A Short Introduction to Lattices from Noncommutative Fields

Roope Vehkalahti
Aalto University, Finland

8.5.2019

Lattice meeting
London

REFERENCES

- The results that are presented here either classical or are done by me alone or in collaboration with Laura Luzzi and Francis Lu.

A Lattice

- A lattice L is a discrete additive group in \mathbb{R}^{n}.
- This is equivalent with the condition that there exists a set of linearly independent elements $\left\{a_{1}, \ldots, a_{k}\right\}$ that generate L.
- If $L=a_{1} \mathbb{Z}+a_{2} \mathbb{Z}+\cdots+a_{k} \mathbb{Z}$, we say that L has degree k.

Matrix lattices

Lattices we consider in this presentation are based on additive groups in $M_{n \times n}(\mathbb{C})$.

Definition
A matrix lattice $L \subseteq M_{n \times n}(\mathbb{C})$ has the form

$$
L=\mathbb{Z} B_{1} \oplus \mathbb{Z} B_{2} \oplus \cdots \oplus \mathbb{Z} B_{k}
$$

where the matrices B_{1}, \ldots, B_{k} are linearly independent over \mathbb{R}, i.e., form a lattice basis, and k is called the dimension of the lattice.

Let us assume that $X, Y \in M_{n}(\mathbb{C})$. The natural inner-product is now

$$
\langle X, Y\rangle=\Re\left(\operatorname{Tr}\left(X Y^{\dagger}\right) .\right.
$$

- With respect to this inner-product $M_{n}(\mathbb{C})$ can be seen as a space $\mathbb{R}^{2 n^{2}}$.
- Matrix form is just convenient way of presenting our vectors.

Matrix lattices

- We denote the measure (or hypervolume) of the fundamental parallelotope of a lattice $L \subset M_{n}(\mathbb{C})$ by $\operatorname{Vol}(L)$ and call it the volume of the fundamental parallelotope of the lattice L.

If x_{1}, \ldots, x_{k} is a basis of L, we can form the Gram matrix of the lattice L

$$
\left(\Re \operatorname{tr}\left(x_{i} x_{j}^{\dagger}\right)\right)_{1 \leq i, j \leq k} .
$$

The Gram matrix has a positive determinant equal to $\operatorname{Vol}(L)^{2}$.

LATTICES FROM NUMBER FIELDS

- Let us begin with a degree n algebraic integer a.
- Let $f_{a}(x)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ be the minimal polynomial of a (here $c_{i} \in \mathbb{Z}$).
- We use notation $K=\mathbb{Q}(a)=\mathbb{Q} \oplus \mathbb{Q} a \oplus \cdots \oplus \mathbb{Q} a^{n-1}$.
- The set K is a field.
- This means that K is additively and multiplicatively closed and for every element $x \in K, x \neq 0$, there exists $y \in K$ such that $x y=1$.

LATTICES FROM NUMBER FIELDS

We also have that

$$
R_{K}=\mathbb{Z}[a]=\mathbb{Z} \oplus \mathbb{Z} a \oplus \cdots \oplus \mathbb{Z} a^{n-1}
$$

is a ring and a degree n free \mathbb{Z}-module.

- However, when seen as a subset in \mathbb{C} it is a dense set.
- So it is an additive group, but it is not discrete in the natural ambient space.

LATTICES FROM NUMBER FIELDS

We will denote with $\sigma_{i}(a)$ the complex roots of polynomial $f_{a}(x)$.

$$
f_{a}(x)=\left(x-\sigma_{1}(a)\right)\left(x-\sigma_{2}(x)\right) \cdots\left(x-\sigma_{n}(a)\right)
$$

here $\sigma_{1}(a)=a$.
These zeros allows us to define n mappings from K to \mathbb{C}. Remember that each $x \in K$ can be written as

$$
x=d_{0}+d_{1} a+\cdots+d_{n-1} a^{n-1}
$$

where $d_{i} \in \mathbb{Q}$.
Now we can define

$$
\sigma_{i}(x)=d_{0}+d_{1} \sigma_{i}(a)+\cdots+d_{n-1} \sigma_{i}(a)^{n-1}
$$

LATTICES FROM NUMBER FIELDS

So defined mappings satisfy the following conditions.

- The mappings σ_{i} are \mathbb{Q} algebra embeddings.
- We have $\sigma_{i}(x+y)=\sigma_{i}(x)+\sigma_{i}(y)$.
- And $\sigma_{i}(x y)=\sigma_{i}(x) \sigma_{i}(y)$.
- If $x \in K$, then $\prod_{i=1}^{n} \sigma_{i}(x) \in \mathbb{Q}$.
- We also have that $\sigma_{i}(x)=0$ only if $x=0$.
- If $x \in R_{K}$ then $\prod_{i=1}^{n} \sigma_{i}(x) \in \mathbb{Z}$.

LATTICES FROM NUMBER FIELDS

Let us suppose that $\sigma_{1}, \ldots, \sigma_{n}$ are the \mathbb{Q}-embeddings from K to \mathbb{C}. The Minkowski embedding $\psi: K \mapsto M_{n}(\mathbb{C})$ is then

$$
\psi(x)=\operatorname{diag}\left(\sigma_{1}(x), \ldots, \sigma_{n}(x)\right) \in M_{n}(\mathbb{C})
$$

- This is really an algebraic representation.
- For example $\psi(x y)=\psi(x) \psi(y)$ and $\psi(x+y)=\psi(x)+\psi(y)$.
- Let us suppose that $x \in K$. As K is a field there exists an element $y \in K$, such that $x y=1$. It follows that

$$
\psi(x) \psi(y)=\psi(x y)=\psi\left(1_{K}\right)=I
$$

Special properties of number field lattices

- All the non-zero matrices in $\psi(K)$ are invertible!

Further

$$
\operatorname{det}(\psi(x))=\prod_{i=1}^{n} \sigma_{i}(x)
$$

- If $x \in K$, then $\operatorname{det}(\psi(x)) \in \mathbb{Q}$.
- If $x \in R_{K}$, then $\left.\operatorname{det}(\psi(x))\right) \in \mathbb{Z}$.
- Given $x \in R_{K}, x \neq 0$, then $|\operatorname{det}(\psi(x))| \geq 1$!

Number field lattices

- What can be said about the set $\psi\left(R_{K}\right) \subset M_{n}(\mathbb{C})$?
- As ψ is a group homomorphism, it must be an additive group.
- Is it a lattice?
- Note that for example $\mathbb{Z} \oplus \sqrt{2} \mathbb{Z}$ is a free group, but not a lattice.

LATTICES FROM NUMBER FIELDS

- Remember our inner product $\langle X, Y\rangle=\Re\left(\operatorname{Tr}\left(X Y^{\dagger}\right)\right.$.
- Then we have the natural metric $\|X-Y\|_{F}=\sqrt{|\langle X-Y, X-Y\rangle|}$.

Lemma

Let A be an $n \times n$ complex matrix. We then have the inequality

$$
|\operatorname{det} A| \leq \frac{\|A\|_{F}^{n}}{n^{n / 2}} .
$$

LATTICES FROM NUMBER FIELDS

- Let us suppose we have elements $x, y \in R_{K}$ and $x \neq y$.

We then have that

$$
\|\psi(x)-\psi(y)\|_{F}=\|\psi(x-y)\|_{F} \geq \sqrt{n}|\operatorname{det}(\psi(X-Y))|^{1 / n}
$$

and because $x-y \in R_{K}$ we have that $|\operatorname{det}(\psi(x-y))| \geq 1$.

- It follows that $\|\psi(x)-\psi(y)\|_{F} \geq \sqrt{n}$.
- Hence $\psi\left(R_{K}\right)$ is a discrete additive group in $M_{n}(\mathbb{C})$.

HERMITE INVARIANT OF A NUMBER FIELD LATTICE

- We already saw that for any element $x \in \psi\left(R_{K}\right)$ we have that $\|x\|^{2} \leq n$.
- We also know that $\left\|\psi\left(1_{K}\right)\right\|^{2}=n$.
- A natural question is now what is the Hermite invariant of R_{K} and how large it can be.
- We only need no know what is the volume of the fundamental parallelotope of the lattice $\psi\left(R_{K}\right)$.
- It is actually something that can be directly calculated from the minimal polynomial $f_{a}(x)$.

LATTICES FROM RINGS OF ALGEBRAIC INTEGERS

- The lattice $\psi\left(R_{K}\right)$ has many nice properties and we can measure it's Hermite invariant easily, but we can typically do better.
- Given any $a \in K$ and corresponding $\mathbb{Z}[a]=R_{K}$, there exists a maximal ring \mathcal{O}_{K} such that $R_{K} \subseteq \mathcal{O}_{K}$.
- The ring of algebraic integers \mathcal{O}_{K} consist of all the integral elements in K.
- It is obviously unique maximal ring with such properties.

HERMITE INVARIANT OF NUMBER FIELD LATTICES

- The lattice $\psi\left(\mathcal{O}_{K}\right)$ has all the same properties that $\psi\left(R_{K}\right)$ has.
- For example the shortest vector in $\psi\left(\mathcal{O}_{K}\right)$ has length \sqrt{n}.
- However, typically $R_{K} \subset \mathcal{O}_{K}$ and $\operatorname{Vol}\left(\psi\left(\mathcal{O}_{K}\right)\right)<\operatorname{Vol}\left(\psi\left(R_{K}\right)\right)$.
- In any case $h\left(\psi\left(\mathcal{O}_{K}\right)\right) \geq h\left(\psi\left(R_{K}\right)\right)$.

HERMITE INVARIANT OF NUMBER FIELD LATTICES

- Let us simplify things little bit.
- Let us now assume that $K=\mathbb{Q}(a)$ is a totally real field.

It means that when

$$
f_{a}(x)=\left(x-\sigma_{1}(a)\right)\left(x-\sigma_{2}(a)\right) \cdots\left(x-\sigma_{n}(a)\right)
$$

then all $\sigma_{i}(a) \in \mathbb{R}$.

- Obviously then $\psi(x) \in M_{n}(\mathbb{R})$ for all $x \in K$.
- The resulting lattice $\psi\left(\mathcal{O}_{K}\right)$ is totally real.

LATTICES FROM NUMBER FIELDS

Lemma

Let K / \mathbb{Q} be a totally real extension of degree n and let ψ be the canonical embedding. Then

$$
\operatorname{Vol}\left(\psi\left(\mathcal{O}_{K}\right)\right)=\sqrt{\left|d_{K}\right|}, \text { and } \mathrm{h}\left(\psi\left(\mathcal{O}_{K}\right)\right)=\frac{n}{\left|d_{K}\right|^{\frac{1}{n}}}
$$

- Here d_{K} is the discriminant of the field K.
- It is an important algebraic invariant of the field K and has been under deep study for over 100 years.

LATTICES FROM NUMBER FIELDS

Now the study of Hermite invariants of number field lattices is reduced to study of discriminants.

- There exists plenty of good lower bounds. (Minkowski and variations of Odlyzko bounds etc)
- Best existence results are based on class field towers.

In the case of totally real fields Martinet proves the existence of a family of fields of degree n, where $n=2^{k}$, such that

$$
\begin{equation*}
\left|d_{K_{n}}\right|^{\frac{1}{n}}=G_{1} \tag{1}
\end{equation*}
$$

where $G_{1} \approx 1058$. If K is a degree n field from this family,

$$
\begin{equation*}
\mathrm{h}\left(\psi\left(\mathcal{O}_{K}\right)\right)=\frac{n}{G_{1}} . \tag{2}
\end{equation*}
$$

HERMITE INVARIANTS OF NUMBER FIELDS

- The actual asymptotic and non-asymptotic size of discriminants is not known.
- For entertainment one finds quite good collection of number fields from: http://www.Imfdb.org/NumberField/

Minimum Determinant

- The Hermite invariant question is a general one that is relevant for all lattices.
- How about questions that are specific for number field lattices.

Remember that for any element $x \in \mathcal{O}_{K},|\operatorname{det}(\psi(x))| \leq 1$.

- Think of your favourite lattice. Does it have this property?
- This is really rare condition.

Minimum Determinant

Definition

The minimum determinant of the lattice $L \subseteq M_{n \times n}(\mathbb{C})$ is defined as

$$
\operatorname{mindet}(L):=\inf _{X \in L \backslash\{\mathbf{0}\}}|\operatorname{det}(X)|
$$

If mindet $(L)>0$ we say that the lattice satisfies the non-vanishing determinant (NVD) property.

We can now define the normalized minimum determinant $\delta(L)$, which is obtained by first scaling the lattice L to have a unit size fundamental parallelotope and then taking the minimum determinant of the resulting scaled lattice.

$$
\begin{equation*}
\delta(L)=\frac{\operatorname{mindet}(L)}{(\operatorname{Vol}(L))^{n / k}} \tag{3}
\end{equation*}
$$

Minimum Determinant

For number field lattices we have

$$
\delta\left(\psi\left(\mathcal{O}_{K}\right)\right)=\frac{1}{\sqrt{\left|d_{K}\right|}}
$$

- The normalized minimum determinants of the number field lattices are greatest known.
- In fact it seem to be that only number fields provide lattices with non-vanishing determinants.

Density of determinant 1 ELEMENTS

- For typical lattice we can naturally analyse the size of its Hermite invariant.
- Just as well we can ask how many shortest vectors the lattice have.
- How many elements $x \in \psi\left(\mathcal{O}_{K}\right)$ there are with the property $|\operatorname{det}(x)|=1$?
- Usually there are infinitely many!
- Let us now denote them with $\psi\left(\mathcal{O}_{K}\right)^{1}$.
- As there are infinitely many of them, we can ask how dense set they are.

Density of determinant 1 ELEMENTS

- This question is again classical problem in algebraic number theory.
- It is so central because $\psi\left(\mathcal{O}_{K}\right)^{1}=\psi\left(\mathcal{O}_{K}^{*}\right)$, where \mathcal{O}_{K}^{*} is the unit group of the ring \mathcal{O}_{K}.
- The unit group consists of all the elements in \mathcal{O}_{K} who's inverse belongs to \mathcal{O}_{K} as well.

Density of determinant 1 ELEMENTS

We will use the notation

$$
B(M)=\left\{X \in M_{n}(\mathbb{C}):\|X\|_{F} \leq M\right\}
$$

for the sphere with radius M.
We are now interested on the asymptotic behaviour of

$$
\left|B(M) \cap \psi\left(\mathcal{O}_{K}\right)^{1}\right|
$$

when M grows.

DENSITY OF DETERMINANT 1 ELEMENTS

Remember that

$$
f_{a}(x)=\left(x-\sigma_{1}(a)\right)\left(x-\sigma_{2}(a)\right) \cdots\left(x-\sigma_{n}(a)\right)
$$

Let us denote by r_{1} the number of times $\sigma_{i}(a)$ is real and by $2 r_{2}$ the number of times $\sigma_{i}(a)$ is complex.

- The pair $\left(r_{1}, r_{2}\right)$ is called the signature of the field K. The signature is independent of the chosen generator a.

A geometric interpretation of the Dirichlet's theorem now gives us

$$
\begin{equation*}
\left|\psi\left(\mathcal{O}_{K}\right)^{1} \cap B(M)\right| \sim c \log (M)^{r_{2}+r_{1}-1} \tag{4}
\end{equation*}
$$

where c is a constant independent of M.

Density of determinant 1 ELEMENTS

Dirichlet's unit theorem also almost completely defines the group structure of the units \mathcal{O}_{K}^{*} of the ring of algebraic integers \mathcal{O}_{K}. It states that

$$
\begin{equation*}
\mathcal{O}_{K}^{*} \cong U \times \mathbb{Z}^{r_{2}+r_{1}-1} \tag{5}
\end{equation*}
$$

where U is a finite group consisting of the roots of unity in the field K. In particular we can see that in some sense the signature of the field describes the "size" of the unit group.

General matrix lattices

- Let us now assume we have any matrix lattice $L \subset M_{n}(\mathbb{C})$ from a number field.
- It is then a set of invertible (except 0) and commuting matrices.
- We know that there exists a matrix A such that $A L A^{-1}$ consist of diagonal matrices.
- We can see that irrespective of the used number field and representation we are considering a small subset of lattices.
- In particular we know that always $\operatorname{deg}(L) \leq 2 n$.

A DIVISION ALGEBRA

- Let us consider field $\mathbb{Q}[i]=\mathbb{Q}+\mathbb{Q} i$. (minimal polynomial $x^{2}+1$)
- Here σ is the complex conjugation.
- Let u be an auxiliary element that satisfy $u^{2}=-1$.

We can then define an algebra H

$$
\mathbb{Q}(i)+u \mathbb{Q}(i)
$$

where

$$
a u=u \sigma(a)=u \bar{a} .
$$

- This simple condition is enough to calculate all the needed ring operations.
- The resulting \mathbb{Q}-algebra is non-commutative.

Quaternion algebra

- Quaternion algebra also has a well known matrix presentation

$$
H=\left\{\left.\left(\begin{array}{cc}
a & -b^{*} \\
b & a^{*}
\end{array}\right) \right\rvert\, a, b \in \mathbb{Q}(i)\right\} .
$$

Now for example

$$
R=\left\{\left.\left(\begin{array}{cc}
a & -b^{*} \\
b & a^{*}
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}(i)\right\}
$$

is a lattice in $M_{2}(\mathbb{C})$.

- The set R is a ring and also $|\operatorname{det}(X)| \geq 1$, when $X \neq 0$.

Galois group

- Before we can generalize the quaternions we have to give some definitions.

Let us again consider a field K with a generating element a and the minimal polynomial

$$
f_{a}(x)=\left(x-\sigma_{1}(a)\right)\left(x-\sigma_{2}(a)\right) \cdots\left(x-\sigma_{n}(a)\right)
$$

If now for each i we have that $\mathbb{Q}\left(\sigma_{i}(a)\right)=\mathbb{Q}(a)$, then the corresponding mappings

$$
\operatorname{Gal}(K / \mathbb{Q})=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\}
$$

form a multiplicative group, with respect to composition.

- If $\operatorname{Gal}(K / \mathbb{Q})=\left\{\sigma, \sigma^{2}, \ldots, \sigma^{n}\right\}$, we say that the Galois group is cyclic.

Non-COMMUTATIVE ALGEBRA

Definition

Let us assume that K / \mathbb{Q} is a cyclic Galois extension of degree n with the Galois group $\operatorname{Gal}(K / \mathbb{Q})=\langle\sigma\rangle$. We can define an associative \mathbb{Q}-algebra

$$
\mathcal{A}=(K / \mathbb{Q}, \sigma, \gamma)=K \oplus u K \oplus u^{2} K \oplus \cdots \oplus u^{n-1} K
$$

where $u \in \mathcal{A}$ is an auxiliary generating element subject to the relations $x u=u \sigma(x)$ for all $x \in K$ and $u^{n}=\gamma \in \mathbb{Q}^{*}$. We call this type of algebra cyclic algebra

- For example for H we had that $K=\mathbb{Q}(i), u^{2}=-1$, and $x u=u \bar{x}$.

LATTICES FROM DIVISION ALGEBRAS

- By selecting the element γ correctly we can assure that \mathcal{A} is a field.
- For each non-zero element $x \in \mathcal{A}$ there exists y such that $x y=1_{\mathcal{A}}$.
- We now have a more general algebraic structure than a commutative field.
- How can we embed it into suitable euclidean space?
- Remember that \mathcal{A} is a degree n right K-vector space.
- Given any element $x \in \mathcal{A}$, multiplication from left is a linear mapping.
- $x(a+b)=x(a)+x(b) x(a) k=x(a k)$.
- We can see each element of \mathcal{A} as a matrix in $M_{n}(K)$!

LATTICES FROM DIVISION ALGEBRAS

Suppose that K / \mathbb{Q} is a cyclic extension of algebraic number fields. Let $\mathcal{A}=(K / \mathbb{Q}, \sigma, \gamma)$ be a cyclic division algebra.
We can consider \mathcal{A} as a right vector space over K and every element $x=x_{0}+u x_{1}+\cdots+u^{n-1} x_{n-1} \in \mathcal{A}$ has the following representation as a matrix $\psi(x)=A$

$$
=\left(\begin{array}{ccccc}
x_{0} & \gamma \sigma\left(x_{n-1}\right) & \gamma \sigma^{2}\left(x_{n-2}\right) & \cdots & \gamma \sigma^{n-1}\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right) & \gamma \sigma^{2}\left(x_{n-1}\right) & & \gamma \sigma^{n-1}\left(x_{2}\right) \\
x_{2} & \sigma\left(x_{1}\right) & \sigma^{2}\left(x_{0}\right) & & \gamma \sigma^{n-1}\left(x_{3}\right) \\
\vdots & & & & \vdots \\
x_{n-1} & \sigma\left(x_{n-2}\right) & \sigma^{2}\left(x_{n-3}\right) & \cdots & \sigma^{n-1}\left(x_{0}\right)
\end{array}\right) .
$$

LATTICES FROM DIVISION ALGEBRAS

- It is relatively easy to see that for example $\psi(a b)=\psi(a) \psi(b)$ and $\psi(a+b)=\psi(a)+\psi(b)$.
- The set of matrices $\psi(\mathcal{A})$ is an injective representation of \mathcal{A}.
- It follows that if \mathcal{A} is a division algebra, then $\psi(\mathcal{A})$ consists of invertible matrices.
- Less obviously if $x \in \mathcal{A}$, then $\operatorname{det}(\psi(x)) \in \mathbb{Q}$.

Let us now assume that $u^{n}=\gamma \in \mathbb{Z}$. Then the ring

$$
\mathcal{O}_{K}[u]=\mathcal{O}_{K}+u \mathcal{O}_{K}+\cdots+u^{n-1} \mathcal{O}_{K}
$$

is a promising candidate for a pre-image of a lattice.

LATTICES FROM DIVISION ALGEBRAS

- We can directly see that $\psi\left(\mathcal{O}_{K}[u]\right) \subset M_{n}\left(\mathcal{O}_{K}\right)$.
- If $x \in \mathcal{O}_{K}[u]$, then $\left.\operatorname{det}(\psi(x))\right) \in \mathbb{Z}$
- Given $x \in \mathcal{O}_{K}[u], x \neq 0$, then $|\operatorname{det}(\psi(x))| \geq 1$!
- Just like previously we can use this information to prove that $\psi\left(\mathcal{O}_{K}[u]\right)$ is a lattice.
- It also has shortest vector of length \sqrt{n}.
- $\psi\left(\mathcal{O}_{K}[u]\right)$ is a subset in $M_{n}(\mathbb{C})$ and has degree n^{2}.

LATTICES FROM DIVISION ALGEBRAS

- Just like in the case of number fields, the ring $\mathcal{O}_{K}[u]$ is always contained into a maximal ring Λ.
- However this ring is not unique. In fact typically a division algebra contains number of maximal orders.
- Again the set $\psi(\Lambda)$ has all the properties that $\psi\left(\mathcal{O}_{K}[u]\right)$ has.
- For example the shortest vector in $\psi\left(\mathcal{O}_{K}[u]\right)$ has length \sqrt{n}.

LATTICES FROM DIVISION ALGEBRAS

Proposition

Let us suppose that we have a \mathbb{Z}-order Λ in a \mathbb{Q}-central division algebra \mathcal{A} of index n then

$$
h(\psi(\Lambda))=\frac{n}{\operatorname{Vol}(\psi(\Lambda))^{2 / n^{2}}}
$$

Lemma

Suppose that \mathcal{A} is a real division algebra and ψ some cyclic representation. Let \wedge be a \mathbb{Z}-order inside \mathcal{A}. Then

$$
\operatorname{Vol}(\psi(\Lambda))=|\sqrt{d(\Lambda / \mathbb{Z})}|
$$

where $d(\Lambda / \mathbb{Z})$ is discriminant of the algebra \mathcal{A}.

Maximal Hermite invariant of a division ALGEBRA LATTICE

By real algebra we referred to an algebra where the field K is a subset in \mathbb{R}.

- In this case $\psi(\Lambda) \subset M_{n}(\mathbb{R})$.
- This restriction was done just in order to get as clear result as possible.
- We can now ask how large Hermite invariants maximal orders can have.
- Or equivalently how small discriminants division algebras can have.

LARGEST POSSIBLE HERMITE INVARIANT

Theorem (V. 2010)

The absolute values of the discriminants of all the \mathbb{Q}-central real division algebras of index n are lower bounded by

$$
|2 \cdot 3|^{n(n-1)}
$$

and this bound can always be achieved.

- This result can be achieved, because we have complete control over discriminants of division algebras.
- This is completely different from the number field case, where discriminant is rather mysterious.

Largest possible Hermite invariant

- We now have that $h(\psi(\Lambda)) \sim \frac{n}{6}$ at best.
- Sounds good. However, this lattice lives in space $M_{n}(\mathbb{R}) \simeq \mathbb{R}^{n^{2}}$.
- Hence these are not very dense packings.
- However, these lattices are likely close to optimal in the determinant sense.

Minimum Determinant of division algebra LATTICE

Remember the minimum determinant of the lattice $L \subseteq M_{n \times n}(\mathbb{C})$

$$
\delta(L):=\frac{\inf _{X \in L \backslash\{\mathbf{0}\}}|\operatorname{det}(X)|}{\operatorname{Vol}(L)^{n / k}} .
$$

For every n there exists n^{2}-dimensional lattice $L_{n} \subset M_{n}(\mathbb{R})$, with the property that

$$
\delta\left(L_{n}\right)=6^{\frac{(1-n)}{2}} .
$$

- These lattices fill the whole space $M_{n}(\mathbb{R})$ completely.
- Yet their minimum determinant is 1.
- As far as I know the values of $\delta\left(L_{n}\right)$ are the largest known.

Minimum determinant of division algebra LATTICES

- The following lattice basis is the optimal 4-dimensional lattice in $M_{2}(\mathbb{R})$.

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & -\sqrt{3}
\end{array}\right),\left(\begin{array}{cc}
0 & -\sqrt{3} \\
-\sqrt{3} & 0
\end{array}\right), \\
\left(\begin{array}{cc}
1 / 2(1+\sqrt{3}) & 1 / 2(-1-\sqrt{3} \\
1 / 2(1-\sqrt{3}) & 1 / 2(1-\sqrt{3})
\end{array}\right)
\end{gathered}
$$

DENSITY OF UNITS IN ORDERS OF DIVISION ALGEBRAS

- How many elements $x \in \psi(\Lambda)$ there are with the property $|\operatorname{det}(x)|=1$?
- Usually there are infinitely many!
- Let us now denote them with $\psi(\Lambda)^{1}$.
- As there are infinitely many of them, we can ask how dense set they are.

We are now interested on the asymptotic behaviour of

$$
\left|B(M) \cap \psi(\Lambda)^{1}\right|
$$

when M grows.

An EXAMPLE

Let us consider the following division algebras

$$
\mathcal{D}_{1}=(\mathbb{Q}(i) / \mathbb{Q}, \sigma,-3) \text { and } \mathcal{D}_{2}=(\mathbb{Q}(i) / \mathbb{Q}, \sigma, 3) .
$$

And their lattices

$$
\psi\left(\Lambda_{1}\right)=\left\{\left.\left(\begin{array}{cc}
a & -3 b^{*} \\
b & a^{*}
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}(i)\right\} .
$$

and

$$
\psi\left(\Lambda_{2}\right)=\left\{\left.\left(\begin{array}{cc}
a & 3 b^{*} \\
b & a^{*}
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}(i)\right\}
$$

AN EXAMPLE

$$
\begin{aligned}
& \operatorname{det}\left(\left(\begin{array}{cc}
a & -3 b^{*} \\
b & a^{*}
\end{array}\right)\right)=|a|^{2}+3|b|^{2} \\
& \operatorname{det}\left(\left(\begin{array}{cc}
a & 3 b^{*} \\
b & a^{*}
\end{array}\right)\right)=|a|^{2}-3|b|^{2}
\end{aligned}
$$

We now have

$$
\left|B(M) \cap \psi\left(\Lambda_{1}\right)^{1}\right|=\text { constant }
$$

and

$$
\left|B(M) \cap \psi\left(\Lambda_{2}\right)^{1}\right| \sim c M^{2}
$$

for some constant c.

General density of norm 1 ELEMENTS

The unit group Λ^{*} of Λ consists of elements $x \in \Lambda$ such that there exists $y \in \Lambda$, for which $x y=1_{\mathcal{D}}$.
We also have

$$
\Lambda^{*}=\{x|x \in \Lambda,|\operatorname{det}(\psi(x))|=1\} .
$$

We are now interested on the sets

$$
\left\{\psi\left(\wedge^{*}\right) \cap B(M)\right\}=\left\{x \mid x \in \Lambda^{*},\|\psi(x)\| \leq M\right\}
$$

- In particular we would like to find such a function f that

$$
\left|\psi\left(\wedge^{*}\right) \cap B(M)\right| \approx f(M)
$$

DENSITY OF UNITS IN DIVISION ALGEBRAS

Definition

Let us suppose that \mathcal{D} is an index $n \mathbb{Q}$-central division algebra. If

$$
\mathcal{D} \otimes_{\mathbb{Q}} \mathbb{R} \cong M_{n}(\mathbb{R})
$$

we say that \mathcal{D} is not ramified at the infinite place. If $2 \mid n$ and

$$
\mathcal{D} \otimes_{\mathbb{Q}} \mathbb{R} \cong M_{n / 2}(\mathbf{H})
$$

we say that \mathcal{D} is ramified at the infinite place.

- The density of units heavily depend on the used algebra.
- This density is roughly defined by the ramification in the infinite place.

DENSITY OF THE UNIT GROUP

Let us suppose that we have an index $n \mathbb{Q}$-central division algebra $\mathcal{D}=(L / \mathbb{Q}, \sigma, \gamma)$ and an order $\Lambda \subset \mathcal{D}$.

Proposition (V., Lu, Luzzi, 2013)
If \mathcal{D} is ramified at the infinite place we have that

$$
\left|\psi\left(\Lambda^{*}\right) \cap B(M)\right| \approx c M^{n^{2}-2 n}
$$

where c is a constant.

Proposition (V., Lu, Luzzi, 2013)
If \mathcal{D} is unramified at the infinite place we have that

$$
\left|\psi\left(\Lambda^{*}\right) \cap B(M)\right| \approx K M^{n^{2}-n}
$$

where K is a constant.

Structure of The unit group

In algebraic number fields we had that if

$$
K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{C}^{r_{2}} \oplus \mathbb{R}^{r_{1}}
$$

Then the unit group did grow like

$$
\log (M)^{r_{2}+r_{1}-1}
$$

The same way the structure of

$$
\mathcal{A} \otimes_{\mathbb{Q}} \mathbb{R}
$$

did define the density of the unit group of the division algebra.

Structure of The unit group

- In general we can find the density of the unit group of a division algebra.
- However, it's algebraic structure is a more or less complete mystery.
- To begin with it's an infinite non-commutative group inside some Lie group.
- This in unlike in the case of number fields, where the unit group had really simple structure.

