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The threat of quantum computers

 



Christophe Petit - Virtual UK - October 2020 3

Isogeny Problems

I Recently proposed for post-quantum cryptography

I Classical and quantum algorithms still exponential time
in some cases

I Some history, e.g. David Kohel’s PhD thesis in 1996

I Natural problems from a number theory point of view
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Isogenies

I Let K be a finite field and E0 be an elliptic curve over K

I An isogeny from a curve E0 is a non trivial morphism
φ : E0 → E1 sending 0 to 0

I In Weierstrass affine coordinates we can write

φ : E0 → E1 : φ(x , y) =

(
ϕ(x)

ψ2(x , y)
,
ω(x , y)

ψ3(x , y)

)
I Isogeny degree is deg φ = max{degϕ, degψ2}
I Often we write E1 = E0/G where G = ker φ
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Isogeny problems

I Isogeny problems with potential interest for cryptography
are about “computing” isogenies between two curves, or
some variant of this problem

I For these problems to be “hard” these isogenies must
have “large” degree

I So representation as a rational map not efficient enough

I Can often assume degree is smooth hence isogeny can be
returned as a composition of low degree isogenies

I Attacker sometimes given extra information on isogenies
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Isogeny graphs

I Over K̄ the `-torsion E [`] (points of order dividing `)
is isomorphic to Z` × Z`

I There are ` + 1 cyclic subgroups of order ` ; each one is
the kernel of a degree ` isogeny

I `-isogeny graph : each vertex is a j-invariant over K̄ ,
each edge corresponds to one degree ` isogeny

I Undirected graph : to every φ : E1 → E2 corresponds
a dual isogeny φ̂ : E2 → E1 with φφ̂ = [deg φ]

I Isogeny problems ∼ finding paths in these graphs
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Isogeny graph structure

I In supersingular case all j and isogenies defined over Fp2

and graphs are Ramanujan (optimal expansion graphs)

I In ordinary case, isogeny graphs have “volcano” structure

Picture credit : Josep Miret

I In some contexts supersingular isogeny graphs restricted
to curves and isogenies defined over Fp (e.g. CSIDH).
The restriction then also has a volcano structure,
with at most two levels



Christophe Petit - Virtual UK - October 2020 10

Hash function

H : {0, 1}∗ → {0, 1}n

I Collision resistance :
hard to find m,m′ such that H(m) = H(m′)

I Preimage resistance :
given h, hard to find m such that H(m) = h

I Second preimage resistance :
given m, hard to find m′ such that H(m′) = h

I Used in cryptography for integrity, authentication, . . .



Christophe Petit - Virtual UK - October 2020 11

Charles-Goren-Lauter hash function

Katholieke Universiteit Leuven in Belgium.

Anticipating such a breakdown, Microsoft in

2005 banned both SHA-1 and MD5 from

new products and has removed MD5 from all

its current products, says Kristin Lauter, head

of the Cryptography Group at Microsoft

Research in Redmond, Washington. Fortu-

nately, a good backup is already available. In

2004, NIST issued several new standards,

collectively called SHA-2, which are more

secure than SHA-1 because they produce

longer hashes (up to 512 bits instead of 160).

But NIST worries that SHA-2 could even-

tually fall, too. “Everything that has been

attacked is in the same family,” says William

Burr of NIST’s Security Technology Group.

“It may turn out that they aren’t broken or

can’t be broken, but we didn’t want to get

caught out on the wrong side.”

After extensive debate, including two

international workshops in 2005 and 2006,

NIST decided that a new competition could

turn up completely new approaches to hash

functions. “We’ll be reluctant to pick some-

thing that looks just like SHA-2,” says Burr.

“We want some biodiversity.”

Although no designs have been formally

submitted yet—the deadline is in October—

experts predict that most entrants will con-

tinue to be iterative algorithms subtly

retooled to defeat the new kinds of attacks.

For instance, Preneel’s RIPEMD—one of the

few f irst-generation hash functions still

standing—performs two parallel iterations,

making it difficult for an attacker to figure

out which one to attack.

A second approach, called “provably

secure” hash functions, derives its presump-

tive security from math problems that are

considered to be hard to crack (see sidebar,

above). This type of algorithm typically does

not require multiple iterations, but it does

require cryptologists to put their faith in a

mathematical “black box.” Also, such algo-

rithms tend to be slower than iterative algo-

rithms because they require a more elaborate

calculation—even though it is performed

only once. Speed is at a premium for hash

functions, as they are typically used to tag a

document in the split-second it’s electroni-

cally transmitted.

Not surprisingly, mathematicians love

provably secure systems, whereas cryptolo-

gists have little use for them. “They are typi-

cally only provable with respect to one prop-

erty but are weak with respect to other proper-

ties,” says Joan Daemen of STMicroelectron-

ics, co-winner of the AES competition. For

instance, a “provably secure” hash developed

by Lenstra and his colleagues, called Very

Smooth Hash (VSH), was compromised last

year when Markku-Juhani Saarinen at a Span-

ish company called Kinamik showed that it

was easy to find “near-collisions” in VSH. In

practice, engineers often truncate a long hash

value to a shorter one, assuming that the trun-

cated hash will inherit the long one’s security.

Saarinen’s result means that they can’t count

on that with VSH.

In the final analysis, what makes it so

hard to come up with good hash func-

tions—and prove they work—is that they

are expected to do so many things. “You

expect them to do everything and blame

them when they don’t work,” says Preneel.

Perhaps a 4-year bake-off will be just what

the chef ordered to make some new hash

that will satisfy everybody’s tastes.

–DANA MACKENZIE

Dana Mackenzie is a freelance writer in Santa Cruz, 
California.

www.sciencemag.org SCIENCE VOL 319 14 MARCH 2008 1481
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Hash of the Future?

Have you ever struggled to solve a maze? Then imagine trying to find a
path through a tangled, three-dimensional maze as large as the Milky
Way. By incorporating such a maze into a hash function, Kristin
Lauter of Microsoft Research in Redmond, Washington, is betting
that neither you nor anyone else will solve that problem.

Technically, Lauter’s maze is called an “expander
graph” (see figure, right). Nodes in the graph corre-
spond to elliptic curves, or equations of the form y2 =
x3 + ax + b. Each curve leads to three other curves by
a mathematical relation, now called isogeny, that
Pierre de Fermat discovered while trying to prove
his famous Last Theorem.

To hash a digital file using an expander
graph, you would convert the bits of data
into directions: 0 would mean “turn right,”
1 would mean “turn left.” In the maze
illustrated here, after the initial step 1-2,
the blue path encodes the directions 1, 0, 1, 1, 0,
0, 0, 0, 1, ending at point 24, which would be the
digital signature of the string 101100001. The red
loop shows a collision of two paths, which would be
practically impossible to find in the immense maze
envisioned by Lauter.

Although her hash function (developed with colleagues
Denis Charles and Eyal Goren) is provably secure, Lauter admits
that it is not yet fast enough to compete with iterative hash func-
tions. However, for applications in which speed is less of an issue—
for example, where the files to be hashed are relatively small—Lauter
believes it might be a winner. –D.M.
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Properties

I Uniform output distribution for large enough messages

I Preimage problem for CGL hash function :
Let E0 and E1 be two supersingular elliptic curves over
Fp2 with |E0(Fp2)| = |E1(Fp2)|. Find e ∈ N and an
isogeny of degree `e from E0 to E1.

I Collision problem for CGL hash function :
Let E0 be a supersingular elliptic curve over Fp2 . Find
e1, e2 ∈ N, a supersingular elliptic curve E1 and two
distinct isogenies (i.e. with distinct kernels) of degrees
respectively `e1 and `e2 from E0 to E1.
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Key agreement

I Alice and Bob want to agree on a common secret key

I They only exchange public messages

I Eve can see all messages exchanged, yet she should not
be able to infer the secret key
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Diffie-Hellman key agreement

I Choose g generating a cyclic group

I Alice picks a random a and sends g a

I Bob picks a random b and sends gb

I Alice computes (gb)a = g ab

I Bob computes (g a)b = g ab

I Eve cannot compute a, b or g ab from g a and gb

(discrete logarithm, Diffie-Hellman problems)
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Diffie-Hellman from abelian group actions [C06,S10]

I Let τ : G × S → S : (g , s)→ τg (s) be a group action,
where G is an abelian group

I Choose s0 ∈ S

I Alice picks a random a ∈ G and sends sa := τa(s0)

I Bob picks a random b ∈ G and sends sb := τb(s0)

I Alice computes τa(sb) = τab(s0)

I Bob computes τb(sa) = τab(s0)

I Examples : standard DH, CSIDH
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Commutative Supersingular Isogeny

Diffie-Hellman (CSIDH)

I Choose a prime p

I Let S = {supersingular curves defined over Fp}
(up to isomorphisms, so in fact a set of j-invariants)

I For E ∈ S let EndFp(E ) be the set of endomorphisms
defined over Fp

I Then EndFp(E ) ≈ Z[
√
−p] or EndFp(E ) ≈ Z[

√
−p+1
2

]
(restrict to either case to get either CSIDH or CSURF)

I Let G be the class group of EndFp(E )

I Efficiency : choose p so that all computations over Fp2
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Supersingular Isogeny Diffie-Hellman (SIDH)

I Choose a prime p, and NA,NB ∈ N with gcd(NA,NB) = 1
Choose E0 a supersingular curve over Fp2

I Alice picks a cyclic subgroup GA ⊂ E0[NA] defining an
isogeny φA : E0 → EA = E0/GA and she sends EA to Bob

I Bob picks a cyclic subgroup GB ⊂ E0[NB ] defining an
isogeny φB : E0 → EB = E0/GB and he sends EB to Alice

E0

EA = E0/GA

EB = E0/GB

E0/〈GA,GB〉
φA

φB

φ′B

φ′A

I Shared key is E0/〈GA,GB〉 = EB/φB(GA) = EA/φA(GB)
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Supersingular Isogeny Diffie-Hellman (2)

I To compute the shared key Alice will need φB(GA).
This is achieved as follows :

I Let GA = 〈αAPA + βAQA〉 where 〈PA,QA〉 = E0[NA]
and at least one of αA, βA coprime to NA

I Bob reveals φB(PA) and φB(QA) in addition to EB

I Alice computes φB(GA) = 〈αAφB(PA) + βAφB(QA)〉

I Can represent φA efficiently if NA smooth
I Can represent torsion points efficiently if either

I NA | p − 1
I NA =

∏
`eii with `eii small
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Supersingular Isogeny Diffie-Hellman (3)

E0
PA,QA, RA

PB ,QB , RB

E0/〈RA〉
φA(PB), φA(QB)

φA(RB)

E0/〈RB〉
φB(PA), φB(QA)

φB(RA)

E0/〈RA,RB〉

φA

φB

φ′B

φ′A

I Jao-De Feo / SIKE chose Ni = `eii and p = NANB f + 1
I A priori safer to use arbitrary primes and Ni ≈ p
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Public Key Encryption protocols

I Diffie-Hellman-like key exchange protocol leads to
ElGamal-like public key encryption

I Séta : alternative encryption scheme based on a new
trapdoor mechanism [DKPS19] (see later)

I SiGamal, C-SiGamal : variants of CSIDH, trading random
oracle for new complexity assumption [MOT20]
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Identification protocol / proof of knowledge

I Prover wants to prove knowledge of a secret to Verifier
without revealing it (can be used for authentication)

I Security requirements :
I Correctness : if Prover knows the secret then

Prover can convince Verifier
I Soundness : if Prover convinces Verifier then

Prover must know the secret
I Zero-knowledge : nothing is leaked about the secret
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Jao-De Feo-Plût identification protocol

I Proof of knowledge of an isogeny φ between two given
curves E0 and E1

E0 E1

φ

E2 E3

ψ′ψ

φ′

I 3-round protocol :
I Prover commits with E2 and E3

I Verifier challenges Prover with one bit b
I Prover reveals ψ and ψ′ if b = 0, and φ′ if b = 1
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Digital Signatures

I Identification protocols lead to digital signatures
using the Fiat-Shamir transform (or any alternative)

I In [GPV17] we build an alternative identification protocol
and signature scheme (see later)

I CSIDH versions : SeaSign [FG18], CSIFish [BKV19]

I SQISign [FKLPW20] : drastic improvements of [GPV17]

sign 204B, sk 16B, pk 64B, keygen 0.6s, sign 2.5s, verif 50ms
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And more !

I Undeniable signatures [JS14]

I Oblivious transfer [DOPS18, V18, BNOB18]

I Verifiable delay functions [FMPS19]

I Trapdoor DDH groups [KPS20]

I See also [AFMP20] at Asiacrypt 2020
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Isogeny from kernel

I Given G = ker φ, can compute φ with Vélu’s formulae

φ(P) =

xP +
∑

Q∈G\{O}

(xP+Q − xQ), yP +
∑

Q∈G\{O}

(yP+Q − yQ)


using O(#G ) operations

I If #G is composite then better to write φ as a
composition of prime degree isogenies

I If #G =
∏
`eii write G =

∏
Gi with #Gi = `eii

I Prime degree isogenies : O(`) seems a lower bound, but
codomain and point image only cost O(

√
`) operations

[BFLS20]
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Endomorphism ring computation

I Given an elliptic curve E defined over a finite field K ,
compute the endomorphism ring of E

I We know End(E ) is
I A maximal order in the quaternion algebra Bp,∞

(supersingular curves)
I An order in a quadratic imaginary number field

(ordinary curves)

I Output = some efficient representation of basis elements
(several natural representations are equivalent [PL17])

I Problem considered by David Kohel in his PhD thesis
(Berkeley 1996)
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Kohel’s algorithm for supersingular curves

I Fix a small `. Given a curve E , compute all its neighbors
in isogeny graph. Compute all neighbors of neighbors, etc,
until a loop is found, corresponding to an endomorphism

I Complexity Õ(
√
p)
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Ordinary case and CSIDH

I Ordinary case : subexponential time (Bisson-Sutherland)

I CSIDH [CLMPR18] and variants : we have

Z[π] ⊆ End(E ) ⊆ Z
[
π + 1

2

]
where π : (x , y)→ (xp, yp),

CSIDH parameters such that End(E ) = Z[π]
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Isogeny computation

I Given elliptic curves E0,E1 defined over a finite field K ,
compute an isogeny φ : E0 → E1

I For the problem to be hard then deg φ must be large,
so φ cannot be returned as a rational map
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Isogeny computation (2)

I Supersingular case
I Same hardness as endomorphism ring computation, at

least heuristically
I May impose some conditions on the degree, for example

deg φ = `e for some e, with same hardness heuristically
I Can be solved in Õ(

√
p) with two trees from E0 and E1

in the isogeny graph

I Ordinary and CSIDH cases : subexponential quantum
algorithm
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Deuring correspondence

I Deuring correspondence (1931) : bijection from
supersingular curves over F̄p (up to Galois conjugacy)
to maximal orders in the quaternion algebra Bp,∞
(up to conjugation)

E → O ≈ End(E )

I Under this correspondence, translate isogeny ϕ : E1 → E2

into ideal I , both left ideal of O1 and right ideal of O2,
with degree ϕ = norm of I
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Quaternion isogeny computation

I Input : two maximal orders O0 and O1 in Bp,∞
I Output : a O0-left ideal J = Iq with `-power norm, where
I is a O0-left ideal and a O1-right ideal, and q ∈ B∗p,∞

I Following Deuring’s correspondence this corresponds to
computing an isogeny ϕ : E0 → E1 with power of ` degree
where End(E0) ≈ O0 and End(E1) ≈ O1

I ANTS 2014 heuristic algorithm (Kohel-Lauter-P-Tignol)
solves the problem with e = log` n(I ) ≈ 7

2
log p

I Can be adapted to powersmooth norms
I Can be improved to e ≈ 3 log p [PS18]

I New algorithms for any maximal order O0 in [FKLPW20]
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Remark : GPS signatures [GPS17]

I Fiat-Shamir transform on (parallel instances of) the
following identification protocol

E0 E1

E2

ϕ

ψ
η

where secret is ϕ, commitment is E1, challenge is ψ,
response η is obtained by applying [KLPT14] to ψ ◦ ϕ
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Remark : SQISign [FKLPW20]

I Fiat-Shamir transform on (a single instance of) the
following identification protocol

E0 E1

E2EA

τ

ψ

ϕ

σ

where secret is τ ; commitment is E1 ; challenge is ϕ ;
response σ computed with a new KLPT generalization
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Explicit Deuring correspondence

I Given supersingular invariant, return corresponding order

≈ Endomorphism ring computation problem
→ Believed to be hard

I Given a maximal order, compute corresponding invariant

≈ Inverse endomorphism ring computation problem
→ Heuristic polynomial time algorithm [PL17]

I Candidate one-way function
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Special isogeny problems (1)

I While above problems are natural and have some history,
many protocols rely on “variants” for security

I Not all of these variants are hard. . .
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Special isogeny problems (2)

I In Jao-De Feo-Plût protocols special problems are used

1. A special prime p is chosen so that p = N1N2 ± 1
with N1 ≈ N2 ≈

√
p

2. There are ≈ p/12 supersingular invariants but only
N1 ≈

√
p possible choices for E1

3. Extra information provided : compute φ : E0 → E1

of degree N1 knowing φ(P) for all P ∈ E0[N2]

I Point 2 improves tree-based attacks to O(p1/4)

I We now focus on Point 3
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Motivation

I Attack on Jao-De Feo-Plût protocol : compute an isogeny
φ1 : E0 → E1 of degree N1 given action of φ1 on E0[N2]

I How useful is this additional information ?
I If gcd(N1,N2) 6= 1 can recover (part of) φ1
I Active attacks : replace φ1(P2), φ1(Q2) by well-chosen

points so that (part of) the secret is leaked in shared key
[Galbraith-P-Shani-Ti 2016 + others]

I Next slides : passive attacks (eavesdropping only)
I Building endomorphisms of E0 [P17,KMPPS20]
I Quantum hidden shift attack [KMPW20]
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Warm-up : computing endomorphisms

with auxilliary information

I Let p be a prime and let E be a supersingular elliptic
curve defined over Fp2 . Let φ be a non scalar
endomorphism of E with smooth order N1. Let N2 be a
smooth integer with gcd(N1,N2) = 1, and let P ,Q be a
basis of E [N2].

I Let R be a subring of End(E ) that is either easy to
compute, or given (for example, scalar multiplications).

I Given E , P , Q, φ(P), φ(Q), deg φ, R , compute φ.

I Best previous algorithm : meet-in-the-middle in Õ(
√
N1)
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Algorithm sketch (with R = Z)

I We know φ on the N2 torsion.
Deduce φ̂ on the N2 torsion and Tr(φ) if N2 > 2

√
N1.

I Consider ψ := aφ + b for a, b ∈ Z.
Can evaluate ψ on the N2 torsion.

I Find a, b ∈ Z such that

degψ = a2 deg φ + b2 + abTr(φ) = N2N
′
1

with N ′1 small and smooth. Write ψ = ψN′
1
ψN2 .

I Identify kerψN2 from ψ(E [N2]) and deduce ψN2 .
I Find ψN′

1
with a meet-in-the-middle strategy.

I Find ker φ by evaluating (ψ − b)/a on the N1 torsion,
and deduce φ.
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Finding (a, b) and Complexity

I We have degψ = a2 deg φ + b2 + abTr(φ)

=
(
b + aTrφ

2

)2
+ a2

(
deg φ−

(
Trφ
2

)2)
I We want degψ = N2N

′
1 and N ′1 small and smooth

I Solutions to degψ = 0 mod N2 form a dimension 2 lattice

I We compute a reduced basis, then search for a small
linear combination of short vectors until N ′1 smooth

I Heuristic analysis shows we can expect N ′1 ≈
√
N1.

Revealing φ(E [N2]) leads to a near square root speedup.
(Some parameter restrictions apply.)
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Computing isogenies with auxilliary information

I Let p be a prime. Let N1,N2 ∈ Z coprime. Let E0 be a
supersingular elliptic curve over Fp2 . Let φ1 : E0 → E1 be
an isogeny of degree N1.

I Let R0,R1 be subrings of End(E0), End(E1) respectively.
Assume R0 contains more than scalar multiplications.

I Given N1, E1, R0, R1 and the image of φ1 on the whole
N2 torsion, compute φ1.

I Best previous algorithm : meet-in-the-middle in Õ(
√
N1)
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General idea

I For θ ∈ End(E0) consider φ = φ1θφ̂1 ∈ End(E1)

I Evaluate φ on the N2 torsion

I Apply techniques from above on φ

I Compute ker φ ∩ E1[N1]

I Deduce ker φ̂1, then φ̂1 and φ1



Christophe Petit - Virtual UK - October 2020 47

Remarks

I Several authors have suggested to use j(E0) = 1728 for
efficiency reasons. In this case End(E0) is entirely known
and moreover it contains a degree 1 non scalar element θ.
Both aspects are useful in attacks.
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Impact on SIDH / SIKE

I SIKE parameters : N1 ≈ N2 ≈
√
p

I First attacks in [P17] only for significantly overstreched
parameters, such as N1 ≈ p2 and N2 ≈ N4

1

I New attacks in [KMPPS20] get closer to actual
parameters ; apply to “BSIDH-like parameters”

1 2 3 logN1

1

2

3

4logN2
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Impact on SIDH / SIKE (2)

I “Weak instances” [KMPPS20] :
I Can construct an alternative initial curve E0 together

with additional information allowing to break SIDH
instances faster than with previous approaches

I Special choices of parameters also lead to better attacks
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Remark : Séta [DKPS19]

I Key idea : use torsion point attacks as a trapdoor
mechanism, noticing that they only apply when the
endomorphism ring of E0 is known

I Key generation : secret key is random walk E0 → Es ,
public key is Es

E0
ϕs−−−−−−−−→ Es

ϕm−−−−−−−−→ Em

I Encryption : take a walk from Es depending on message.
Ciphertext is final curve Em + images of torsion points

I Decryption : use torsion point attack to recover isogeny
hence message
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A quote from Jao-De Feo-Plût

I Childs-Jao-Soukharev : quantum subexponential attack
for computing isogenies between ordinary curves,
by reduction to hidden shift problem

I SIDH uses supersingular curves. Jao-De Feo-Plût :

“Since the algorithm of Childs et al. depends
crucially on the properties of abelian groups, we
believe that no reasonable variant of this strategy
would apply to supersingular curves.”
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Malleability oracles and one-way function

I Consider a one-way function f : I → O
I Assume a group G acts on I
I Assume malleability oracle : given f (i) and g ∈ G , can

compute f (g · i) efficiently

I Then (assuming f is injective, G is finite abelian, and
action is transitive and free) the function f can be
inverted in quantum subexponential time

I Choose io ∈ I
I Define F0(g) = f (g · i0)
I Define F1(g) = f (g · i)
I Find h such that F1(g) = F0(hg)
I Compute i = h · i0
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Application to SIDH-like protocols (1)

I Let E0 with known endomorphism ring. Let N1,N2 be
SIDH parameters.

I Let I be the set of cyclic subgroups of order N1 in E0

I Consider one-way function f sending C any cyclic
subgroup of order N1 to EA = E/C

I Choose θ0 ∈ End(E0) with deg θ0 coprime to N1, and let
G be the subgroup of endomorphisms generated by θ0
(modulo N1, and up to scalar multiplications)

I Note that G acts on I
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Application to SIDH-like protocols (2)

I To apply our framework we need to construct a
malleability oracle, i.e. an efficient algorithm that
given E/C and θ ∈ G computes E/θ(C )

I Torsion point images immediately help if deg θ divides N2

E0 EA

E0 E0/θ(kerϕ) ∼= EA/ϕ(ker θ)

ϕ

θ

I In general : for any θ = θi0 ∈ G , find θ′ ∈ End(E0) with
deg θ′|N2 such that θ = θ′ on the N1 torsion
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Application to SIDH-like protocols (3)

I In general : for any θ = θi0 ∈ G , find θ′ ∈ End(E0) with
deg θ′|N2 such that θ = θ′ on the N1 torsion

I This amounts to a lifting problem alike one solved in
KLPT algorithm

I Can only be done for large enough N2

I Choice of θ, proof that group action is free and transitive,
lifting algorithm + extra technicalities : see [KMPW20]

I Quantum hidden shift attack when roughly N2 > pN3
1
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Outline

Motivation

Isogeny-based Cryptography

Hard and Easy Isogeny Problems

Computing Isogenies using Torsion Point Images

Conclusion



Christophe Petit - Virtual UK - October 2020 58

Conclusion

I We can build some crypto protocols on isogeny problems
with reasonable efficiency

I Endomorphism ring computation & pure isogeny problems
are natural problems with some history but

I More classical and quantum cryptanalysis needed
I Beware of variants

I Revealing images of torsion points helps the resolution
of (at least some) isogeny problems



Christophe Petit - Virtual UK - October 2020 59

Thanks !

I Questions ?
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