

On the quantum complexity of the continuous hidden subgroup problem

Koen de Boer, Léo Ducas, Serge Fehr

Paper: https://eprint.iacr.org/2019/716.pdf

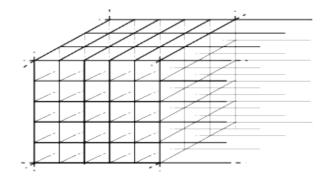
Overview

Introduction

Problem statement

Quantum algorithm

Error analysis



Introduction

A quantum algorithm for computing the unit group of an arbitrary degree number field (2014)

Kirsten Eisenträger Department of Mathematics The Pennsylvania State University eisentra@math.psu.edu and Harvard University Sean Hallgren^T Dept. of Computer Science and Engineering The Pennsylvania State University hallgren@cse.psu.edu Alexei Kitaev Kavli Institute for Theoretical Physics University of California, Santa Barbara kitaev@kitp.ucsb.edu and California Institute of Technology

Fang Song Department of Combinatorics & Optimization and Institute for Quantum Computing University of Waterloo fang.song@uwaterloo.ca

- Generalizes the Hidden Subgroup Problem to \mathbb{R}^m
- Computes unit groups of number fields

- Used to prove a (quantum) hardness-gap between Ideal-SVP and SVP [CGS14,CDPR16,BS16]
- Possible conseq. in crypto based on lattices with algebraic structure [CDW17]

Introduction

A quantum algorithm for computing the unit group of an arbitrary degree number field

Kirsten Eisenträger^{*} Department of Mathematics The Pennsylvania State University eisentra@math.psu.edu and Harvard University

Sean Hallgren¹ Dept. of Computer Science and Engineering The Pennsylvania State University hallgren@cse.psu.edu

Fang Song Department of Combinatorics & Optimization and Institute for Quantum Computing University of Waterloo j.song@uwaterloo.ca Alexei Kitaev Kavli Institute for Theoretical Physics University of California, Santa Barbara kitaev@kitp.ucsb.edu and California Institute of Technology

Extended abstract (2014)

<u>Shortcomings</u>

THEOREM 6.1. There is a polynomial time quantum algorithm for solving the HSP over \mathbb{R}^m .

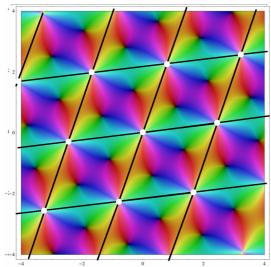
- No exclusion of intractable instances
- Polynomial in which variable?
- Only high-level reasoning in the ext. abstract
- Up to now, 5 years later, no full version published

Problem statement (informal)

Given a 'nice' periodic function, find its period.

• More psychedelic example in 2d:

Period



 Insight: In higher dimensions the period is encoded by a *lattice*

Problem statement (formal)

Given black-box access to a function
f: ℝ^m → S ⊆ ℂⁿ that satisfies the following:

(i) f is periodic w.r.t. some lattice Λ

 $f(x + \ell) = f(x)$ for all $x \in \mathbb{R}^m$ and $\ell \in \Lambda$ (ii) f is Lipschitz-continuous

 $|f(x) - f(y)| \le a \cdot |x - y|$

(iii) f is seperable, i.e., not too constant.

If $d_{\mathbb{R}^m/\Lambda}(x,y) \ge r$, then $|\langle f(x), f(y) \rangle| \le \epsilon$, for all $x, y \in \mathbb{R}^m$

- Find: A au-approximate basis of the lattice $\Lambda_{_{6/20}}$

Our contributions

Statement with all dependencies on parameters

Theorem 1. There exists a quantum algorithm that, given access to an (a, r, ϵ) -HSP oracle with period lattice Λ , $r < \lambda_1(\Lambda)/6$ and $\epsilon < 1/4$, computes, with constant success probability, an approximate basis $\tilde{B} = B + \Delta_B$ of this lattice Λ , satisfying $\|\Delta_B\| < \tau$.

This algorithm makes k quantum oracle calls to the (a, r, ϵ) -HSP oracle, and uses mQ + n qubits, $O(km^2Q^2)$ quantum gates and $poly(m, \log \frac{a}{\lambda_1^*\tau})$ classical bit operations, where

$$Q = O(m\log(m\log k)) + O(mk) + O\left(\log\frac{a}{\lambda_1^*\tau}\right),\tag{1}$$

 $k = O(m) + O(\log m + m \log a + \log \det \Lambda).$ (2)

- Rigorous proof of this statement
- Simplifying the quantum algorithm of Eisenträger et al.

High level approach

- Sample approx. dual lattice points $\tilde{\ell^*}$ with $\ell^* \in \Lambda^*$ using a quantum algorithm
- From enough of such $\tilde{\ell^*}$, recover an approx. dual basis \tilde{D} of Λ^*
- From \tilde{D} recover an approx. primal basis \tilde{B} of Λ

This talk

Some important thoughts

• The notion of the *dual lattice*

 $\Lambda^* = \{\ell^* \in \operatorname{span}(\Lambda) \mid \langle \ell^*, \ell \rangle \in \mathbb{Z} \text{ for all } \ell \in \Lambda\}$

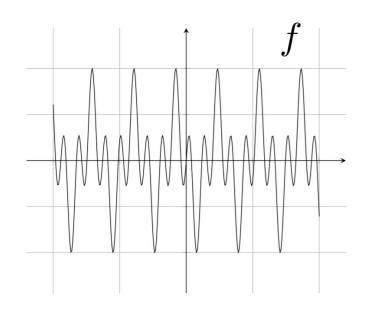
Define

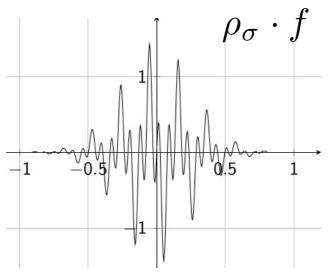
 $\chi_{\ell^*}: x \mapsto e^{2\pi i \langle x, \ell^* \rangle}$

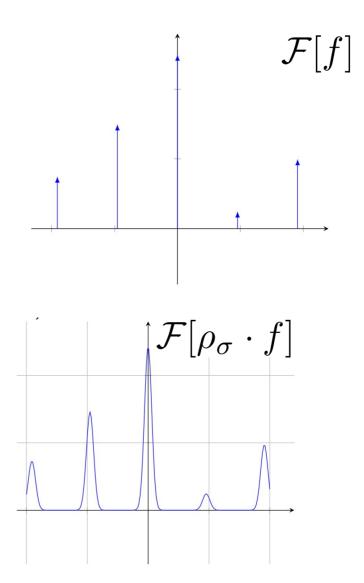
• Every nice Λ -periodic function f can be written $f = \sum_{\ell^* \in \Lambda^*} c_{\ell^*} \chi_{\ell^*}$ with $c_{\ell^*} \in \mathbb{C}^n$ the Fourier decomposition of f

One more important thought

• The convolution theorem $\mathcal{F}[f \cdot g] = \mathcal{F}[f] \star \mathcal{F}[g]$



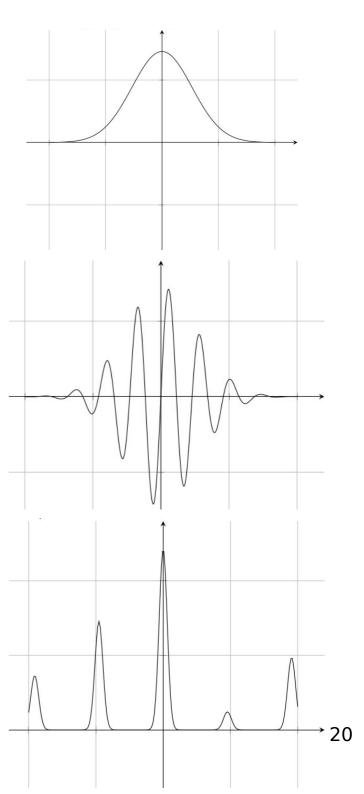




Global idea

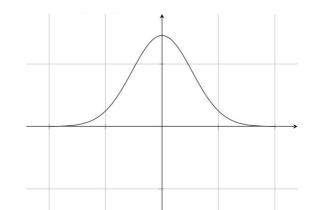
 Create the Gaussian superposition

- Query f in superposition f =
- Apply the Fourier Transform
- Measure



Global idea

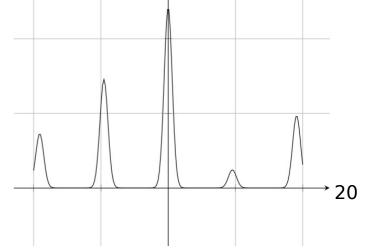
 Create the Gaussian superposition



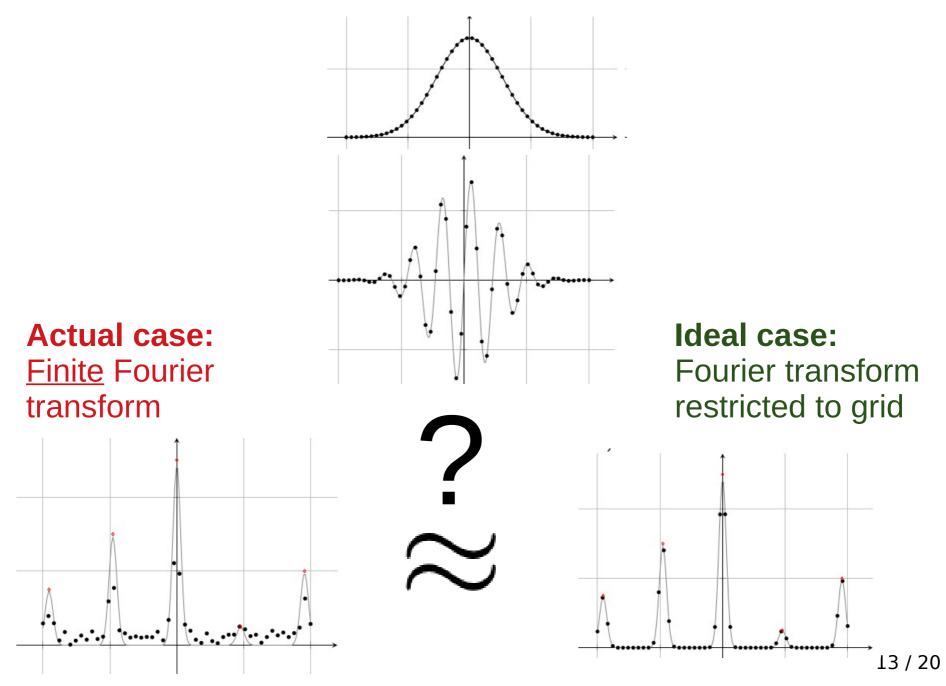
Q computers only have finitely many qubits

- We need to discretize and 'window' the wave
- Fourier transf. becomes Finite Fourier Transf.

- Apply the Fourier Transform
- Measure

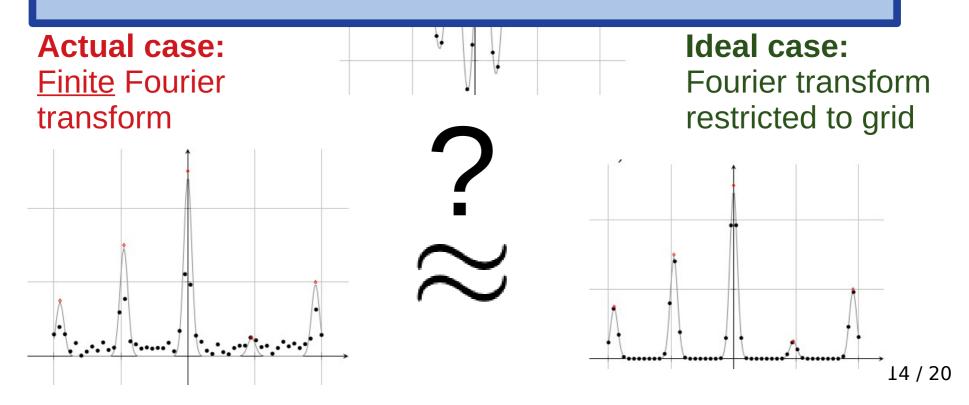


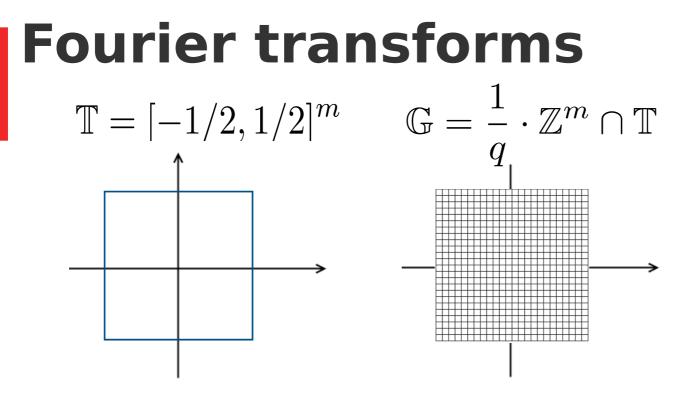
Quantum algorithm



Quantum algorithm

- How 'fine' must the grid be?
- How is it related with parameters a, r, ϵ , τ ?
- How fast is the convergence?





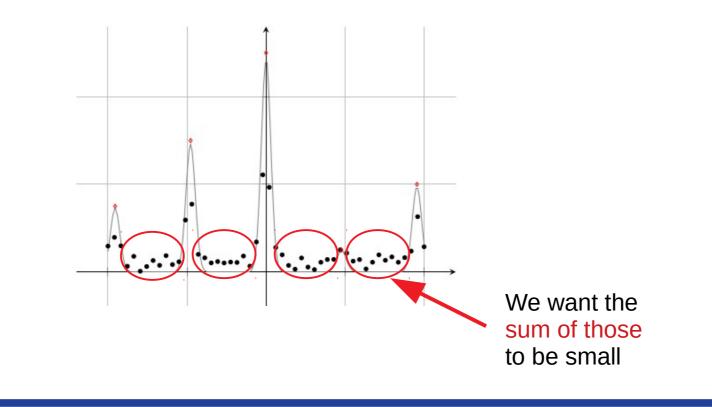
error
$$\approx \frac{a}{q}$$

 $\mathcal{F}_{\mathbb{G}}\{f \cdot \rho_{\sigma}\}(y) = \frac{1}{|\mathbb{G}|} \sum_{x \in \mathbb{G}} e^{-2\pi i \langle x, y \rangle} \cdot f(x) \rho_{\sigma}(x)$
 $\mathcal{F}_{\mathbb{T}}\{f \cdot \rho_{\sigma}\}(y) = \int_{x \in \mathbb{T}} e^{-2\pi i \langle x, y \rangle} \cdot f(x) \rho_{\sigma}(x) dx$
error $\approx e^{-\sigma^{2}}$
 $\mathcal{F}_{\mathbb{R}^{m}}\{f \cdot \rho_{\sigma}\}(y) = \int_{x \in \mathbb{R}^{m}} e^{-2\pi i \langle x, y \rangle} \cdot f(x) \rho_{\sigma}(x) dx$

15 / 20

Fourier transforms

- These are pointwise errors
- We want the error in the L2 -distance



Actual Analysis

• Grid \rightarrow Unit cube: the Yudin-Jackson theorem

 $\mathcal{F}_{\mathbb{G}}\{f \cdot \rho_{\sigma}\} \approx \mathcal{F}_{\mathbb{T}}\{f \cdot \rho_{\sigma}\}$

About optimal trigonometric approximations

• Unit cube \rightarrow real space: the Poisson Summation Formula

 $\mathcal{F}_{\mathbb{T}}\{f \cdot \rho_{\sigma}\} \approx \mathcal{F}_{\mathbb{R}^m}\{f \cdot \rho_{\sigma}\}|_{\mathbb{Z}^m}$

About the interplay between Fourier transforms the operations 'restriction' and 'periodization' on functions

Main theorem

Theorem 1. There exists a quantum algorithm that, given access to an (a, r, ϵ) -HSP oracle with period lattice Λ , $r < \lambda_1(\Lambda)/6$ and $\epsilon < 1/4$, computes, with constant success probability, an approximate basis $\tilde{B} = B + \Delta_B$ of this lattice Λ , satisfying $\|\Delta_B\| < \tau$.

This algorithm makes k quantum oracle calls to the (a, r, ϵ) -HSP oracle, and uses mQ + n qubits, $O(km^2Q^2)$ quantum gates and $poly(m, \log \frac{a}{\lambda_1^*\tau})$ classical bit operations, where

$$Q = O(m\log(m\log k)) + O(mk) + O\left(\log\frac{a}{\lambda_1^*\tau}\right),\tag{1}$$

$$k = O(m) + O(\log m + m \log a + \log \det \Lambda).$$
(2)

Taking k = O(m) we need $\tilde{O}(m^3)$ qubits and $\tilde{O}(m^7)$ quantum gates

This high complexity is mostly due to numerical instability of generating a dual 18 / 20 basis and inverting this basis to obtain a primal basis.

Open questions

Complexity unit group or class group computation?

- Complexity of Principal Ideal Problem?
- Are there assumptions on the oracle function making the complexity better?
- Using BKZ to improve the numerical stability of recovering the primal basis?
- Using sublattices or symmetries of lattices to improve complexity

Questions?

Me: *finishes an academic presentation with some immature meme* The scientific community:

