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Isogeny Problems
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Recently proposed for post-quantum cryptography

Classical and quantum algorithms still exponential time
in some cases

Some history, e.g. David Kohel's PhD thesis in 1996
Natural problems from a number theory point of view
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Isogenies

» Let K be a finite field and Ey be an elliptic curve over K

» An isogeny from a curve Eq is a non trivial morphism
¢ : Ep — E; sending 0 to 0
» In Weierstrass affine coordinates we can write

p(x)  w(xy) >
V2(x,y) ¥3(x,y)

» Isogeny degree is deg ¢ = max{deg , deg 1%}
» Often we write E; = Ey/G where G = ker ¢

¢3Eo—>Eli¢(XaY):(




Isogeny problems

Isogeny problems with potential interest for cryptography
are about “computing” isogenies between two curves, or
some variant of this problem

For these problems to be “hard” these isogenies must
have “large” degree

So representation as a rational map not efficient enough

Can often assume degree is smooth hence isogeny can be
returned as a composition of low degree isogenies

Attacker sometimes given extra information on isogenies
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Isogeny graphs

Over K the (-torsion E[(] (points of order dividing ¢)
is isomorphic to Z, X Z,

There are £ 4+ 1 cyclic subgroups of order ¢; each one is
the kernel of a degree ¢ isogeny

(-isogeny graph : each vertex is a j-invariant over K,
each edge corresponds to one degree ¢ isogeny

Undirected graph : to every ¢ : E; - E, corresponds
a dual isogeny ¢ : E; — E; with ¢¢ = [deg ¢]
Isogeny problems ~ finding paths in these graphs
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Isogeny graph structure

» In supersingular case all j and isogenies defined over [F .
and graphs are Ramanujan (optimal expansion graphs)

» In ordinary case, isogeny graphs have “volcano” structure

(A1 {00 1

Picture credit : Josep Miret

» In some contexts supersingular isogeny graphs restricted
to curves and isogenies defined over IF,, (e.g. CSIDH).
The restriction then also has a volcano structure,
with at most two levels
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Hash function

H:{0,1}* — {0,1}"
Collision resistance :

hard to find m, m’" such that H(m) = H(m')

Preimage resistance :
given h, hard to find m such that H(m) = h

Second preimage resistance :
given m, hard to find m’ such that H(m') = h

Used in cryptography for integrity, authentication, ...




Charles-Goren-Lauter hash function

)
Hash of the Future? =
Have you ever struggled to solve a maze? Then imagine trying to finda ~ 71% < (e o =
path through a tangled, three-dimensional maze as large as the Milky = (0 o
Way. By incorporating such a maze into a hash function, Kristin gD o
Lauter of Microsoft Research in Redmond, Washington, is betting g ™
that neither you nor anyone else will solve that problem. A
Technically, Lauter’s maze is called an “expander «
graph” (see figure, right). Nodes in the graph corre- o
spond to elliptic curves, or equations of the form y? = o )
X +ax+ b. Each curve leads to three other curves by L] L) ? >
a mathematical relation, now called isogeny, that 8
Pierre de Fermat discovered while trying to prove b -
his famous Last Theorem. e\ 2
To hash a digital file using an expander L 2 2
graph, you would convert the bits of data o s ©
into directions: 0 would mean “turn right,” 2 —h L = S
1 would mean “turn left.” In the maze (2 - - «
illustrated here, after the initial step 1-2, ™ " - o
the blue path encodes the directions 1,0, 1, 1, 0, G =
0,0, 0, 1, ending at point 24, which would be the fat 2 %
digital signature of the string 101100001. The red [ =
loop shows a collision of two paths, which would be (o Y- - A s
practically impossible to find in the immense maze o 1, P o
envisioned by Lauter. 0 ) > wh S
Although her hash function (developed with colleagues o s =
Denis Charles and Eyal Goren) is provably secure, Lauter admits ™ g
that it is not yet fast enough to compete with iterative hash func- (2 o 1 =
tions. However, for applications in which speed is less of an issue— L g
for example, where the files to be hashed are relatively small—Lauter o 7]
believes it might be a winner. -D.M. wlic = §
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Properties

» Uniform output distribution for large enough messages

» Preimage problem for CGL hash function :
Let Ey and E; be two supersingular elliptic curves over
Fe with |Eo(F2)| = |E1(Fp2)|. Find e € N and an
isogeny of degree /¢ from Eq to E;.

» Collision problem for CGL hash function :
Let Eq be a supersingular elliptic curve over .. Find
e1, & € N, a supersingular elliptic curve E; and two
distinct isogenies (i.e. with distinct kernels) of degrees
respectively ¢t and (2 from Ej to E;.
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Key agreement

» Alice and Bob want to agree on a common secret key
» They only exchange public messages

» Eve can see all messages exchanged, yet she should not
be able to infer the secret key




Diffie-Hellman key agreement
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Choose g generating a cyclic group

Alice picks a random a and sends g?
Bob picks a random b and sends g
Alice computes (g?)? = g

Bob computes (g?)° = g

Eve cannot compute a, b or g?° from g2 and g°
(discrete logarithm, Diffie-Hellman problems)




Diffie-Hellman from abelian group actions [co6,510]

» Let 7: G xS — S :(g,5) = 14(s) be a group action,
where G is an abelian group

» Choose sp € S

» Alice picks a random a € G and sends s, := 7,(5)
» Bob picks a random b € G and sends s, := 75(5p)
» Alice computes 7,(Sp) = Tan(S0)

» Bob computes 75(s,) = 7Tap(50)

» Examples : standard DH, CSIDH




Commutative Supersingular Isogeny

Diffie-Hellman (CSIDH)

Choose a prime p

Let S = {supersingular curves defined over F,}
(up to isomorphisms, so in fact a set of j-invariants)

For E € S let Endp,(E) be the set of endomorphisms
defined over IF,,

Then Endg,(E) ~ Z[\/—p] or Endg,(E) ~ Z[@]
(restrict to either case to get either CSIDH or CSURF)
Let G be the class group of Endy, (E)

Efficiency : choose p so that all computations over [F .
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Supersingular Isogeny Diffie-Hellman (SIDH)

» Choose a prime p, and Na, Ng € N with gcd(Na, Ng) =1
Choose Eq a supersingular curve over [F .
» Alice picks a cyclic subgroup Ga C Ep[N4] defining an
isogeny ¢4 : Eg — Ex = Eg/Ga and she sends E, to Bob
» Bob picks a cyclic subgroup Gg C Ey[Ng] defining an
isogeny ¢ : Ey — Eg = Eq/Gg and he sends Eg to Alice
EA = Eo/GA qb/B
gb/’A Eo/{Ga, Gg)
% Ep=E)/Gs

» Shared key is Eo/(Ga, Gg) = Eg/p5(Ga) = Ea/9a(GB)

17 8




Supersingular Isogeny Diffie-Hellman (2)

» To compute the shared key Alice will need ¢g(Ga).
This is achieved as follows :

>

» Can
» Can

Let GA = <aAPA + BAQA> where <PA, QA> = Eo[NA]
and at least one of as, Ba coprime to Ny
Bob reveals ¢g(Pa) and ¢5(Qa) in addition to Eg

Alice computes ¢g(Ga) = (vadB(Pa) + Bads(Qa))

represent ¢, efficiently if Ny smooth
represent torsion points efficiently if either
Nalp—1

Na =TT with £5 small




Supersingular Isogeny Diffie-Hellman (3)

Eo/<
A
o
PPA’gA, gA . / ) RB \EO/<RA7RB>
B; ¥B: "B
0
CbB( A)>¢B( A)
¢8(Ra)

» Jao-De Feo / SIKE chose N; = (5 and p = NaNgf + 1
» A priori safer to use arbitrary primes and N; ~ p
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Public Key Encryption protocols

» Diffie-Hellman-like key exchange protocol leads to
ElGamal-like public key encryption

» Séta : alternative encryption scheme based on a new
trapdoor mechanism [DKPS19] (see later)

» SiGamal, C-SiGamal : variants of CSIDH, trading random
oracle for new complexity assumption [MOT20]




|dentification protocol / proof of knowledge

» Prover wants to prove knowledge of a secret to Verifier
without revealing it (can be used for authentication)

» Security requirements :
» Correctness : if Prover knows the secret then
Prover can convince Verifier
» Soundness : if Prover convinces Verifier then
Prover must know the secret
» Zero-knowledge : nothing is leaked about the secret

2 [y 8




Jao-De Feo-Pliit identification protocol

» Proof of knowledge of an isogeny ¢ between two given
curves Ey and E;

e F

(4 Y’

/
E2 — E3
» 3-round protocol :

» Prover commits with E; and Ej
» Verifier challenges Prover with one bit b
» Prover reveals ¢ and ¢/ if b=0, and ¢’ if b=1




Digital Signatures

Identification protocols lead to digital signatures
using the Fiat-Shamir transform (or any alternative)

In [GPV17] we build an alternative identification protocol
and signature scheme (see later)

CSIDH versions : SeaSign [FG18], CSIFish [BKV19]

SQISign [FKLPW?2Q] : drastic improvements of [GPV17]
sign 204B, sk 16B, pk 64B, keygen 0.6s, sign 2.5s, verif 50ms

23 8




And more!

v

v

v

v

v

Undeniable signatures [JS14]

Oblivious transfer [DOPS18, V18, BNOB18]
Verifiable delay functions [FMPS19]
Trapdoor DDH groups [KPS20]

See also [AFMP20] at Asiacrypt 2020
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Hard and Easy Isogeny Problems




Isogeny from kernel

Given G = ker ¢, can compute ¢ with Vélu's formulae

¢(P)=(XP+ > (ere—xq) vt Y (ww-m))

QeG\{0} QeG\{0}
using O(#G) operations

If #G is composite then better to write ¢ as a
composition of prime degree isogenies

If #G =[] ¢ write G =[] G; with #G; = (7

Prime degree isogenies : O({) seems a lower bound, but

codomain and point image only cost O(\/Z) operations
[BFLS20]

2 [y 8




Endomorphism ring computation
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Given an elliptic curve E defined over a finite field K,
compute the endomorphism ring of E
We know End(E) is
» A maximal order in the quaternion algebra B,
(supersingular curves)
» An order in a quadratic imaginary number field
(ordinary curves)
Output = some efficient representation of basis elements
(several natural representations are equivalent [PL17])

Problem considered by David Kohel in his PhD thesis
(Berkeley 1996)

7 g 8




Kohel's algorithm for supersingular curves

» Fix a small /. Given a curve E, compute all its neighbors
in isogeny graph. Compute all neighbors of neighbors, etc,
until a loop is found, corresponding to an endomorphism

> Complexity O(,/p)




Ordinary case and CSIDH

» Ordinary case : subexponential time (Bisson-Sutherland)

» CSIDH [CLMPR18] and variants : we have

Z[x] C End(E) C Z r - 1}

where 7 : (x,y) — (xP, yP),
CSIDH parameters such that End(E) = Z[n]




Isogeny computation

» Given elliptic curves Ey, E; defined over a finite field K,
compute an isogeny ¢ : Eg — E;

» For the problem to be hard then deg ¢ must be large,
so ¢ cannot be returned as a rational map




Isogeny computation (2)

» Supersingular case
» Same hardness as endomorphism ring computation, at
least heuristically
» May impose some conditions on the degree, for example
deg ¢ = ¢¢ for some e, with same hardness heuristically
» Can be solved in O(,/p) with two trees from Ey and £
in the isogeny graph

» Ordinary and CSIDH cases : subexponential quantum
algorithm

31 [y 8




Deuring correspondence

Deuring correspondence (1931) : bijection from
supersingular curves over F,, (up to Galois conjugacy)
to maximal orders in the quaternion algebra B, .,

(up to conjugation)
E — O =~ End(E)
Under this correspondence, translate isogeny ¢ : E; — E;

into ideal /, both left ideal of O; and right ideal of O,
with degree ¢ = norm of /

32 B8




Quaternion isogeny computation

Input : two maximal orders O and O; in B,

Output : a Og-left ideal J = Ig with ¢-power norm, where
I is a Og-left ideal and a O;-right ideal, and g € B,

Following Deuring's correspondence this corresponds to
computing an isogeny ¢ : Eg — E; with power of ¢ degree
where End(E) ~ Oy and End(E;) =~ Oy

ANTS 2014 heuristic algorithm (Kohel-Lauter-P-Tignol)
solves the problem with e = log, n(/) ~ glogp

Can be adapted to powersmooth norms
Can be improved to e =~ 3log p [PS18]
New algorithms for any maximal order Oy in [FKLPW20]

33 g B




Remark : GPS signatures [GPs17]

» Fiat-Shamir transform on (parallel instances of) the
following identification protocol

¥

E——mF

E>

where secret is ¢, commitment is E;, challenge is 1),
response 7 is obtained by applying [KLPT14] to ¢ o ¢

2 [ ®




Remark : SQISign [FkLPw20]

Fiat-Shamir transform on (a single instance of) the
following identification protocol

Eo v E;

7'// lsO
¢ o
EA > E2

where secret is 7; commitment is E; ; challenge is ¢ ;
response o computed with a new KLPT generalization

35 [y &




Explicit Deuring correspondence

» Given supersingular invariant, return corresponding order

~ Endomorphism ring computation problem
— Believed to be hard

» Given a maximal order, compute corresponding invariant

~ Inverse endomorphism ring computation problem
— Heuristic polynomial time algorithm [PL17]

» Candidate one-way function




Special isogeny problems (1)

» While above problems are natural and have some history,
many protocols rely on “variants” for security

» Not all of these variants are hard. ..

Another look at some isogeny hardness
assumptions

Simon-Philipp Merz, Romy Minko, Christophe Petit

August 2019

Abstract

rity proofs for isog
ily on two isogeny hard
H problem and the Or

are hard to solve

that both the decis
be solved in polynom
cable to two undeniable s




Special isogeny problems (2)

» In Jao-De Feo-Pliit protocols special problems are used
1. A special prime p is chosen so that p = N1N>, +1
with N1 ~ N2 ~ \/ﬁ
2. There are ~ p/12 supersingular invariants but only
Ny =~ /p possible choices for E;
3. Extra information provided : compute ¢ : Eg — E;
of degree Ny knowing ¢(P) for all P € Ey[Ns]

» Point 2 improves tree-based attacks to O(p'/#)
» We now focus on Point 3
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Computing Isogenies using Torsion Point Images
Building endomorphisms of £,
A quantum hidden shift attack




Motivation

» Attack on Jao-De Feo-Pliit protocol : compute an isogeny
o1 Eo — E; of degree N; given action of ¢; on Ey[/N;]

» How useful is this additional information ?
» If gcd(N1, Na) # 1 can recover (part of) ¢1
» Active attacks : replace ¢1(P2), ¢1(Q2) by well-chosen

points so that (part of) the secret is leaked in shared key
[Galbraith-P-Shani-Ti 2016 + others]

» Next slides : passive attacks (eavesdropping only)

» Building endomorphisms of Ey [P17,KMPPS20]
» Quantum hidden shift attack [KMPW20]
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Computing Isogenies using Torsion Point Images
Building endomorphisms of £,




Warm-up : computing endomorphisms
with auxilliary information

Let p be a prime and let E be a supersingular elliptic
curve defined over [F .. Let ¢ be a non scalar
endomorphism of E with smooth order N;. Let N, be a
smooth integer with gcd(N;, V) =1, and let P, Q be a
basis of E[N5].

Let R be a subring of End(E) that is either easy to
compute, or given (for example, scalar multiplications).

Given E, P, Q, #(P), ¢(Q), deg ¢, R, compute ¢.

Best previous algorithm : meet-in-the-middle in O(v/Ny)

» 8




Algorithm sketch (with R = Z)

We know ¢ on the N, torsion.

Deduce ¢ on the N torsion and Tr(¢) if Ny > 2v/Nj.
Consider ¢ := a¢ + b for a, b € Z.

Can evaluate v on the N, torsion.

Find a, b € Z such that

degt) = a®deg ¢ + b + abTr(¢) = Ny N,

with Nj small and smooth. Write ¢ = ;¢
Identify ker ¢y, from ¢(E[N,]) and deduce ¢y, .
Find ¢n; with a meet-in-the-middle strategy.

Find ker ¢ by evaluating (¢ — b)/a on the N; torsion,
and deduce ¢.

a3 [ 8




Finding (a, b) and Complexity

v

v

v

v

v

We have deg 1) = a®deg ¢ + b* + abTr(¢)

= (b+ 3%)2 + a2 (deg¢ — (%)2)
We want deg ¢ = N,N; and Nj small and smooth
Solutions to deg ¢ = 0 mod N, form a dimension 2 lattice

We compute a reduced basis, then search for a small
linear combination of short vectors until Nj smooth

Heuristic analysis shows we can expect N ~ /Nj.
Revealing ¢(E[N>]) leads to a near square root speedup.
(Some parameter restrictions apply.)

wu g 8




Computing isogenies with auxilliary information

» Let p be a prime. Let Ny, N, € Z coprime. Let Ey be a
supersingular elliptic curve over [F .. Let ¢1 : Eg — E; be
an isogeny of degree N;.

» Let Ry, Ry be subrings of End(Ep), End(E;) respectively.
Assume Ry contains more than scalar multiplications.

» Given N;, E;, Ry, Ry and the image of ¢; on the whole
N, torsion, compute ¢;.

> Best previous algorithm : meet-in-the-middle in O(y/NV;)

s [ B




General idea
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For 0 € End(E) consider ¢ = ¢10¢; € End(E;)
Evaluate ¢ on the N, torsion

Apply techniques from above on ¢

Compute ker ¢ N E;[NV]

Deduce ker ngﬁl, then ngﬁl and ¢,




Remarks

» Several authors have suggested to use j(Ey) = 1728 for
efficiency reasons. In this case End(Ep) is entirely known
and moreover it contains a degree 1 non scalar element 6.
Both aspects are useful in attacks.




Impact on SIDH / SIKE

» SIKE parameters : Ny ~ N, =~ /p

» First attacks in [P17] only for significantly overstreched
parameters, such as N; ~ p? and N, ~ N}

» New attacks in [KMPPS20] get closer to actual
parameters ; apply to “BSIDH-like parameters”

log N, 4

3 log N,




Impact on SIDH / SIKE (2)

» “Weak instances” [KMPPS20] :

» Can construct an alternative initial curve Ey together
with additional information allowing to break SIDH
instances faster than with previous approaches

» Special choices of parameters also lead to better attacks




Remark : Séta [pkpsi9)

Key idea : use torsion point attacks as a trapdoor
mechanism, noticing that they only apply when the
endomorphism ring of Ej is known

Key generation : secret key is random walk Ey — E,
public key is E

@ Pm
Eo u s E. s E,,

Encryption : take a walk from E; depending on message.
Ciphertext is final curve E,, + images of torsion points

Decryption : use torsion point attack to recover isogeny
hence message

s0 [g &
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Computing Isogenies using Torsion Point Images

A quantum hidden shift attack




A quote from Jao-De Feo-Pliit

» Childs-Jao-Soukharev : quantum subexponential attack
for computing isogenies between ordinary curves,
by reduction to hidden shift problem

» SIDH uses supersingular curves. Jao-De Feo-Plit :

“Since the algorithm of Childs et al. depends
crucially on the properties of abelian groups, we
believe that no reasonable variant of this strategy
would apply to supersingular curves.”




Malleability oracles and one-way function

Consider a one-way function f : | — O
Assume a group G acts on /

Assume malleability oracle : given f(i) and g € G, can
compute f(g - i) efficiently

Then (assuming f is injective, G is finite abelian, and
action is transitive and free) the function f can be
inverted in quantum subexponential time
» Choose i, € /
Define Fo(g) = (g - o)
Define F1(g) = f(g - i)
Find h such that F1(g) = Fo(hg)
Compute i = h- iy

v

vV v v




Application to SIDH-like protocols (1)

Let Ey with known endomorphism ring. Let Ny, N, be
SIDH parameters.

Let / be the set of cyclic subgroups of order Nj in Eqy

Consider one-way function f sending C any cyclic
subgroup of order Ny to Ex = E/C

Choose 0y € End(Ep) with degfy coprime to Ny, and let
G be the subgroup of endomorphisms generated by 6,
(modulo Ny, and up to scalar multiplications)

Note that G acts on /




Application to SIDH-like protocols (2)

» To apply our framework we need to construct a
malleability oracle, i.e. an efficient algorithm that
given E/C and § € G computes E/§(C)

» Torsion point images immediately help if deg @ divides N,

Eo d Ea

0
Eqo —— Eq/0(ker ¢) = Ep/p(ker 0)

> In general : for any 6 = 0} € G, find ¢’ € End(Ep) with
deg 0’| N, such that § = ¢ on the Nj torsion

s




Application to SIDH-like protocols (3)

» In general : for any 0 = 0] € G, find ¢’ € End(Ep) with
deg 0’| N, such that = ¢’ on the Nj torsion

» This amounts to a lifting problem alike one solved in
KLPT algorithm
» Can only be done for large enough N>

» Choice of 6, proof that group action is free and transitive,
lifting algorithm + extra technicalities : see [KMPW20]

> Quantum hidden shift attack when roughly N, > pN3

56 [y &
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Conclusion

» We can build some crypto protocols on isogeny problems
with reasonable efficiency

» Endomorphism ring computation & pure isogeny problems
are natural problems with some history but
» More classical and quantum cryptanalysis needed
» Beware of variants
» Revealing images of torsion points helps the resolution
of (at least some) isogeny problems




Thanks'!

» Questions?
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