
Introduction to rank metric codes

Maximilien Gadouleau
Durham University

Virtual Non-Lattice (!) Coding & Crypto Meeting
02/10/2020

1 / 32

Outline

Rank metric codes
The rank metric
Gabidulin codes

Applications
Data storage
Code-based cryptography
Error control in network coding

Outlook

2 / 32

Outline

Rank metric codes
The rank metric
Gabidulin codes

Applications
Data storage
Code-based cryptography
Error control in network coding

Outlook

3 / 32

Why rank metric codes?

Typical error-correcting codes are based on the Hamming metric:
the codewords are vectors (typically x= (x1, . . . ,xn) ∈GF(q)n), and
the distance between two codewords is their Hamming distance:

dH(x,y)= |{i : xi 6= yi}|

(the number of times they disagree).

But in some circumstances, we may want to use different kinds
of codewords and a different metric.

4 / 32

Rank metric codes

For rank metric codes, the codewords are not vectors, but
matrices.

Formally, a rank metric code is a subset C of GF(q)m×n.

The rank distance is

dR(M,N)= rank(M−N).

(Yes, it is a metric.)

The minimum rank distance of C is then

dR(C)=min{dR(M,N) : M 6=N,M,N ∈C }.

Historical note. Rank metric codes were independently
discovered in (Delsarte 78, Gabidulin 85, Roth 91).

5 / 32

The vector view of the rank metric

We can identify a vector in GF(q)m as an element of of GF(qm).
Then the whole matrix M corresponds to a vector x in GF(qm)n.

We still have dR(x,y)= rank(x−y), where rank(z) is the number
of linearly independent coordinates of z.

This is similar to the Hamming metric: dH(x,y)=wH(x−y),
where wH(z) is the number of nonzero coordinates of z.

Note that rank(z)≤wH(z), thus

dR(x,y)≤ dH(x,y).

6 / 32

The rank metric looks like Hamming

The similarity doesn’t stop there!
Ï Hamming and rank metrics are (self-dual, translation)

association schemes (Delsarte 78).
Ï There is a MacWilliams identity for rank metric codes

(Delsarte 78, Gadouleau and Yan 08, Ravagnani 14).
Ï Number of vectors with (rank or Hamming) weight r:

NH(qm,n,r)=
(
n
r

)
r−1∏
i=0

(qm −1)

NR(qm,n,r)=
[

n
r

]
r−1∏
i=0

(qm −qi),

where
(n

r
)

is the number of r-subsets of an n-set and
[n

r
]

is
the number of r-dimensional subspaces of an n-dimensional
vector space over GF(q).

7 / 32

Outline

Rank metric codes
The rank metric
Gabidulin codes

Applications
Data storage
Code-based cryptography
Error control in network coding

Outlook

8 / 32

Singleton bound

Problem. What is the maximum cardinality AR(q,m,n,d) of a
rank metric code C ⊆GF(q)m×n with minimum distance
dR(C)≥ d?

Firstly, the rank distance is preserved by transposition (since
rank(M>)= rank(M)) so AR(q,m,n,d)=AR(q,n,m,d). We only
need to focus on m≥ n (“tall and thin” matrices).

Let us use the vector view (C ⊆GF(qm)n). Since dR(C)≤ dH(C),
the Singleton bound applies:

AR(q,m,n,d)≤ qm(n−d+1).

In fact, it is always reached:

AR(q,m,n,d)= qm(n−d+1).

9 / 32

Gabidulin codes

Reed-Solomon codes (extended or punctured) can be defined
based on polynomial evaluations.

For n≤ qm, choose n distinct elements g1,g2, . . . ,gn of GF(qm). For
any polynomial f ∈GF(qm)[x], let
f= (f (g1), f (g2), . . . , f (gn)) ∈GF(qm)n, then

RS (n,k)= {f : deg(f)≤ k−1}.

It reaches the Singleton bound for the Hamming metric:
|RS (n,k)| = qmk and dH = n−k+1.

10 / 32

Gabidulin codes
Gabidulin codes are based on evaluations of linear maps
(self-maps of GF(qm) which are linear over GF(q)).

A linearised polynomial is any of the form

f (x)=
m−1∑
i=0

fixqi
, fi ∈GF(qm).

The largest d such that fd 6= 0 is called the q-degree of f .

For n≤m, choose n linearly independent elements g1,g2, . . . ,gn of
GF(qm). For any linearised polynomial f , let
f= (f (g1), f (g2), . . . , f (gn)) ∈GF(qm)n, then

G (n,k)= {f : q-deg(f)≤ k−1}.

It reaches the Singleton bound for the rank metric: |G (n,k)| = qmk

and dR = n−k+1.
11 / 32

Generator and parity-check matrices

Generator matrix: g1,g2, . . . ,gn ∈GF(qm) linearly independent

G=


gq0

1 gq0

2 · · · gq0

n

gq1

1 gq1

2 · · · gq1

n
...

...
...

...

gqk−1

1 gqk−1

2 · · · gqk−1

n


Parity-check matrix: the same form!

12 / 32

Decoding of Gabidulin codes

Because of their structure, many decoding algorithms for RS
codes have been adapted to Gabidulin codes, e.g.
Ï Extended Euclidean Algorithm (Gabidulin 85)
Ï PGZ (Roth 91)
Ï Berlekamp-Massey (Richter and Plass 04)
Ï Welch-Berlekamp (Loidreau 05)
Ï Sudan 1-list (K otter and Kschischang 07)

13 / 32

The ring of linearised polynomials
The EEA decoding algorithm for Reed-Solomon codes works in
the (commutative) ring of polynomials, with addition and
multiplication.

For Gabidulin codes, we must work in the non-commutative ring
of linearised polynomials, with addition and q-product:

f (x)=
m−1∑
i=0

fixqi

g(x)=
m−1∑
i=0

gixqi

f ∗g(x)=
m−1∑
i=0

(
i∑

j=0
fj ·gqj

i−j

)
xqi

.

The q-product in fact reflects the composition of linear maps, or
equivalently the product of matrices.

14 / 32

Outline

Rank metric codes
The rank metric
Gabidulin codes

Applications
Data storage
Code-based cryptography
Error control in network coding

Outlook

15 / 32

Rank metric codes for storage
Suppose you store data in a two-dimensional array (say m rows
and n columns), each cell containing an element of GF(q). So
your data can be viewed as a matrix M ∈GF(q)m×n.

The data can be corrupted in two main ways: an entire row or
column can be corrupted, e.g.

M=


a b c
d e f
g h i
j k l

→M1 =


a b c
∗ ∗ ∗
g h i
j k l

 ,

or

M=


a b c
d e f
g h i
j k l

→M2 =


∗ b c
∗ e f
∗ h i
∗ k l

 .

16 / 32

Rank metric codes for storage

Corrupting a line (row or column) can be viewed as adding an
error matrix of rank one, e.g. M1 =M+E1, where E1 has nonzero
entries only on the second row.

If multiple errors occur (say t lines are corrupted), then we obtain
the matrix N, where

N=M+E, rank(E)≤ t.

This is called crisscross errors (Roth 91).

Then clearly, a rank metric code with dR(C)≥ 2t+1 can correct t
crisscross errors.

17 / 32

Outline

Rank metric codes
The rank metric
Gabidulin codes

Applications
Data storage
Code-based cryptography
Error control in network coding

Outlook

18 / 32

McEliece’s original system (1978)
Secret key:
Ï Ḡ: generator matrix of a binary irreducible Goppa code.
Ï S: k×k nonsingular matrix.
Ï P: n×n permutation matrix.

Public key: G=SḠP.

Encryption: v=mG+e.
Decryption:

1. Compute z= vP−1.
2. Decode z to obtain a codeword c and the corresponding

original message m̄ (for Ḡ).
3. Compute m= m̄S−1.

Original parameters:
Ï plaintext size: k= 524 bits
Ï ciphertext size: n= 1024 bits
Ï error weight: 50

19 / 32

The trouble with the Hamming metric

Suppose that the encoding did not involve adding an error:
v=mG. Then the attacker could easily find the message:

1. Find a k×k nonsingular matrix GI of G (I is an information
set)

2. Then m= vIG−1
I .

In general, information set decoding (Prange 62) then keeps
choosing information sets until it finds one that is not corrupted
by the error vector.

A long list of improvements of the original idea, see (Becker et al.
12) and (May and Ozerov 15).

20 / 32

The GPT cryptosystem

But the rank metric allows to scramble all positions! For
instance, the vector e= (a,a, . . . ,a) for any a ∈GF(qm)∗ has rank
one.

(Gabidulin, Paramonov and Tretjakov 91) proposed the GPT
cryptosystem, based on Gabidulin codes.

Unfortunately, Gabidulin codes are too well structured, and that
system was broken by Overbeck.

21 / 32

GPT Cryptosystem

Private key:
Ï G: (k×n) generator matrix of a Gabidulin code over GF(qm)

with error correction capability t
Ï S: (k×k) invertible matrix (scrambler)
Ï X: (k×n) distortion matrix with distortion parameter t1. For

any plaintext c, rank(cX)= t1

Public key: G′ =SG+X and t− t1

22 / 32

GPT Cryptosystem

Ï Encryption: y= cG′+e with rank(e)= t− t1
Ï Decryption: y= cSG+ (cX+e)

Ï The decryption algorithm gives c′ = cS
Ï c= c′S−1

Ï Parameters: q= 2, m= n= 32

23 / 32

Outline

Rank metric codes
The rank metric
Gabidulin codes

Applications
Data storage
Code-based cryptography
Error control in network coding

Outlook

24 / 32

Network coding
(Yeung and Zhang 99, Ahlswede et al. 00)

Ï Routing does not reach maximum throughput for mulitcast
Ï Network coding: intermediate nodes combine packets
Ï Examples

- Packet selection: routing
- Linear combinations: Linear network coding

Ï Advantages
- Higher throughput for multicast
- Greater adaptability to topology changes
- Robustness to packet losses

25 / 32

Network coding: the butterfly network
Each node sends the same message; x1,x2 ∈GF(2).

s1 sends x1

d1 wants x1

s2 sends x2

d2 wants x2

i3x1

x1

x2

x2

Figure: The butterfly

26 / 32

Network coding: the butterfly network
Each node sends the same message; x1,x2 ∈GF(2).

s1 sends x1

d1 wants x1

s2 sends x2

d2 wants x2

i3x1

x1

x2

x2

x1x1

Figure: The butterfly: Routing

26 / 32

Network coding: the butterfly network
Each node sends the same message; x1,x2 ∈GF(2).

s1 sends x1

d1 wants x1
x2 +x1 +x2 = x1

s2 sends x2

d2 wants x2
x1 +x1 +x2 = x2

i3x1

x1

x2

x2

x1 +x2x1 +x2

Figure: The butterfly: Network Coding
26 / 32

Random linear network coding

Ï Fixed linear combinations: too complex, too rigid
⇒ Solution: choose the linear combinations randomly

Ï Success probability tends to 1 with field size (Kötter and
Médard 02)

Ï Header to make the rows linearly independent and record
combinations (‘lifting’)

a,b,c,d→


1 0 0 0 a
0 1 0 0 b
0 0 1 0 c
0 0 0 1 d

= (I4|M)

Ï Easy decoding: we receive (L|LM), we compute L−1(LM)

27 / 32

Error control for RLNC

Ï RLNC is sensitive to errors for two main reasons.
Ï 1. There are different types of errors:

- Faulty links
- Insufficient field size
- Faulty or malevolent nodes
- Adversary on the network, etc.

Ï 2. Error propagation: a packet in error can corrupt all
packets after linear combination.

Ï Hamming metric codes are unadapted to a noncoherent
approach.

28 / 32

Operator channel
(Kötter and Kschischang 08)

In RLNC without errors, the input is (Ik|M) and the output is
L(Ik|M). So RLNC preserves the row space of the transmitted
matrix.

Then RLNC is modelled as the transmission of a linear subspace:
send U, receive V with dS(U,V)≤ t where dS is the subspace
distance:

dS(U,V)= 2dim(U+V)−dim(U)−dim(V).

Constant-dimension code (CDC): set of linear subspaces of
GF(q)n with equal dimension k (Delsarte 76, Schwartz and
Etzion 02, K. and K. 08).

29 / 32

Liftings of rank metric codes

Ï Lifting. M ∈GF(q)k×(n−k), I(M): row space of (Ik|M)
Ï Lifting preserves distance

dS(I(M),I(N))= 2dR(M,N)

⇒ I(C) CDC, dS(I(C))= 2dR(C)
Ï Error control for RLNC with liftings is a rank metric

problem. Lifting of a Gabidulin code is then a nearly optimal
CDC with an efficient decoding algorithm.

30 / 32

Further work in that area

Some extensions:
Ï further work on subspace codes: bounds and constructions

see (Terra Bastos et al. 18) and (Heinlein 19)
Ï other correspondence using constant-rank codes (Gadouleau

and Yan 09)

But in the end, Network Coding is unlikely to be deployed in
large scale...

31 / 32

Current/Future work on rank metric codes

For cryptography: come up with more classes of codes, that can
be efficient while possible to hide.

List decoding of Gabidulin or more general classes of rank metric
codes.

Combinatorics/geometry of the rank metric:
Ï work on covering codes,
Ï formula for intersection of spheres in (Claridge 16),
Ï we should dive deeper in the “q-combinatorics of finite sets:”

Erdős-Ko-Rado, LYM inequality, Steiner theorem etc.

Look into related association schemes, e.g. that of alternating or
Hermitian linear forms.

32 / 32

	Rank metric codes
	The rank metric
	Gabidulin codes

	Applications
	Data storage
	Code-based cryptography
	Error control in network coding

	Outlook

