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Why rank metric codes?

Typical error-correcting codes are based on the Hamming metric:
the codewords are vectors (typically x= (x1, . . . ,xn) ∈GF(q)n), and
the distance between two codewords is their Hamming distance:

dH(x,y)= |{i : xi 6= yi}|

(the number of times they disagree).

But in some circumstances, we may want to use different kinds
of codewords and a different metric.
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Rank metric codes

For rank metric codes, the codewords are not vectors, but
matrices.

Formally, a rank metric code is a subset C of GF(q)m×n.

The rank distance is

dR(M,N)= rank(M−N).

(Yes, it is a metric.)

The minimum rank distance of C is then

dR(C )=min{dR(M,N) : M 6=N,M,N ∈C }.

Historical note. Rank metric codes were independently
discovered in (Delsarte 78, Gabidulin 85, Roth 91).
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The vector view of the rank metric

We can identify a vector in GF(q)m as an element of of GF(qm).
Then the whole matrix M corresponds to a vector x in GF(qm)n.

We still have dR(x,y)= rank(x−y), where rank(z) is the number
of linearly independent coordinates of z.

This is similar to the Hamming metric: dH(x,y)=wH(x−y),
where wH(z) is the number of nonzero coordinates of z.

Note that rank(z)≤wH(z), thus

dR(x,y)≤ dH(x,y).
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The rank metric looks like Hamming

The similarity doesn’t stop there!
Ï Hamming and rank metrics are (self-dual, translation)

association schemes (Delsarte 78).
Ï There is a MacWilliams identity for rank metric codes

(Delsarte 78, Gadouleau and Yan 08, Ravagnani 14).
Ï Number of vectors with (rank or Hamming) weight r:

NH(qm,n,r)=
(
n
r

)
r−1∏
i=0

(qm −1)

NR(qm,n,r)=
[

n
r

]
r−1∏
i=0

(qm −qi),

where
(n

r
)

is the number of r-subsets of an n-set and
[n

r
]

is
the number of r-dimensional subspaces of an n-dimensional
vector space over GF(q).
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Singleton bound

Problem. What is the maximum cardinality AR(q,m,n,d) of a
rank metric code C ⊆GF(q)m×n with minimum distance
dR(C )≥ d?

Firstly, the rank distance is preserved by transposition (since
rank(M>)= rank(M)) so AR(q,m,n,d)=AR(q,n,m,d). We only
need to focus on m≥ n (“tall and thin” matrices).

Let us use the vector view (C ⊆GF(qm)n). Since dR(C )≤ dH(C ),
the Singleton bound applies:

AR(q,m,n,d)≤ qm(n−d+1).

In fact, it is always reached:

AR(q,m,n,d)= qm(n−d+1).
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Gabidulin codes

Reed-Solomon codes (extended or punctured) can be defined
based on polynomial evaluations.

For n≤ qm, choose n distinct elements g1,g2, . . . ,gn of GF(qm). For
any polynomial f ∈GF(qm)[x], let
f= (f (g1), f (g2), . . . , f (gn)) ∈GF(qm)n, then

RS (n,k)= {f : deg(f )≤ k−1}.

It reaches the Singleton bound for the Hamming metric:
|RS (n,k)| = qmk and dH = n−k+1.
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Gabidulin codes
Gabidulin codes are based on evaluations of linear maps
(self-maps of GF(qm) which are linear over GF(q)).

A linearised polynomial is any of the form

f (x)=
m−1∑
i=0

fixqi
, fi ∈GF(qm).

The largest d such that fd 6= 0 is called the q-degree of f .

For n≤m, choose n linearly independent elements g1,g2, . . . ,gn of
GF(qm). For any linearised polynomial f , let
f= (f (g1), f (g2), . . . , f (gn)) ∈GF(qm)n, then

G (n,k)= {f : q-deg(f )≤ k−1}.

It reaches the Singleton bound for the rank metric: |G (n,k)| = qmk

and dR = n−k+1.
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Generator and parity-check matrices

Generator matrix: g1,g2, . . . ,gn ∈GF(qm) linearly independent

G=


gq0

1 gq0

2 · · · gq0

n

gq1

1 gq1

2 · · · gq1

n
...

...
...

...

gqk−1

1 gqk−1

2 · · · gqk−1

n


Parity-check matrix: the same form!
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Decoding of Gabidulin codes

Because of their structure, many decoding algorithms for RS
codes have been adapted to Gabidulin codes, e.g.
Ï Extended Euclidean Algorithm (Gabidulin 85)
Ï PGZ (Roth 91)
Ï Berlekamp-Massey (Richter and Plass 04)
Ï Welch-Berlekamp (Loidreau 05)
Ï Sudan 1-list (K otter and Kschischang 07)
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The ring of linearised polynomials
The EEA decoding algorithm for Reed-Solomon codes works in
the (commutative) ring of polynomials, with addition and
multiplication.

For Gabidulin codes, we must work in the non-commutative ring
of linearised polynomials, with addition and q-product:

f (x)=
m−1∑
i=0

fixqi

g(x)=
m−1∑
i=0

gixqi

f ∗g(x)=
m−1∑
i=0

(
i∑

j=0
fj ·gqj

i−j

)
xqi

.

The q-product in fact reflects the composition of linear maps, or
equivalently the product of matrices.
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Rank metric codes for storage
Suppose you store data in a two-dimensional array (say m rows
and n columns), each cell containing an element of GF(q). So
your data can be viewed as a matrix M ∈GF(q)m×n.

The data can be corrupted in two main ways: an entire row or
column can be corrupted, e.g.

M=


a b c
d e f
g h i
j k l

→M1 =


a b c
∗ ∗ ∗
g h i
j k l

 ,

or

M=


a b c
d e f
g h i
j k l

→M2 =


∗ b c
∗ e f
∗ h i
∗ k l

 .
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Rank metric codes for storage

Corrupting a line (row or column) can be viewed as adding an
error matrix of rank one, e.g. M1 =M+E1, where E1 has nonzero
entries only on the second row.

If multiple errors occur (say t lines are corrupted), then we obtain
the matrix N, where

N=M+E, rank(E)≤ t.

This is called crisscross errors (Roth 91).

Then clearly, a rank metric code with dR(C )≥ 2t+1 can correct t
crisscross errors.
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McEliece’s original system (1978)
Secret key:
Ï Ḡ: generator matrix of a binary irreducible Goppa code.
Ï S: k×k nonsingular matrix.
Ï P: n×n permutation matrix.

Public key: G=SḠP.

Encryption: v=mG+e.
Decryption:

1. Compute z= vP−1.
2. Decode z to obtain a codeword c and the corresponding

original message m̄ (for Ḡ).
3. Compute m= m̄S−1.

Original parameters:
Ï plaintext size: k= 524 bits
Ï ciphertext size: n= 1024 bits
Ï error weight: 50
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The trouble with the Hamming metric

Suppose that the encoding did not involve adding an error:
v=mG. Then the attacker could easily find the message:

1. Find a k×k nonsingular matrix GI of G (I is an information
set)

2. Then m= vIG−1
I .

In general, information set decoding (Prange 62) then keeps
choosing information sets until it finds one that is not corrupted
by the error vector.

A long list of improvements of the original idea, see (Becker et al.
12) and (May and Ozerov 15).
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The GPT cryptosystem

But the rank metric allows to scramble all positions! For
instance, the vector e= (a,a, . . . ,a) for any a ∈GF(qm)∗ has rank
one.

(Gabidulin, Paramonov and Tretjakov 91) proposed the GPT
cryptosystem, based on Gabidulin codes.

Unfortunately, Gabidulin codes are too well structured, and that
system was broken by Overbeck.
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GPT Cryptosystem

Private key:
Ï G: (k×n) generator matrix of a Gabidulin code over GF(qm)

with error correction capability t
Ï S: (k×k) invertible matrix (scrambler)
Ï X: (k×n) distortion matrix with distortion parameter t1. For

any plaintext c, rank(cX)= t1

Public key: G′ =SG+X and t− t1
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GPT Cryptosystem

Ï Encryption: y= cG′+e with rank(e)= t− t1
Ï Decryption: y= cSG+ (cX+e)

Ï The decryption algorithm gives c′ = cS
Ï c= c′S−1

Ï Parameters: q= 2, m= n= 32
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Network coding
(Yeung and Zhang 99, Ahlswede et al. 00)

Ï Routing does not reach maximum throughput for mulitcast
Ï Network coding: intermediate nodes combine packets
Ï Examples

- Packet selection: routing
- Linear combinations: Linear network coding

Ï Advantages
- Higher throughput for multicast
- Greater adaptability to topology changes
- Robustness to packet losses
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Network coding: the butterfly network
Each node sends the same message; x1,x2 ∈GF(2).

s1 sends x1

d1 wants x1

s2 sends x2

d2 wants x2

i3x1

x1

x2

x2

Figure: The butterfly
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Network coding: the butterfly network
Each node sends the same message; x1,x2 ∈GF(2).

s1 sends x1

d1 wants x1

s2 sends x2

d2 wants x2

i3x1

x1

x2

x2

x1x1

Figure: The butterfly: Routing
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Network coding: the butterfly network
Each node sends the same message; x1,x2 ∈GF(2).

s1 sends x1

d1 wants x1
x2 +x1 +x2 = x1

s2 sends x2

d2 wants x2
x1 +x1 +x2 = x2

i3x1

x1

x2

x2

x1 +x2x1 +x2

Figure: The butterfly: Network Coding
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Random linear network coding

Ï Fixed linear combinations: too complex, too rigid
⇒ Solution: choose the linear combinations randomly

Ï Success probability tends to 1 with field size (Kötter and
Médard 02)

Ï Header to make the rows linearly independent and record
combinations (‘lifting’)

a,b,c,d→


1 0 0 0 a
0 1 0 0 b
0 0 1 0 c
0 0 0 1 d

= (I4|M)

Ï Easy decoding: we receive (L|LM), we compute L−1(LM)
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Error control for RLNC

Ï RLNC is sensitive to errors for two main reasons.
Ï 1. There are different types of errors:

- Faulty links
- Insufficient field size
- Faulty or malevolent nodes
- Adversary on the network, etc.

Ï 2. Error propagation: a packet in error can corrupt all
packets after linear combination.

Ï Hamming metric codes are unadapted to a noncoherent
approach.
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Operator channel
(Kötter and Kschischang 08)

In RLNC without errors, the input is (Ik|M) and the output is
L(Ik|M). So RLNC preserves the row space of the transmitted
matrix.

Then RLNC is modelled as the transmission of a linear subspace:
send U, receive V with dS(U,V)≤ t where dS is the subspace
distance:

dS(U,V)= 2dim(U+V)−dim(U)−dim(V).

Constant-dimension code (CDC): set of linear subspaces of
GF(q)n with equal dimension k (Delsarte 76, Schwartz and
Etzion 02, K. and K. 08).
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Liftings of rank metric codes

Ï Lifting. M ∈GF(q)k×(n−k), I(M): row space of (Ik|M)
Ï Lifting preserves distance

dS(I(M),I(N))= 2dR(M,N)

⇒ I(C ) CDC, dS(I(C ))= 2dR(C )
Ï Error control for RLNC with liftings is a rank metric

problem. Lifting of a Gabidulin code is then a nearly optimal
CDC with an efficient decoding algorithm.
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Further work in that area

Some extensions:
Ï further work on subspace codes: bounds and constructions

see (Terra Bastos et al. 18) and (Heinlein 19)
Ï other correspondence using constant-rank codes (Gadouleau

and Yan 09)

But in the end, Network Coding is unlikely to be deployed in
large scale...
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Current/Future work on rank metric codes

For cryptography: come up with more classes of codes, that can
be efficient while possible to hide.

List decoding of Gabidulin or more general classes of rank metric
codes.

Combinatorics/geometry of the rank metric:
Ï work on covering codes,
Ï formula for intersection of spheres in (Claridge 16),
Ï we should dive deeper in the “q-combinatorics of finite sets:”

Erdős-Ko-Rado, LYM inequality, Steiner theorem etc.

Look into related association schemes, e.g. that of alternating or
Hermitian linear forms.
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