A Short Introduction to Lattices from Noncommutative Fields

Roope Vehkalahti Aalto University, Finland

> 8.5.2019 Lattice meeting London

Roope Vehkalahti Aalto UniversitA Short Introduction to Lattices f

• The results that are presented here either classical or are done by me alone or in collaboration with Laura Luzzi and Francis Lu.

Roope Vehkalahti Aalto Universit A Short Introduction to Lattices f

A LATTICE

- A lattice L is a discrete additive group in \mathbb{R}^n .
- This is equivalent with the condition that there exists a set of linearly independent elements $\{a_1, \ldots, a_k\}$ that generate L.
- If $L = a_1\mathbb{Z} + a_2\mathbb{Z} + \cdots + a_k\mathbb{Z}$, we say that L has degree k.

MATRIX LATTICES

Lattices we consider in this presentation are based on additive groups in $M_{n\times n}(\mathbb{C}).$

DEFINITION

A matrix lattice $L \subseteq M_{n \times n}(\mathbb{C})$ has the form

 $L = \mathbb{Z}B_1 \oplus \mathbb{Z}B_2 \oplus \cdots \oplus \mathbb{Z}B_k,$

where the matrices B_1, \ldots, B_k are linearly independent over \mathbb{R} , i.e., form a lattice basis, and k is called the dimension of the lattice.

Let us assume that $X, Y \in M_n(\mathbb{C})$. The natural inner-product is now

 $\langle X, Y \rangle = \Re(Tr(XY^{\dagger})).$

- With respect to this inner-product $M_n(\mathbb{C})$ can be seen as a space \mathbb{R}^{2n^2} .
- Matrix form is just convenient way of presenting our vectors. ATTICE MEETING LONDON

Roope Vehkalahti Aalto UniversitA Short Introduction to Lattices

• We denote the measure (or hypervolume) of the fundamental parallelotope of a lattice $L \subset M_n(\mathbb{C})$ by $\operatorname{Vol}(L)$ and call it the volume of the fundamental parallelotope of the lattice L.

If x_1, \ldots, x_k is a basis of L, we can form the *Gram matrix* of the lattice L

$$\left(\Re tr(x_i x_j^{\dagger})\right)_{1\leq i,j\leq k}$$

The Gram matrix has a positive determinant equal to $Vol(L)^2$.

LATTICES FROM NUMBER FIELDS

- Let us begin with a degree *n* algebraic integer *a*.
- Let $f_a(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ be the minimal polynomial of a (here $c_i \in \mathbb{Z}$).
- We use notation $K = \mathbb{Q}(a) = \mathbb{Q} \oplus \mathbb{Q}a \oplus \cdots \oplus \mathbb{Q}a^{n-1}$.
- The set *K* is a *field*.
- This means that K is additively and multiplicatively closed and for every element $x \in K, x \neq 0$, there exists $y \in K$ such that xy = 1.

We also have that

$$R_{\mathcal{K}} = \mathbb{Z}[a] = \mathbb{Z} \oplus \mathbb{Z} a \oplus \cdots \oplus \mathbb{Z} a^{n-1}.$$

is a ring and a degree n free \mathbb{Z} -module.

- ullet However, when seen as a subset in $\mathbb C$ it is a dense set.
- So it is an additive group, but it is not discrete in the natural ambient space.

LATTICES FROM NUMBER FIELDS

We will denote with $\sigma_i(a)$ the complex roots of polynomial $f_a(x)$.

$$f_a(x) = (x - \sigma_1(a))(x - \sigma_2(x)) \cdots (x - \sigma_n(a)),$$

here $\sigma_1(a) = a$.

These zeros allows us to define *n* mappings from *K* to \mathbb{C} . Remember that each $x \in K$ can be written as

$$x=d_0+d_1a+\cdots+d_{n-1}a^{n-1},$$

where $d_i \in \mathbb{Q}$. Now we can define

$$\sigma_i(x) = d_0 + d_1\sigma_i(a) + \cdots + d_{n-1}\sigma_i(a)^{n-1}.$$

LATTICES FROM NUMBER FIELDS

So defined mappings satisfy the following conditions.

- The mappings σ_i are $\mathbb Q$ algebra embeddings.
- We have $\sigma_i(x+y) = \sigma_i(x) + \sigma_i(y)$.
- And $\sigma_i(xy) = \sigma_i(x)\sigma_i(y)$.
- If $x \in K$, then $\prod_{i=1}^{n} \sigma_i(x) \in \mathbb{Q}$.
- We also have that $\sigma_i(x) = 0$ only if x = 0.
- If $x \in R_K$ then $\prod_{i=1}^n \sigma_i(x) \in \mathbb{Z}$.

Let us suppose that $\sigma_1, \ldots, \sigma_n$ are the \mathbb{Q} -embeddings from K to \mathbb{C} . The Minkowski embedding $\psi : K \mapsto M_n(\mathbb{C})$ is then

$$\psi(x) = \operatorname{diag}(\sigma_1(x), \ldots, \sigma_n(x)) \in M_n(\mathbb{C}).$$

- This is really an algebraic representation.
- For example $\psi(xy) = \psi(x)\psi(y)$ and $\psi(x+y) = \psi(x) + \psi(y)$.
- Let us suppose that x ∈ K. As K is a field there exists an element y ∈ K, such that xy = 1. It follows that

$$\psi(x)\psi(y)=\psi(xy)=\psi(1_{\mathcal{K}})=I.$$

Roope Vehkalahti Aalto UniversitA Short Introduction to Lattices

• All the non-zero matrices in $\psi(K)$ are invertible!

Further

$$\det(\psi(x)) = \prod_{i=1}^n \sigma_i(x).$$

- If $x \in K$, then $det(\psi(x)) \in \mathbb{Q}$.
- If $x \in R_{\mathcal{K}}$, then $det(\psi(x))) \in \mathbb{Z}$.
- Given $x \in R_K$, $x \neq 0$, then $|\det(\psi(x))| \ge 1!$

- What can be said about the set $\psi(R_{\mathcal{K}}) \subset M_n(\mathbb{C})$?
- \bullet As ψ is a group homomorphism, it must be an additive group.
- Is it a lattice?
- Note that for example $\mathbb{Z}\oplus\sqrt{2}\mathbb{Z}$ is a free group, but not a lattice.

LATTICES FROM NUMBER FIELDS

- Remember our inner product $\langle X, Y \rangle = \Re(Tr(XY^{\dagger}))$.
- Then we have the natural metric $||X Y||_F = \sqrt{|\langle X Y, X Y \rangle|}$.

Lemma

Let A be an $n \times n$ complex matrix. We then have the inequality

$$|\det A| \leq rac{\|A\|_F^n}{n^{n/2}}.$$

Roope Vehkalahti Aalto Universit A Short Introduction to Lattices F

• Let us suppose we have elements $x,y\in R_{\mathcal{K}}$ and x
eq y.We then have that

 $||\psi(x) - \psi(y)||_F = ||\psi(x - y)||_F \ge \sqrt{n} |\det(\psi(X - Y))|^{1/n}.$

and because $x - y \in R_K$ we have that $|\det(\psi(x - y))| \ge 1$.

- It follows that $||\psi(x) \psi(y)||_F \ge \sqrt{n}$.
- Hence $\psi(R_K)$ is a discrete additive group in $M_n(\mathbb{C})$.

HERMITE INVARIANT OF A NUMBER FIELD LATTICE

- We already saw that for any element $x \in \psi(R_{\mathcal{K}})$ we have that $||x||^2 \leq n$.
- We also know that $||\psi(1_K)||^2 = n$.
- A natural question is now what is the Hermite invariant of R_K and how large it can be.
- We only need no know what is the volume of the fundamental parallelotope of the lattice $\psi(R_K)$.
- It is actually something that can be directly calculated from the minimal polynomial $f_a(x)$.

8.5.2019 LATTICE MEETING LONI

LATTICES FROM RINGS OF ALGEBRAIC INTEGERS

- The lattice \u03c6(R_K) has many nice properties and we can measure it's Hermite invariant easily, but we can typically do better.
- Given any $a \in K$ and corresponding $\mathbb{Z}[a] = R_K$, there exists a maximal ring \mathcal{O}_K such that $R_K \subseteq \mathcal{O}_K$.
- The ring of algebraic integers \mathcal{O}_K consist of all the integral elements in K.
- It is obviously unique maximal ring with such properties.

HERMITE INVARIANT OF NUMBER FIELD LATTICES

- The lattice $\psi(\mathcal{O}_{\mathcal{K}})$ has all the same properties that $\psi(\mathcal{R}_{\mathcal{K}})$ has.
- For example the shortest vector in $\psi(\mathcal{O}_{\mathcal{K}})$ has length \sqrt{n} .
- However, typically $R_{\mathcal{K}} \subset \mathcal{O}_{\mathcal{K}}$ and $\operatorname{Vol}(\psi(\mathcal{O}_{\mathcal{K}})) < \operatorname{Vol}(\psi(R_{\mathcal{K}}))$.
- In any case $h(\psi(\mathcal{O}_{\mathcal{K}})) \geq h(\psi(\mathcal{R}_{\mathcal{K}})).$

- Let us simplify things little bit.
- Let us now assume that $K = \mathbb{Q}(a)$ is a *totally real field*.
- It means that when

$$f_a(x) = (x - \sigma_1(a))(x - \sigma_2(a)) \cdots (x - \sigma_n(a)),$$

then all $\sigma_i(a) \in \mathbb{R}$.

- Obviously then $\psi(x) \in M_n(\mathbb{R})$ for all $x \in K$.
- The resulting lattice $\psi(\mathcal{O}_{\mathcal{K}})$ is totally real.

LATTICES FROM NUMBER FIELDS

LEMMA

Let K/\mathbb{Q} be a totally real extension of degree n and let ψ be the canonical embedding. Then

$$\operatorname{Vol}(\psi(\mathcal{O}_{K})) = \sqrt{|d_{K}|}, ext{ and } h(\psi(\mathcal{O}_{K})) = rac{n}{|d_{K}|^{rac{1}{n}}}.$$

• Here d_K is the discriminant of the field K.

ROOPE VEHKALAHTI AALTO UNIVERSITA SHORT INTRODUCTION TO LATTICES

• It is an important algebraic invariant of the field K and has been under deep study for over 100 years.

LATTICES FROM NUMBER FIELDS

Now the study of Hermite invariants of number field lattices is reduced to study of discriminants.

- There exists plenty of good lower bounds. (Minkowski and variations of Odlyzko bounds etc)
- Best existence results are based on class field towers.

In the case of totally real fields Martinet proves the existence of a family of fields of degree n, where $n = 2^k$, such that

$$\left|d_{\mathcal{K}_n}\right|^{\frac{1}{n}} = G_1,\tag{1}$$

where $G_1 \approx 1058$. If K is a degree n field from this family,

$$h(\psi(\mathcal{O}_{\mathcal{K}})) = \frac{n}{G_1}.$$
(2)

Roope Vehkalahti Aalto UniversitA Short Introduction to Lattices f

HERMITE INVARIANTS OF NUMBER FIELDS

- The actual asymptotic and non-asymptotic size of discriminants is not known.
- For entertainment one finds quite good collection of number fields from: http://www.lmfdb.org/NumberField/

MINIMUM DETERMINANT

- The Hermite invariant question is a general one that is relevant for all lattices.
- How about questions that are specific for number field lattices.

Remember that for any element $x \in \mathcal{O}_{\mathcal{K}}$, $|\det(\psi(x))| \leq 1$.

- Think of your favourite lattice. Does it have this property?
- This is really rare condition.

MINIMUM DETERMINANT

DEFINITION

The minimum determinant of the lattice $L \subseteq M_{n \times n}(\mathbb{C})$ is defined as

$$\operatorname{mindet}(L) := \inf_{X \in L \setminus \{\mathbf{0}\}} |\operatorname{det}(X)|.$$

If mindet(L) > 0 we say that the lattice satisfies the *non-vanishing* determinant (NVD) property.

We can now define the *normalized minimum determinant* $\delta(L)$, which is obtained by first scaling the lattice L to have a unit size fundamental parallelotope and then taking the minimum determinant of the resulting scaled lattice.

$$\delta(L) = rac{\mathrm{mindet}(L)}{(\mathrm{Vol}(L))^{n/k}}.$$

(3)

Roope Vehkalahti Aalto UniversitA Short Introduction to Lattices f

For number field lattices we have

$$\delta(\psi(\mathcal{O}_{\mathcal{K}})) = rac{1}{\sqrt{|d_{\mathcal{K}}|}}.$$

- The normalized minimum determinants of the number field lattices are greatest known.
- In fact it seem to be that only number fields provide lattices with non-vanishing determinants.

- For typical lattice we can naturally analyse the size of its Hermite invariant.
- Just as well we can ask how many shortest vectors the lattice have.
- How many elements $x \in \psi(\mathcal{O}_{\mathcal{K}})$ there are with the property $|\det(x)| = 1$?
- Usually there are infinitely many!
- Let us now denote them with $\psi(\mathcal{O}_{\mathcal{K}})^1$.
- As there are infinitely many of them, we can ask how dense set they are.

- This question is again classical problem in algebraic number theory.
- It is so central because $\psi(\mathcal{O}_K)^1 = \psi(\mathcal{O}_K^*)$, where \mathcal{O}_K^* is the unit group of the ring \mathcal{O}_K .
- The unit group consists of all the elements in \mathcal{O}_K who's inverse belongs to \mathcal{O}_K as well.

We will use the notation

$$B(M) = \{X \in M_n(\mathbb{C}) : ||X||_F \le M\}$$

for the sphere with radius M. We are now interested on the asymptotic behaviour of

 $|B(M) \cap \psi(\mathcal{O}_{\mathcal{K}})^1|,$

when M grows.

Remember that

$$f_a(x) = (x - \sigma_1(a))(x - \sigma_2(a)) \cdots (x - \sigma_n(a)).$$

Let us denote by r_1 the number of times $\sigma_i(a)$ is real and by $2r_2$ the number of times $\sigma_i(a)$ is complex.

• The pair (r_1, r_2) is called the *signature* of the field K. The signature is independent of the chosen generator a.

A geometric interpretation of the Dirichlet's theorem now gives us

$$\psi(\mathcal{O}_{\mathcal{K}})^1 \cap B(\mathcal{M})| \sim c \log(\mathcal{M})^{r_2 + r_1 - 1},\tag{4}$$

where c is a constant independent of M.

Roope Venkalanti Aalto UniversitA Short Introduction to Lattices i

Dirichlet's unit theorem also almost completely defines the group structure of the units $\mathcal{O}_{\mathcal{K}}^*$ of the ring of algebraic integers $\mathcal{O}_{\mathcal{K}}$. It states that

$$\mathcal{O}_{\mathcal{K}}^* \cong U \times \mathbb{Z}^{r_2 + r_1 - 1},\tag{5}$$

where U is a finite group consisting of the *roots of unity* in the field K. In particular we can see that in some sense the signature of the field describes the "size" of the unit group.

GENERAL MATRIX LATTICES

- Let us now assume we have any matrix lattice L ⊂ M_n(C) from a number field.
- It is then a set of invertible (except 0) and commuting matrices.
- We know that there exists a matrix A such that ALA⁻¹ consist of diagonal matrices.
- We can see that irrespective of the used number field and representation we are considering a small subset of lattices.
- In particular we know that always $deg(L) \leq 2n$.

A DIVISION ALGEBRA

- Let us consider field $\mathbb{Q}[i] = \mathbb{Q} + \mathbb{Q}i$. (minimal polynomial $x^2 + 1$)
- Here σ is the complex conjugation.
- Let u be an auxiliary element that satisfy $u^2 = -1$.

We can then define an algebra H

 $\mathbb{Q}(i)+u\mathbb{Q}(i),$

where

 $au = u\sigma(a) = u\overline{a}.$

8.5.2019 LATTICE MEETING LONDON

- This simple condition is enough to calculate all the needed ring operations.
- The resulting \mathbb{Q} -algebra is non-commutative.

Quaternion algebra also has a well known matrix presentation

$${\mathcal H}=\left\{egin{pmatrix} {\mathsf a} & -{b^*}\ {\mathsf b} & {\mathsf a}^* \end{pmatrix}\mid {\mathsf a}, {\mathsf b}\in {\mathbb Q}(i)
ight\}.$$

Now for example

$${{\mathcal R}}=\left\{egin{pmatrix} {\mathsf a} & -b^* \ b & {\mathsf a}^* \end{pmatrix} \mid {\mathsf a}, {\mathsf b}\in {\mathbb Z}(i)
ight\}$$

is a lattice in $M_2(\mathbb{C})$.

• The set R is a ring and also $|\det(X)| \ge 1$, when $X \neq 0$.

GALOIS GROUP

• Before we can generalize the quaternions we have to give some definitions.

Let us again consider a field K with a generating element a and the minimal polynomial

$$f_a(x) = (x - \sigma_1(a))(x - \sigma_2(a)) \cdots (x - \sigma_n(a)).$$

If now for each i we have that $\mathbb{Q}(\sigma_i(a)) = \mathbb{Q}(a)$, then the corresponding mappings

$$\operatorname{Gal}(K/\mathbb{Q}) = \{\sigma_1, \sigma_2, \ldots, \sigma_n\},\$$

form a multiplicative group, with respect to composition.

• If $\operatorname{Gal}(K/\mathbb{Q}) = \{\sigma, \sigma^2, \dots, \sigma^n\}$, we say that the Galois group is cyclic.

NON-COMMUTATIVE ALGEBRA

Definition

Let us assume that K/\mathbb{Q} is a cyclic Galois extension of degree *n* with the Galois group $Gal(K/\mathbb{Q}) = \langle \sigma \rangle$. We can define an associative \mathbb{Q} -algebra

$$\mathcal{A} = (K/\mathbb{Q}, \sigma, \gamma) = K \oplus uK \oplus u^2K \oplus \cdots \oplus u^{n-1}K,$$

where $u \in A$ is an auxiliary generating element subject to the relations $xu = u\sigma(x)$ for all $x \in K$ and $u^n = \gamma \in \mathbb{Q}^*$. We call this type of algebra cyclic algebra

• For example for H we had that $K = \mathbb{Q}(i)$, $u^2 = -1$, and $xu = u\overline{x}$.

- By selecting the element γ correctly we can assure that $\mathcal A$ is a field.
- For each non-zero element $x \in \mathcal{A}$ there exists y such that $xy = 1_{\mathcal{A}}$.
- We now have a more general algebraic structure than a commutative field.
- How can we embed it into suitable euclidean space?
- Remember that \mathcal{A} is a degree n right K-vector space.
- Given any element $x \in A$, multiplication from left is a linear mapping.
- x(a+b) = x(a) + x(b) x(a)k = x(ak).
- We can see each element of A as a matrix in $M_n(K)$!

Suppose that K/\mathbb{Q} is a cyclic extension of algebraic number fields. Let $\mathcal{A} = (K/\mathbb{Q}, \sigma, \gamma)$ be a cyclic division algebra. We can consider \mathcal{A} as a right vector space over K and every element $x = x_0 + ux_1 + \dots + u^{n-1}x_{n-1} \in \mathcal{A}$ has the following representation as a matrix $\psi(x) = A$

$$=\begin{pmatrix} x_{0} & \gamma\sigma(x_{n-1}) & \gamma\sigma^{2}(x_{n-2}) & \cdots & \gamma\sigma^{n-1}(x_{1}) \\ x_{1} & \sigma(x_{0}) & \gamma\sigma^{2}(x_{n-1}) & & \gamma\sigma^{n-1}(x_{2}) \\ x_{2} & \sigma(x_{1}) & \sigma^{2}(x_{0}) & & \gamma\sigma^{n-1}(x_{3}) \\ \vdots & & & \vdots \\ x_{n-1} & \sigma(x_{n-2}) & \sigma^{2}(x_{n-3}) & \cdots & \sigma^{n-1}(x_{0}) \end{pmatrix}$$

Roope Vehkalahti Aalto Universit A Short Introduction to Lattices f

- It is relatively easy to see that for example $\psi(ab) = \psi(a)\psi(b)$ and $\psi(a+b) = \psi(a) + \psi(b)$.
- The set of matrices $\psi(\mathcal{A})$ is an injective *representation* of \mathcal{A} .
- It follows that if \mathcal{A} is a division algebra, then $\psi(\mathcal{A})$ consists of invertible matrices.
- Less obviously if $x \in \mathcal{A}$, then $det(\psi(x)) \in \mathbb{Q}$.

Let us now assume that $u^n = \gamma \in \mathbb{Z}$. Then the ring

$$\mathcal{O}_{\mathcal{K}}[u] = \mathcal{O}_{\mathcal{K}} + u\mathcal{O}_{\mathcal{K}} + \cdots + u^{n-1}\mathcal{O}_{\mathcal{K}}$$

is a promising candidate for a pre-image of a lattice.

- We can directly see that $\psi(\mathcal{O}_{\mathcal{K}}[u]) \subset M_n(\mathcal{O}_{\mathcal{K}})$.
- If $x \in \mathcal{O}_{\mathcal{K}}[u]$, then $\det(\psi(x))) \in \mathbb{Z}$
- Given $x \in \mathcal{O}_{\mathcal{K}}[u]$, $x \neq 0$, then $|\det(\psi(x))| \geq 1!$
- Just like previously we can use this information to prove that $\psi(\mathcal{O}_{\mathcal{K}}[u])$ is a lattice.
- It also has shortest vector of length \sqrt{n} .
- $\psi(\mathcal{O}_{\mathcal{K}}[u])$ is a subset in $M_n(\mathbb{C})$ and has degree n^2 .

- Just like in the case of number fields, the ring $\mathcal{O}_{\mathcal{K}}[u]$ is always contained into a maximal ring Λ .
- However this ring is not unique. In fact typically a division algebra contains number of maximal orders.
- Again the set $\psi(\Lambda)$ has all the properties that $\psi(\mathcal{O}_{\mathcal{K}}[u])$ has.
- For example the shortest vector in $\psi(\mathcal{O}_{\mathcal{K}}[u])$ has length \sqrt{n} .

PROPOSITION

Let us suppose that we have a \mathbb{Z} -order Λ in a \mathbb{Q} -central division algebra \mathcal{A} of index n then

$$h(\psi(\Lambda)) = \frac{\pi}{\operatorname{Vol}(\psi(\Lambda))^{2/n^2}}.$$

Lemma

Suppose that A is a real division algebra and ψ some cyclic representation. Let Λ be a \mathbb{Z} -order inside A. Then

$$\operatorname{Vol}(\psi(\Lambda)) = |\sqrt{d(\Lambda/\mathbb{Z})}|,$$

where $d(\Lambda/\mathbb{Z})$ is *discriminant* of the algebra \mathcal{A} .

MAXIMAL HERMITE INVARIANT OF A DIVISION ALGEBRA LATTICE

By real algebra we referred to an algebra where the field K is a subset in \mathbb{R} .

- In this case $\psi(\Lambda) \subset M_n(\mathbb{R})$.
- This restriction was done just in order to get as clear result as possible.
- We can now ask how large Hermite invariants maximal orders can have.
- Or equivalently how small discriminants division algebras can have.

LARGEST POSSIBLE HERMITE INVARIANT

Theorem (V. 2010)

The absolute values of the discriminants of all the \mathbb{Q} -central real division algebras of index n are lower bounded by

 $|2\cdot 3|^{n(n-1)},$

and this bound can always be achieved.

- This result can be achieved, because we have complete control over discriminants of division algebras.
- This is completely different from the number field case, where discriminant is rather mysterious.

LARGEST POSSIBLE HERMITE INVARIANT

- We now have that $h(\psi(\Lambda)) \sim \frac{n}{6}$ at best.
- Sounds good. However, this lattice lives in space $M_n(\mathbb{R}) \simeq \mathbb{R}^{n^2}$.
- Hence these are not very dense packings.
- However, these lattices are likely close to optimal in the determinant sense.

MINIMUM DETERMINANT OF DIVISION ALGEBRA LATTICE

Remember the minimum determinant of the lattice $L \subseteq M_{n \times n}(\mathbb{C})$

$$\delta(L) := \frac{\inf_{X \in L \setminus \{\mathbf{0}\}} |\det(X)|}{\operatorname{Vol}(L)^{n/k}}$$

For every *n* there exists n^2 -dimensional lattice $L_n \subset M_n(\mathbb{R})$, with the property that

$$\delta(L_n)=6^{\frac{(1-n)}{2}}.$$

- These lattices fill the whole space $M_n(\mathbb{R})$ completely.
- Yet their minimum determinant is 1.
- As far as I know the values of $\delta(L_n)$ are the largest known.

MINIMUM DETERMINANT OF DIVISION ALGEBRA LATTICES

• The following lattice basis is the optimal 4-dimensional lattice in $M_2(\mathbb{R})$.

$$egin{pmatrix} 0&-1\ 1&0 \end{pmatrix}, egin{pmatrix} \sqrt{3}&0\ 0&-\sqrt{3} \end{pmatrix}, egin{pmatrix} 0&-\sqrt{3}\ -\sqrt{3}&0 \end{pmatrix}, \ egin{pmatrix} 1/2(1+\sqrt{3})&1/2(-1-\sqrt{3})\ 1/2(1-\sqrt{3})&1/2(1-\sqrt{3}) \end{pmatrix} \end{pmatrix}$$

Roope Vehkalahti Aalto Universit A Short Introduction to Lattices f

DENSITY OF UNITS IN ORDERS OF DIVISION ALGEBRAS

- How many elements $x \in \psi(\Lambda)$ there are with the property $|\det(x)| = 1$?
- Usually there are infinitely many!
- Let us now denote them with $\psi(\Lambda)^1$.
- As there are infinitely many of them, we can ask how dense set they are.

We are now interested on the asymptotic behaviour of

 $|B(M) \cap \psi(\Lambda)^1|,$

when *M* grows.

Roope Vehkalahti Aalto UniversitA Short Introduction to Lattices f

Let us consider the following division algebras

$$\mathcal{D}_1 = (\mathbb{Q}(i)/\mathbb{Q}, \sigma, -3) ext{ and } \mathcal{D}_2 = (\mathbb{Q}(i)/\mathbb{Q}, \sigma, 3)$$

And their lattices

$$\psi(\Lambda_1) = \left\{ egin{pmatrix} a & -3b^* \ b & a^* \end{pmatrix} \mid a, b \in \mathbb{Z}(i)
ight\}.$$
 $\psi(\Lambda_2) = \left\{ egin{pmatrix} a & 3b^* \ b & a^* \end{pmatrix} \mid a, b \in \mathbb{Z}(i)
ight\}.$

53

and

Roope Vehkalahti Aalto Universit A Short Introduction to Lattices f

AN EXAMPLE

$$\det\left(\begin{pmatrix}a & -3b^*\\b & a^*\end{pmatrix}\right) = |a|^2 + 3|b|^2.$$
$$\det\left(\begin{pmatrix}a & 3b^*\\b & a^*\end{pmatrix}\right) = |a|^2 - 3|b|^2.$$

We now have

 $|B(M) \cap \psi(\Lambda_1)^1| = \text{constant.}$

and

 $|B(M) \cap \psi(\Lambda_2)^1| \sim cM^2,$

for some constant *c*.

Roope Vehkalahti Aalto Universit A Short Introduction to Lattices F

The unit group Λ^* of Λ consists of elements $x \in \Lambda$ such that there exists $y \in \Lambda$, for which $xy = 1_D$. We also have

$$\Lambda^* = \{ x \mid x \in \Lambda, |det(\psi(x))| = 1 \}.$$

We are now interested on the sets

$$\{\psi(\Lambda^*)\cap B(M)\}=\{x|x\in\Lambda^*,||\psi(x)||\leq M\}.$$

• In particular we would like to find such a function f that $|\psi(\Lambda^*) \cap B(M)| \approx f(M)$.

ROOPE VEHKALAHTI AALTO UNIVERSITA SHORT INTRODUCTION TO LATTICES

DENSITY OF UNITS IN DIVISION ALGEBRAS

DEFINITION

Let us suppose that $\mathcal D$ is an index n $\mathbb Q$ -central division algebra. If

 $\mathcal{D}\otimes_{\mathbb{Q}}\mathbb{R}\cong M_n(\mathbb{R}),$

we say that \mathcal{D} is not ramified at the infinite place. If 2|n and

 $\mathcal{D}\otimes_{\mathbb{Q}}\mathbb{R}\cong M_{n/2}(\mathsf{H}),$

we say that \mathcal{D} is ramified at the infinite place.

- The density of units heavily depend on the used algebra.
- This density is roughly defined by the ramification in the infinite place.

DENSITY OF THE UNIT GROUP

Let us suppose that we have an index $n \mathbb{Q}$ -central division algebra $\mathcal{D} = (L/\mathbb{Q}, \sigma, \gamma)$ and an order $\Lambda \subset \mathcal{D}$.

PROPOSITION (V., LU, LUZZI, 2013)

If ${\mathcal D}$ is ramified at the infinite place we have that

 $|\psi(\Lambda^*)\cap B(M)|\approx cM^{n^2-2n},$

where c is a constant.

PROPOSITION (V., LU, LUZZI, 2013)

If $\mathcal D$ is unramified at the infinite place we have that

 $|\psi(\Lambda^*)\cap B(M)|\approx KM^{n^2-n},$

8.5.2019 LATTICE MEETING LONDON

where K is a constant.

Roope Vehkalahti Aalto Universit A Short Introduction to Lattices f

STRUCTURE OF THE UNIT GROUP

In algebraic number fields we had that if

 $K \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{C}^{r_2} \oplus \mathbb{R}^{r_1}.$

Then the unit group did grow like

 $\log(M)^{r_2+r_1-1}.$

The same way the structure of

 $\mathcal{A}\otimes_{\mathbb{Q}}\mathbb{R}$

did define the density of the unit group of the division algebra.

Roope Vehkalahti Aalto Universit A Short Introduction to Lattices f

STRUCTURE OF THE UNIT GROUP

- In general we can find the density of the unit group of a division algebra.
- However, it's algebraic structure is a more or less complete mystery.
- To begin with it's an infinite non-commutative group inside some Lie group.
- This in unlike in the case of number fields, where the unit group had really simple structure.