Post-quantum cryptography based on isogeny problems?

Christophe Petit

Université libre de Bruxelles
University of Birmingham

The threat of quantum computers

Quantum Computers: The End of Cryptography?

be Faisons vivne \times © How quantum computen $\times \square$
 'technology/news/11224058/How-quantum-computers-will-undermine-cryptography.html
 onique Perit * Kadolog *
 \mathbb{C} | Privacy and cookies | Jobs | Dating | Offers | Shop | Puzzles | Investor

The Telegraph

Home Video News World Sport Finance Comment Culture Travel Iife Women Fas

hose - technology a meainology niws
How quantum computers will undermine cryptography
Quantum computing has many benefits, but it could also undermine the cryptographic algorithms that underpin the World Wide Web, according to a former NSA technical director

Isogeny Problems

- Recently proposed for post-quantum cryptography
- Classical and quantum algorithms still exponential time in some cases
- Some history, e.g. David Kohel's PhD thesis in 1996
- Natural problems from a number theory point of view

Outline

Motivation

Isogeny-based Cryptography

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

Outline

Motivation

Isogeny-based Cryptography

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

Isogenies

- Let K be a finite field and E_{0} be an elliptic curve over K
- An isogeny from a curve E_{0} is a non trivial morphism $\phi: E_{0} \rightarrow E_{1}$ sending 0 to 0
- In Weierstrass affine coordinates we can write

$$
\phi: E_{0} \rightarrow E_{1}: \phi(x, y)=\left(\frac{\varphi(x)}{\psi^{2}(x, y)}, \frac{\omega(x, y)}{\psi^{3}(x, y)}\right)
$$

- Isogeny degree is $\operatorname{deg} \phi=\max \left\{\operatorname{deg} \varphi, \operatorname{deg} \psi^{2}\right\}$
- Often we write $E_{1}=E_{0} / G$ where $G=\operatorname{ker} \phi$

Isogeny problems

- Isogeny problems with potential interest for cryptography are about "computing" isogenies between two curves, or some variant of this problem
- For these problems to be "hard" these isogenies must have "large" degree
- So representation as a rational map not efficient enough
- Can often assume degree is smooth hence isogeny can be returned as a composition of low degree isogenies
- Attacker sometimes given extra information on isogenies

Isogeny graphs

- Over \bar{K} the ℓ-torsion $E[\ell]$ (points of order dividing ℓ) is isomorphic to $\mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$
- There are $\ell+1$ cyclic subgroups of order ℓ; each one is the kernel of a degree ℓ isogeny
- ℓ-isogeny graph : each vertex is a j-invariant over \bar{K}, each edge corresponds to one degree ℓ isogeny
- Undirected graph : to every $\phi: E_{1} \rightarrow E_{2}$ corresponds a dual isogeny $\hat{\phi}: E_{2} \rightarrow E_{1}$ with $\phi \hat{\phi}=[\operatorname{deg} \phi]$
- Isogeny problems \sim finding paths in these graphs

Isogeny graph structure

- In supersingular case all j and isogenies defined over $\mathbb{F}_{p^{2}}$ and graphs are Ramanujan (optimal expansion graphs)
- In ordinary case, isogeny graphs have "volcano" structure

- In some contexts supersingular isogeny graphs restricted to curves and isogenies defined over \mathbb{F}_{p} (e.g. CSIDH). The restriction then also has a volcano structure, with at most two levels

Hash function

$$
H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}
$$

- Collision resistance : hard to find m, m^{\prime} such that $H(m)=H\left(m^{\prime}\right)$
- Preimage resistance :
given h, hard to find m such that $H(m)=h$
- Second preimage resistance : given m, hard to find m^{\prime} such that $H\left(m^{\prime}\right)=h$
- Used in cryptography for integrity, authentication, ...

Charles-Goren-Lauter hash function

Properties

- Uniform output distribution for large enough messages
- Preimage problem for CGL hash function :

Let E_{0} and E_{1} be two supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ with $\left|E_{0}\left(\mathbb{F}_{p^{2}}\right)\right|=\left|E_{1}\left(\mathbb{F}_{p^{2}}\right)\right|$. Find $e \in \mathbb{N}$ and an isogeny of degree ℓ^{e} from E_{0} to E_{1}.

- Collision problem for CGL hash function :

Let E_{0} be a supersingular elliptic curve over $\mathbb{F}_{p^{2}}$. Find $e_{1}, e_{2} \in \mathbb{N}$, a supersingular elliptic curve E_{1} and two distinct isogenies (i.e. with distinct kernels) of degrees respectively $\ell^{e_{1}}$ and $\ell^{e_{2}}$ from E_{0} to E_{1}.

Key agreement

- Alice and Bob want to agree on a common secret key
- They only exchange public messages
- Eve can see all messages exchanged, yet she should not be able to infer the secret key

Diffie-Hellman key agreement

- Choose g generating a cyclic group
- Alice picks a random a and sends g^{a}
- Bob picks a random b and sends g^{b}
- Alice computes $\left(g^{b}\right)^{a}=g^{a b}$
- Bob computes $\left(g^{a}\right)^{b}=g^{a b}$
- Eve cannot compute a, b or $g^{a b}$ from g^{a} and g^{b} (discrete logarithm, Diffie-Hellman problems)

Diffie-Hellman from abelian group actions [$\mathrm{C06}, \mathrm{~S} 10$]

- Let $\tau: G \times S \rightarrow S:(g, s) \rightarrow \tau_{g}(s)$ be a group action, where G is an abelian group
- Choose $s_{0} \in S$
- Alice picks a random $a \in G$ and sends $s_{a}:=\tau_{a}\left(s_{0}\right)$
- Bob picks a random $b \in G$ and sends $s_{b}:=\tau_{b}\left(s_{0}\right)$
- Alice computes $\tau_{a}\left(s_{b}\right)=\tau_{a b}\left(s_{0}\right)$
- Bob computes $\tau_{b}\left(s_{a}\right)=\tau_{a b}\left(s_{0}\right)$
- Examples : standard DH, CSIDH

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

- Choose a prime p
- Let $S=\left\{\right.$ supersingular curves defined over $\left.\mathbb{F}_{p}\right\}$ (up to isomorphisms, so in fact a set of j-invariants)
- For $E \in S$ let $\operatorname{End}_{\mathbb{F}_{p}}(E)$ be the set of endomorphisms defined over \mathbb{F}_{p}
- Then $\operatorname{End}_{\mathbb{F}_{p}}(E) \approx \mathbb{Z}[\sqrt{-p}]$ or $\operatorname{End}_{\mathbb{F}_{p}}(E) \approx \mathbb{Z}\left[\frac{\sqrt{-p}+1}{2}\right]$ (restrict to either case to get either CSIDH or CSURF)
- Let G be the class group of $E n d_{\mathbb{F}_{p}}(E)$
- Efficiency : choose p so that all computations over $\mathbb{F}_{p^{2}}$

Supersingular Isogeny Diffie-Hellman (SIDH)

- Choose a prime p, and $N_{A}, N_{B} \in \mathbb{N}$ with $\operatorname{gcd}\left(N_{A}, N_{B}\right)=1$ Choose E_{0} a supersingular curve over $\mathbb{F}_{p^{2}}$
- Alice picks a cyclic subgroup $G_{A} \subset E_{0}\left[N_{A}\right]$ defining an isogeny $\phi_{A}: E_{0} \rightarrow E_{A}=E_{0} / G_{A}$ and she sends E_{A} to Bob
- Bob picks a cyclic subgroup $G_{B} \subset E_{0}\left[N_{B}\right]$ defining an isogeny $\phi_{B}: E_{0} \rightarrow E_{B}=E_{0} / G_{B}$ and he sends E_{B} to Alice

- Shared key is $E_{0} /\left\langle G_{A}, G_{B}\right\rangle=E_{B} / \phi_{B}\left(G_{A}\right)=E_{A} / \phi_{A}\left(G_{B}\right)$

Supersingular Isogeny Diffie-Hellman (2)

- To compute the shared key Alice will need $\phi_{B}\left(G_{A}\right)$. This is achieved as follows :
- Let $G_{A}=\left\langle\alpha_{A} P_{A}+\beta_{A} Q_{A}\right\rangle$ where $\left\langle P_{A}, Q_{A}\right\rangle=E_{0}\left[N_{A}\right]$ and at least one of α_{A}, β_{A} coprime to N_{A}
- Bob reveals $\phi_{B}\left(P_{A}\right)$ and $\phi_{B}\left(Q_{A}\right)$ in addition to E_{B}
- Alice computes $\phi_{B}\left(G_{A}\right)=\left\langle\alpha_{A} \phi_{B}\left(P_{A}\right)+\beta_{A} \phi_{B}\left(Q_{A}\right)\right\rangle$
- Can represent ϕ_{A} efficiently if N_{A} smooth
- Can represent torsion points efficiently if either
- $N_{A} \mid p-1$
- $N_{A}=\prod \ell_{i}^{e_{i}}$ with $\ell_{i}^{e_{i}}$ small

Supersingular Isogeny Diffie-Hellman (3)

$$
\begin{gathered}
P_{A}, Q_{A}, R_{A}, \\
P_{B}, Q_{B}, R_{B} \\
E_{0} /\left\langle R_{A}\right\rangle \\
\phi_{A}\left(P_{B}\right), \phi_{A}\left(Q_{B}\right) \\
\phi_{A}\left(R_{B}\right) \\
E_{0} /\left\langle R_{A}, R_{B}\right\rangle \\
\phi_{B}^{\prime}\left(P_{A}\right), \phi_{B}\left(Q_{A}\right) \\
\phi_{B}\left(R_{A}\right)
\end{gathered}
$$

- Jao-De Feo / SIKE chose $N_{i}=\ell_{i}^{e_{i}}$ and $p=N_{A} N_{B} f+1$
- A priori safer to use arbitrary primes and $N_{i} \approx p$

Public Key Encryption protocols

- Diffie-Hellman-like key exchange protocol leads to ElGamal-like public key encryption
- Séta : alternative encryption scheme based on a new trapdoor mechanism [DKPS19] (see later)
- SiGamal, C-SiGamal : variants of CSIDH, trading random oracle for new complexity assumption [MOT20]

Identification protocol / proof of knowledge

- Prover wants to prove knowledge of a secret to Verifier without revealing it (can be used for authentication)
- Security requirements :
- Correctness : if Prover knows the secret then Prover can convince Verifier
- Soundness: if Prover convinces Verifier then Prover must know the secret
- Zero-knowledge : nothing is leaked about the secret

Jao-De Feo-Plût identification protocol

- Proof of knowledge of an isogeny ϕ between two given curves E_{0} and E_{1}

- 3-round protocol :
- Prover commits with E_{2} and E_{3}
- Verifier challenges Prover with one bit b
- Prover reveals ψ and ψ^{\prime} if $b=0$, and ϕ^{\prime} if $b=1$

Digital Signatures

- Identification protocols lead to digital signatures using the Fiat-Shamir transform (or any alternative)
- In [GPV17] we build an alternative identification protocol and signature scheme (see later)
- CSIDH versions : SeaSign [FG18], CSIFish [BKV19]
- SQISign [FKLPW20] : drastic improvements of [GPV17] sign 204B, sk 16B, pk 64B, keygen 0.6 s , sign 2.5 s , verif 50 ms

And more!

- Undeniable signatures [JS14]
- Oblivious transfer [DOPS18, V18, BNOB18]
- Verifiable delay functions [FMPS19]
- Trapdoor DDH groups [KPS20]
- See also [AFMP20] at Asiacrypt 2020

Outline

Motivation

Isogeny-based Cryptography

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

Isogeny from kernel

- Given $G=\operatorname{ker} \phi$, can compute ϕ with Vélu's formulae

$$
\phi(P)=\left(x_{P}+\sum_{Q \in G \backslash\{O\}}\left(x_{P+Q}-x_{Q}\right), \quad y_{P}+\sum_{Q \in G \backslash\{O\}}\left(y_{P+Q}-y_{Q}\right)\right)
$$

using $O(\# G)$ operations

- If $\# G$ is composite then better to write ϕ as a composition of prime degree isogenies
- If $\# G=\prod \ell_{i}^{e_{i}}$ write $G=\prod G_{i}$ with $\# G_{i}=\ell_{i}^{e_{i}}$
- Prime degree isogenies: $O(\ell)$ seems a lower bound, but codomain and point image only cost $O(\sqrt{\ell})$ operations [BFLS20]

Endomorphism ring computation

- Given an elliptic curve E defined over a finite field K, compute the endomorphism ring of E
- We know $\operatorname{End}(E)$ is
- A maximal order in the quaternion algebra $B_{p, \infty}$ (supersingular curves)
- An order in a quadratic imaginary number field (ordinary curves)
- Output = some efficient representation of basis elements (several natural representations are equivalent [PL17])
- Problem considered by David Kohel in his PhD thesis (Berkeley 1996)

Kohel's algorithm for supersingular curves

- Fix a small ℓ. Given a curve E, compute all its neighbors in isogeny graph. Compute all neighbors of neighbors, etc, until a loop is found, corresponding to an endomorphism

- Complexity $\tilde{O}(\sqrt{p})$

Ordinary case and CSIDH

- Ordinary case : subexponential time (Bisson-Sutherland)
- CSIDH [CLMPR18] and variants: we have

$$
\mathbb{Z}[\pi] \subseteq \operatorname{End}(E) \subseteq \mathbb{Z}\left[\frac{\pi+1}{2}\right]
$$

where $\pi:(x, y) \rightarrow\left(x^{p}, y^{p}\right)$,
CSIDH parameters such that $\operatorname{End}(E)=\mathbb{Z}[\pi]$

Isogeny computation

- Given elliptic curves E_{0}, E_{1} defined over a finite field K, compute an isogeny $\phi: E_{0} \rightarrow E_{1}$
- For the problem to be hard then $\operatorname{deg} \phi$ must be large, so ϕ cannot be returned as a rational map

Isogeny computation (2)

- Supersingular case
- Same hardness as endomorphism ring computation, at least heuristically
- May impose some conditions on the degree, for example $\operatorname{deg} \phi=\ell^{e}$ for some e, with same hardness heuristically
- Can be solved in $\tilde{O}(\sqrt{p})$ with two trees from E_{0} and E_{1} in the isogeny graph
- Ordinary and CSIDH cases : subexponential quantum algorithm

Deuring correspondence

- Deuring correspondence (1931) : bijection from supersingular curves over $\overline{\mathbb{F}}_{p}$ (up to Galois conjugacy) to maximal orders in the quaternion algebra $B_{p, \infty}$ (up to conjugation)

$$
E \rightarrow O \approx \operatorname{End}(E)
$$

- Under this correspondence, translate isogeny $\varphi: E_{1} \rightarrow E_{2}$ into ideal I, both left ideal of O_{1} and right ideal of O_{2}, with degree $\varphi=$ norm of I

Quaternion isogeny computation

- Input : two maximal orders O_{0} and O_{1} in $B_{p, \infty}$
- Output: a O_{0}-left ideal $J=I q$ with ℓ-power norm, where I is a O_{0}-left ideal and a O_{1}-right ideal, and $q \in B_{p, \infty}^{*}$
- Following Deuring's correspondence this corresponds to computing an isogeny $\varphi: E_{0} \rightarrow E_{1}$ with power of ℓ degree where $\operatorname{End}\left(E_{0}\right) \approx O_{0}$ and $\operatorname{End}\left(E_{1}\right) \approx O_{1}$
- ANTS 2014 heuristic algorithm (Kohel-Lauter-P-Tignol) solves the problem with $e=\log _{\ell} n(I) \approx \frac{7}{2} \log p$
- Can be adapted to powersmooth norms
- Can be improved to $e \approx 3 \log p$ [PS18]
- New algorithms for any maximal order O_{0} in [FKLPW20]

Remark: GPS signatures [GPS17]

- Fiat-Shamir transform on (parallel instances of) the following identification protocol

where secret is φ, commitment is E_{1}, challenge is ψ, response η is obtained by applying [KLPT14] to $\psi \circ \varphi$

Remark: SQISign [FKLPW20]

- Fiat-Shamir transform on (a single instance of) the following identification protocol

where secret is τ; commitment is E_{1}; challenge is φ; response σ computed with a new KLPT generalization

Explicit Deuring correspondence

- Given supersingular invariant, return corresponding order \approx Endomorphism ring computation problem \rightarrow Believed to be hard
- Given a maximal order, compute corresponding invariant \approx Inverse endomorphism ring computation problem \rightarrow Heuristic polynomial time algorithm [PL17]
- Candidate one-way function

Special isogeny problems (1)

- While above problems are natural and have some history, many protocols rely on "variants" for security
- Not all of these variants are hard. . .

Another look at some isogeny hardness
assumptions
Simon-Philipp Merz, Romy Minko, Christophe Petit

August 2019

Abstract
The security proofs for isogeny-based undeniable signature schemes have been based primarily on two isogeny hardness assumptions: that the One-Sided Modified SSCDH problem and the One-More SSCDH problem are hard to solve. We challenge the validity of these assumptions, showing that both the decisional and computational variants of these problems can be solved in polynomial time. We further demonstrate an attack, applicable to two undeniable signature schemes, one of which was proposed at PQCrypto 2014, which allows an adversary to forge signatures in $2^{4 \lambda / 5}$ steps on a classical computer. This is an improvement over the expected classical security of 2^{λ}, where λ is the chosen security parameter.

Special isogeny problems (2)

- In Jao-De Feo-Plût protocols special problems are used

1. A special prime p is chosen so that $p=N_{1} N_{2} \pm 1$ with $N_{1} \approx N_{2} \approx \sqrt{p}$
2. There are $\approx p / 12$ supersingular invariants but only $N_{1} \approx \sqrt{p}$ possible choices for E_{1}
3. Extra information provided : compute $\phi: E_{0} \rightarrow E_{1}$ of degree N_{1} knowing $\phi(P)$ for all $P \in E_{0}\left[N_{2}\right]$

- Point 2 improves tree-based attacks to $O\left(p^{1 / 4}\right)$
- We now focus on Point 3

Outline

Motivation

Isogeny-based Cryptography

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images
Building endomorphisms of E_{0}
A quantum hidden shift attack

Conclusion

Motivation

- Attack on Jao-De Feo-Plût protocol : compute an isogeny $\phi_{1}: E_{0} \rightarrow E_{1}$ of degree N_{1} given action of ϕ_{1} on $E_{0}\left[N_{2}\right]$
- How useful is this additional information?
- If $\operatorname{gcd}\left(N_{1}, N_{2}\right) \neq 1$ can recover (part of) ϕ_{1}
- Active attacks : replace $\phi_{1}\left(P_{2}\right), \phi_{1}\left(Q_{2}\right)$ by well-chosen points so that (part of) the secret is leaked in shared key [Galbraith-P-Shani-Ti $2016+$ others]
- Next slides: passive attacks (eavesdropping only)
- Building endomorphisms of E_{0} [P17,KMPPS20]
- Quantum hidden shift attack [KMPW20]

Outline

Motivation

Isogeny-based Cryptography
Hard and Easy Isogeny Problems
Computing Isogenies using Torsion Point Images
Building endomorphisms of E_{0}
A quantum hidden shift attack
Conclusion

Warm-up : computing endomorphisms with auxilliary information

- Let p be a prime and let E be a supersingular elliptic curve defined over $\mathbb{F}_{p^{2}}$. Let ϕ be a non scalar endomorphism of E with smooth order N_{1}. Let N_{2} be a smooth integer with $\operatorname{gcd}\left(N_{1}, N_{2}\right)=1$, and let P, Q be a basis of $E\left[N_{2}\right]$.
- Let R be a subring of $\operatorname{End}(E)$ that is either easy to compute, or given (for example, scalar multiplications).
- Given $E, P, Q, \phi(P), \phi(Q), \operatorname{deg} \phi, R$, compute ϕ.
- Best previous algorithm : meet-in-the-middle in $\tilde{O}\left(\sqrt{N_{1}}\right)$

Algorithm sketch (with $R=\mathbb{Z}$)

- We know ϕ on the N_{2} torsion.

Deduce $\hat{\phi}$ on the N_{2} torsion and $\operatorname{Tr}(\phi)$ if $N_{2}>2 \sqrt{N_{1}}$.

- Consider $\psi:=a \phi+b$ for $a, b \in \mathbb{Z}$.

Can evaluate ψ on the N_{2} torsion.

- Find $a, b \in \mathbb{Z}$ such that

$$
\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr}(\phi)=N_{2} N_{1}^{\prime}
$$

with N_{1}^{\prime} small and smooth. Write $\psi=\psi_{N_{1}^{\prime}} \psi_{N_{2}}$.

- Identify ker $\psi_{N_{2}}$ from $\psi\left(E\left[N_{2}\right]\right)$ and deduce $\psi_{N_{2}}$.
- Find $\psi_{N_{1}^{\prime}}$ with a meet-in-the-middle strategy.
- Find ker ϕ by evaluating $(\psi-b) / a$ on the N_{1} torsion, and deduce ϕ.

Finding (a, b) and Complexity

- We have $\operatorname{deg} \psi=a^{2} \operatorname{deg} \phi+b^{2}+a b \operatorname{Tr}(\phi)$

$$
=\left(b+a \frac{\operatorname{Tr} \phi}{2}\right)^{2}+a^{2}\left(\operatorname{deg} \phi-\left(\frac{\operatorname{Tr} \phi}{2}\right)^{2}\right)
$$

- We want $\operatorname{deg} \psi=N_{2} N_{1}^{\prime}$ and N_{1}^{\prime} small and smooth
- Solutions to $\operatorname{deg} \psi=0 \bmod N_{2}$ form a dimension 2 lattice
- We compute a reduced basis, then search for a small linear combination of short vectors until N_{1}^{\prime} smooth
- Heuristic analysis shows we can expect $N_{1}^{\prime} \approx \sqrt{N_{1}}$. Revealing $\phi\left(E\left[N_{2}\right]\right)$ leads to a near square root speedup. (Some parameter restrictions apply.)

Computing isogenies with auxilliary information

- Let p be a prime. Let $N_{1}, N_{2} \in \mathbb{Z}$ coprime. Let E_{0} be a supersingular elliptic curve over $\mathbb{F}_{p^{2}}$. Let $\phi_{1}: E_{0} \rightarrow E_{1}$ be an isogeny of degree N_{1}.
- Let R_{0}, R_{1} be subrings of $\operatorname{End}\left(E_{0}\right)$, End $\left(E_{1}\right)$ respectively. Assume R_{0} contains more than scalar multiplications.
- Given $N_{1}, E_{1}, R_{0}, R_{1}$ and the image of ϕ_{1} on the whole N_{2} torsion, compute ϕ_{1}.
- Best previous algorithm : meet-in-the-middle in $\tilde{O}\left(\sqrt{N_{1}}\right)$

General idea

- For $\theta \in \operatorname{End}\left(E_{0}\right)$ consider $\phi=\phi_{1} \theta \hat{\phi}_{1} \in \operatorname{End}\left(E_{1}\right)$
- Evaluate ϕ on the N_{2} torsion
- Apply techniques from above on ϕ
- Compute $\operatorname{ker} \phi \cap E_{1}\left[N_{1}\right]$
- Deduce $\operatorname{ker} \hat{\phi}_{1}$, then $\hat{\phi}_{1}$ and ϕ_{1}

Remarks

- Several authors have suggested to use $j\left(E_{0}\right)=1728$ for efficiency reasons. In this case $\operatorname{End}\left(E_{0}\right)$ is entirely known and moreover it contains a degree 1 non scalar element θ. Both aspects are useful in attacks.

Impact on SIDH / SIKE

- SIKE parameters: $N_{1} \approx N_{2} \approx \sqrt{p}$
- First attacks in [P17] only for significantly overstreched parameters, such as $N_{1} \approx p^{2}$ and $N_{2} \approx N_{1}^{4}$
- New attacks in [KMPPS20] get closer to actual parameters; apply to "BSIDH-like parameters"

Impact on SIDH / SIKE (2)

- "Weak instances" [KMPPS20] :
- Can construct an alternative initial curve E_{0} together with additional information allowing to break SIDH instances faster than with previous approaches
- Special choices of parameters also lead to better attacks

Remark: Séta [DKPS19]

- Key idea : use torsion point attacks as a trapdoor mechanism, noticing that they only apply when the endomorphism ring of E_{0} is known
- Key generation : secret key is random walk $E_{0} \rightarrow E_{s}$, public key is E_{s}

- Encryption : take a walk from E_{s} depending on message. Ciphertext is final curve $E_{m}+$ images of torsion points
- Decryption : use torsion point attack to recover isogeny hence message

Outline

Motivation

Isogeny-based Cryptography
Hard and Easy Isogeny Problems
Computing Isogenies using Torsion Point Images
Building endomorphisms of E_{0}
A quantum hidden shift attack

Conclusion

A quote from Jao-De Feo-Plût

- Childs-Jao-Soukharev : quantum subexponential attack for computing isogenies between ordinary curves, by reduction to hidden shift problem
- SIDH uses supersingular curves. Jao-De Feo-Plût :
"Since the algorithm of Childs et al. depends crucially on the properties of abelian groups, we believe that no reasonable variant of this strategy would apply to supersingular curves."

Malleability oracles and one-way function

- Consider a one-way function $f: I \rightarrow O$
- Assume a group G acts on I
- Assume malleability oracle : given $f(i)$ and $g \in G$, can compute $f(g \cdot i)$ efficiently
- Then (assuming f is injective, G is finite abelian, and action is transitive and free) the function f can be inverted in quantum subexponential time
- Choose $i_{0} \in I$
- Define $F_{0}(g)=f\left(g \cdot i_{0}\right)$
- Define $F_{1}(g)=f(g \cdot i)$
- Find h such that $F_{1}(g)=F_{0}(h g)$
- Compute $i=h \cdot i_{0}$

Application to SIDH-like protocols (1)

- Let E_{0} with known endomorphism ring. Let N_{1}, N_{2} be SIDH parameters.
- Let I be the set of cyclic subgroups of order N_{1} in E_{0}
- Consider one-way function f sending C any cyclic subgroup of order N_{1} to $E_{A}=E / C$
- Choose $\theta_{0} \in \operatorname{End}\left(E_{0}\right)$ with $\operatorname{deg} \theta_{0}$ coprime to N_{1}, and let G be the subgroup of endomorphisms generated by θ_{0} (modulo N_{1}, and up to scalar multiplications)
- Note that G acts on I

Application to SIDH-like protocols (2)

- To apply our framework we need to construct a malleability oracle, i.e. an efficient algorithm that given E / C and $\theta \in G$ computes $E / \theta(C)$
- Torsion point images immediately help if $\operatorname{deg} \theta$ divides N_{2}

- In general : for any $\theta=\theta_{0}^{i} \in G$, find $\theta^{\prime} \in \operatorname{End}\left(E_{0}\right)$ with $\operatorname{deg} \theta^{\prime} \mid N_{2}$ such that $\theta=\theta^{\prime}$ on the N_{1} torsion

Application to SIDH-like protocols (3)

- In general : for any $\theta=\theta_{0}^{i} \in G$, find $\theta^{\prime} \in \operatorname{End}\left(E_{0}\right)$ with $\operatorname{deg} \theta^{\prime} \mid N_{2}$ such that $\theta=\theta^{\prime}$ on the N_{1} torsion
- This amounts to a lifting problem alike one solved in KLPT algorithm
- Can only be done for large enough N_{2}
- Choice of θ, proof that group action is free and transitive, lifting algorithm + extra technicalities : see [KMPW20]
- Quantum hidden shift attack when roughly $N_{2}>p N_{1}^{3}$

Outline

Motivation

Isogeny-based Cryptography

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion

Conclusion

- We can build some crypto protocols on isogeny problems with reasonable efficiency
- Endomorphism ring computation \& pure isogeny problems are natural problems with some history but
- More classical and quantum cryptanalysis needed
- Beware of variants
- Revealing images of torsion points helps the resolution of (at least some) isogeny problems

Thanks!

- Questions?

