathbf{3 0 1}$	1273	MinRank

Rainbow $\left(G F(q), v_{1}, o_{1}, o_{2}\right)$	n	K	r	n^{\prime}	b	New	Previous	Best / Type
$\operatorname{la}(G F(16), 32,32,32)$	96	33	64	82	3	155	161	$145 / \mathrm{RBS}$
$\mathrm{IIc}(G F(256), 68,36,36)$	140	37	104	125	5	$\mathbf{2 0 8}$	585	$215 / \mathrm{DA}$
$\mathrm{Vc}(G F(256), 92,48,48)$	188	49	140	169	5	$\mathbf{2 7 2}$	778	$275 / \mathrm{DA}$

Conclusion

NIST :

Despite the development of algebraic attacks, NIST believes rank-based cryptography should continue to be researched. The rank metric cryptosystems offer a nice alternative to traditional hamming metric codes with comparable bandwidth.

