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A lattice

A lattice L is a discrete additive group in Rn.

This is equivalent with the condition that there exists a set of linearly
independent elements {a1, . . . , ak} that generate L.

If L = a1Z + a2Z + · · ·+ akZ, we say that L has degree k .
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Matrix lattices

Lattices we consider in this presentation are based on additive groups in
Mn×n(C).

Definition

A matrix lattice L ⊆ Mn×n(C) has the form

L = ZB1 ⊕ ZB2 ⊕ · · · ⊕ ZBk ,

where the matrices B1, . . . ,Bk are linearly independent over R, i.e., form a

lattice basis, and k is called the dimension of the lattice.

Let us assume that X ,Y ∈ Mn(C). The natural inner-product is now

〈X ,Y 〉 = <(Tr(XY †).

With respect to this inner-product Mn(C) can be seen as a space R2n2 .

Matrix form is just convenient way of presenting our vectors.
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Matrix lattices

We denote the measure (or hypervolume) of the fundamental
parallelotope of a lattice L ⊂ Mn(C) by Vol(L) and call it the volume

of the fundamental parallelotope of the lattice L.

If x1, . . . , xk is a basis of L, we can form the Gram matrix of the lattice L(
<tr(xix

†
j )
)
1≤i ,j≤k

.

The Gram matrix has a positive determinant equal to Vol(L)2.
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Lattices from number fields

Let us begin with a degree n algebraic integer a.

Let fa(x) = xn + cn−1x
n−1 + · · ·+ c1x + c0 be the minimal

polynomial of a (here ci ∈ Z).

We use notation K = Q(a) = Q⊕Qa⊕ · · · ⊕Qan−1.

The set K is a �eld.

This means that K is additively and multiplicatively closed and for
every element x ∈ K ,x 6= 0, there exists y ∈ K such that xy = 1.
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Lattices from number fields

We also have that

RK = Z[a] = Z⊕ Za⊕ · · · ⊕ Zan−1.

is a ring and a degree n free Z-module.

However, when seen as a subset in C it is a dense set.

So it is an additive group, but it is not discrete in the natural ambient
space.
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Lattices from number fields

We will denote with σi (a) the complex roots of polynomial fa(x).

fa(x) = (x − σ1(a))(x − σ2(x)) · · · (x − σn(a)),

here σ1(a) = a.
These zeros allows us to de�ne n mappings from K to C. Remember that
each x ∈ K can be written as

x = d0 + d1a + · · ·+ dn−1a
n−1,

where di ∈ Q.
Now we can de�ne

σi (x) = d0 + d1σi (a) + · · ·+ dn−1σi (a)n−1.
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Lattices from number fields

So de�ned mappings satisfy the following conditions.

The mappings σi are Q algebra embeddings.

We have σi (x + y) = σi (x) + σi (y).

And σi (xy) = σi (x)σi (y).

If x ∈ K , then
∏n

i=1
σi (x) ∈ Q.

We also have that σi (x) = 0 only if x = 0.

If x ∈ RK then
∏n

i=1
σi (x) ∈ Z.
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Lattices from number fields

Let us suppose that σ1, . . . , σn are the Q-embeddings from K to C.
The Minkowski embedding ψ : K 7→ Mn(C) is then

ψ(x) = diag(σ1(x), . . . , σn(x)) ∈ Mn(C).

This is really an algebraic representation.

For example ψ(xy) = ψ(x)ψ(y) and ψ(x + y) = ψ(x) + ψ(y).

Let us suppose that x ∈ K . As K is a �eld there exists an element
y ∈ K , such that xy = 1. It follows that

ψ(x)ψ(y) = ψ(xy) = ψ(1K ) = I .
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Special properties of number field lattices

All the non-zero matrices in ψ(K ) are invertible!

Further

det(ψ(x)) =
n∏

i=1

σi (x).

If x ∈ K , then det(ψ(x)) ∈ Q.

If x ∈ RK , then det(ψ(x))) ∈ Z.
Given x ∈ RK , x 6= 0, then |det(ψ(x))| ≥ 1!
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Number field lattices

What can be said about the set ψ(RK ) ⊂ Mn(C)?

As ψ is a group homomorphism, it must be an additive group.

Is it a lattice?

Note that for example Z⊕
√
2Z is a free group, but not a lattice.
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Lattices from number fields

Remember our inner product 〈X ,Y 〉 = <(Tr(XY †).

Then we have the natural metric ||X − Y ||F =
√
|〈X − Y ,X − Y 〉|.

Lemma

Let A be an n × n complex matrix. We then have the inequality

| detA| ≤
‖A‖nF
nn/2

.
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Lattices from number fields

Let us suppose we have elements x , y ∈ RK and x 6= y .

We then have that

||ψ(x)− ψ(y)||F = ||ψ(x − y)||F ≥
√
n|det(ψ(X − Y ))|1/n.

and because x − y ∈ RK we have that |det(ψ(x − y))| ≥ 1.

It follows that ||ψ(x)− ψ(y)||F ≥
√
n.

Hence ψ(RK ) is a discrete additive group in Mn(C).
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Hermite invariant of a number field lattice

We already saw that for any element x ∈ ψ(RK ) we have that
||x ||2 ≤ n.

We also know that ||ψ(1K )||2 = n.

A natural question is now what is the Hermite invariant of RK and
how large it can be.

We only need no know what is the volume of the fundamental
parallelotope of the lattice ψ(RK ).

It is actually something that can be directly calculated from the
minimal polynomial fa(x).

Roope Vehkalahti Aalto University, FinlandA Short Introduction to Lattices from Noncommutative Fields
8.5.2019Lattice meeting London 15

/ 53



Lattices from rings of algebraic integers

The lattice ψ(RK ) has many nice properties and we can measure it's
Hermite invariant easily, but we can typically do better.

Given any a ∈ K and corresponding Z[a] = RK , there exists a maximal
ring OK such that RK ⊆ OK .

The ring of algebraic integers OK consist of all the integral elements
in K .

It is obviously unique maximal ring with such properties.
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Hermite invariant of number field lattices

The lattice ψ(OK ) has all the same properties that ψ(RK ) has.

For example the shortest vector in ψ(OK ) has length
√
n.

However, typically RK ⊂ OK and Vol(ψ(OK )) < Vol(ψ(RK )).

In any case h(ψ(OK )) ≥ h(ψ(RK )).
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Hermite invariant of number field lattices

Let us simplify things little bit.

Let us now assume that K = Q(a) is a totally real �eld.

It means that when

fa(x) = (x − σ1(a))(x − σ2(a)) · · · (x − σn(a)),

then all σi (a) ∈ R.

Obviously then ψ(x) ∈ Mn(R) for all x ∈ K .

The resulting lattice ψ(OK ) is totally real.
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Lattices from number fields

Lemma

Let K/Q be a totally real extension of degree n and let ψ be the canonical

embedding. Then

Vol(ψ(OK )) =
√
|dK |, and h(ψ(OK )) =

n

|dK |
1

n

.

Here dK is the discriminant of the �eld K .

It is an important algebraic invariant of the �eld K and has been
under deep study for over 100 years.
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Lattices from number fields

Now the study of Hermite invariants of number �eld lattices is reduced to
study of discriminants.

There exists plenty of good lower bounds. (Minkowski and variations
of Odlyzko bounds etc)

Best existence results are based on class �eld towers.

In the case of totally real �elds Martinet proves the existence of a family of
�elds of degree n, where n = 2k , such that

|dKn |
1

n = G1, (1)

where G1 ≈ 1058. If K is a degree n �eld from this family,

h(ψ(OK )) =
n

G1

. (2)
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Hermite invariants of number fields

The actual asymptotic and non-asymptotic size of discriminants is not
known.

For entertainment one �nds quite good collection of number �elds
from: http://www.lmfdb.org/NumberField/
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Minimum determinant

The Hermite invariant question is a general one that is relevant for all
lattices.

How about questions that are speci�c for number �eld lattices.

Remember that for any element x ∈ OK , |det(ψ(x))| ≤ 1.

Think of your favourite lattice. Does it have this property?

This is really rare condition.
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Minimum determinant

Definition

The minimum determinant of the lattice L ⊆ Mn×n(C) is de�ned as

mindet(L) := inf
X∈L\{0}

|det(X )| .

If mindet(L) > 0 we say that the lattice satis�es the non-vanishing

determinant (NVD) property.

We can now de�ne the normalized minimum determinant δ(L), which is
obtained by �rst scaling the lattice L to have a unit size fundamental
parallelotope and then taking the minimum determinant of the resulting
scaled lattice.

δ(L) =
mindet(L)

(Vol(L))n/k
. (3)
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Minimum determinant

For number �eld lattices we have

δ(ψ(OK )) =
1√
|dK |

.

The normalized minimum determinants of the number �eld lattices are
greatest known.

In fact it seem to be that only number �elds provide lattices with
non-vanishing determinants.
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Density of determinant 1 elements

For typical lattice we can naturally analyse the size of its Hermite
invariant.

Just as well we can ask how many shortest vectors the lattice have.

How many elements x ∈ ψ(OK ) there are with the property
|det(x)| = 1?

Usually there are in�nitely many!

Let us now denote them with ψ(OK )1.

As there are in�nitely many of them, we can ask how dense set they
are.
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Density of determinant 1 elements

This question is again classical problem in algebraic number theory.

It is so central because ψ(OK )1 = ψ(O∗K ), where O∗K is the unit group
of the ring OK .

The unit group consists of all the elements in OK who's inverse
belongs to OK as well.
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Density of determinant 1 elements

We will use the notation

B(M) = {X ∈ Mn(C) : ||X ||F ≤ M}

for the sphere with radius M.
We are now interested on the asymptotic behaviour of

|B(M) ∩ ψ(OK )1|,

when M grows.
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Density of determinant 1 elements

Remember that

fa(x) = (x − σ1(a))(x − σ2(a)) · · · (x − σn(a)).

Let us denote by r1 the number of times σi (a) is real and by 2r2 the
number of times σi (a) is complex.

The pair (r1, r2) is called the signature of the �eld K . The signature is
independent of the chosen generator a.

A geometric interpretation of the Dirichlet's theorem now gives us

|ψ(OK )1 ∩ B(M)| ∼ c log(M)r2+r1−1, (4)

where c is a constant independent of M.
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Density of determinant 1 elements

Dirichlet's unit theorem also almost completely de�nes the group structure
of the units O∗K of the ring of algebraic integers OK . It states that

O∗K ∼= U × Zr2+r1−1, (5)

where U is a �nite group consisting of the roots of unity in the �eld K . In
particular we can see that in some sense the signature of the �eld describes
the �size� of the unit group.
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General matrix lattices

Let us now assume we have any matrix lattice L ⊂ Mn(C) from a
number �eld.

It is then a set of invertible (except 0) and commuting matrices.

We know that there exists a matrix A such that ALA−1 consist of
diagonal matrices.

We can see that irrespective of the used number �eld and
representation we are considering a small subset of lattices.

In particular we know that always deg(L) ≤ 2n.
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A division algebra

Let us consider �eld Q[i ] = Q + Qi . (minimal polynomial x2 + 1)

Here σ is the complex conjugation.

Let u be an auxiliary element that satisfy u2 = −1.

We can then de�ne an algebra H

Q(i) + uQ(i),

where
au = uσ(a) = ua.

This simple condition is enough to calculate all the needed ring
operations.

The resulting Q-algebra is non-commutative.
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Quaternion algebra

Quaternion algebra also has a well known matrix presentation

H =

{(
a −b∗
b a∗

)
| a, b ∈ Q(i)

}
.

Now for example

R =

{(
a −b∗
b a∗

)
| a, b ∈ Z(i)

}
is a lattice in M2(C).

The set R is a ring and also |det(X )| ≥ 1, when X 6= 0.
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Galois group

Before we can generalize the quaternions we have to give some
de�nitions.

Let us again consider a �eld K with a generating element a and the
minimal polynomial

fa(x) = (x − σ1(a))(x − σ2(a)) · · · (x − σn(a)).

If now for each i we have that Q(σi (a)) = Q(a), then the corresponding
mappings

Gal(K/Q) = {σ1, σ2, . . . , σn},

form a multiplicative group, with respect to composition.

If Gal(K/Q) = {σ, σ2, . . . , σn}, we say that the Galois group is cyclic.
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Non-commutative algebra

Definition

Let us assume that K/Q is a cyclic Galois extension of degree n with the
Galois group Gal(K/Q) = 〈σ〉. We can de�ne an associative Q-algebra

A = (K/Q, σ, γ) = K ⊕ uK ⊕ u2K ⊕ · · · ⊕ un−1K ,

where u ∈ A is an auxiliary generating element subject to the relations
xu = uσ(x) for all x ∈ K and un = γ ∈ Q∗. We call this type of algebra
cyclic algebra

For example for H we had that K = Q(i), u2 = −1, and xu = ux .
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Lattices from division algebras

By selecting the element γ correctly we can assure that A is a �eld.

For each non-zero element x ∈ A there exists y such that xy = 1A.

We now have a more general algebraic structure than a commutative
�eld.

How can we embed it into suitable euclidean space?

Remember that A is a degree n right K -vector space.

Given any element x ∈ A, multiplication from left is a linear mapping.

x(a + b) = x(a) + x(b) x(a)k = x(ak).

We can see each element of A as a matrix in Mn(K )!
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Lattices from division algebras

Suppose that K/Q is a cyclic extension of algebraic number �elds. Let
A = (K/Q, σ, γ) be a cyclic division algebra.
We can consider A as a right vector space over K and every element
x = x0 + ux1 + · · ·+ un−1xn−1 ∈ A has the following representation as a
matrix ψ(x) = A

=


x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)

 .
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Lattices from division algebras

It is relatively easy to see that for example ψ(ab) = ψ(a)ψ(b) and
ψ(a + b) = ψ(a) + ψ(b).

The set of matrices ψ(A) is an injective representation of A.
It follows that if A is a division algebra, then ψ(A) consists of
invertible matrices.

Less obviously if x ∈ A, then det(ψ(x)) ∈ Q.

Let us now assume that un = γ ∈ Z. Then the ring

OK [u] = OK + uOK + · · ·+ un−1OK

is a promising candidate for a pre-image of a lattice.
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Lattices from division algebras

We can directly see that ψ(OK [u]) ⊂ Mn(OK ).

If x ∈ OK [u], then det(ψ(x))) ∈ Z
Given x ∈ OK [u], x 6= 0, then |det(ψ(x))| ≥ 1!

Just like previously we can use this information to prove that
ψ(OK [u]) is a lattice.

It also has shortest vector of length
√
n.

ψ(OK [u]) is a subset in Mn(C) and has degree n2.
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Lattices from division algebras

Just like in the case of number �elds, the ring OK [u] is always
contained into a maximal ring Λ.

However this ring is not unique. In fact typically a division algebra
contains number of maximal orders.

Again the set ψ(Λ) has all the properties that ψ(OK [u]) has.

For example the shortest vector in ψ(OK [u]) has length
√
n.
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Lattices from division algebras

Proposition

Let us suppose that we have a Z-order Λ in a Q-central division algebra A
of index n then

h(ψ(Λ)) =
n

Vol(ψ(Λ))2/n2
.

Lemma

Suppose that A is a real division algebra and ψ some cyclic representation.

Let Λ be a Z-order inside A. Then

Vol(ψ(Λ)) = |
√
d(Λ/Z)|,

where d(Λ/Z) is discriminant of the algebra A.
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Maximal Hermite invariant of a division

algebra lattice

By real algebra we referred to an algebra where the �eld K is a subset in R.

In this case ψ(Λ) ⊂ Mn(R).

This restriction was done just in order to get as clear result as possible.

We can now ask how large Hermite invariants maximal orders can
have.

Or equivalently how small discriminants division algebras can have.

Roope Vehkalahti Aalto University, FinlandA Short Introduction to Lattices from Noncommutative Fields
8.5.2019Lattice meeting London 41

/ 53



Largest possible Hermite invariant

Theorem (V. 2010)

The absolute values of the discriminants of all the Q-central real division

algebras of index n are lower bounded by

|2 · 3|n(n−1),

and this bound can always be achieved.

This result can be achieved, because we have complete control over
discriminants of division algebras.

This is completely di�erent from the number �eld case, where
discriminant is rather mysterious.
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Largest possible Hermite invariant

We now have that h(ψ(Λ)) ∼ n
6
at best.

Sounds good. However, this lattice lives in space Mn(R) ' Rn2 .

Hence these are not very dense packings.

However, these lattices are likely close to optimal in the determinant
sense.
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Minimum determinant of division algebra

lattice

Remember the minimum determinant of the lattice L ⊆ Mn×n(C)

δ(L) :=
infX∈L\{0} |det(X )|

Vol(L)n/k
.

For every n there exists n2-dimensional lattice Ln ⊂ Mn(R), with the
property that

δ(Ln) = 6
(1−n)

2 .

These lattices �ll the whole space Mn(R) completely.

Yet their minimum determinant is 1.

As far as I know the values of δ(Ln) are the largest known.
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Minimum determinant of division algebra

lattices

The following lattice basis is the optimal 4-dimensional lattice in
M2(R).

(
0 −1
1 0

)
,

(√
3 0

0 −
√
3

)
,

(
0 −

√
3

−
√
3 0

)
,(

1/2(1 +
√
3) 1/2(−1−

√
3

1/2(1−
√
3) 1/2(1−

√
3)

)

Roope Vehkalahti Aalto University, FinlandA Short Introduction to Lattices from Noncommutative Fields
8.5.2019Lattice meeting London 45

/ 53



Density of units in orders of division

algebras

How many elements x ∈ ψ(Λ) there are with the property
|det(x)| = 1?

Usually there are in�nitely many!

Let us now denote them with ψ(Λ)1.

As there are in�nitely many of them, we can ask how dense set they
are.

We are now interested on the asymptotic behaviour of

|B(M) ∩ ψ(Λ)1|,

when M grows.
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An example

Let us consider the following division algebras

D1 = (Q(i)/Q, σ,−3) and D2 = (Q(i)/Q, σ, 3).

And their lattices

ψ(Λ1) =

{(
a −3b∗
b a∗

)
| a, b ∈ Z(i)

}
.

and

ψ(Λ2) =

{(
a 3b∗

b a∗

)
| a, b ∈ Z(i)

}
.
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An example

det

((
a −3b∗
b a∗

))
= |a|2 + 3|b|2.

det

((
a 3b∗

b a∗

))
= |a|2 − 3|b|2.

We now have
|B(M) ∩ ψ(Λ1)1| = constant.

and
|B(M) ∩ ψ(Λ2)1| ∼ cM2,

for some constant c .
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General density of norm 1 elements

The unit group Λ∗ of Λ consists of elements x ∈ Λ such that there exists
y ∈ Λ, for which xy = 1D.
We also have

Λ∗ = {x |x ∈ Λ, |det(ψ(x))| = 1}.

We are now interested on the sets

{ψ(Λ∗) ∩ B(M)} = {x |x ∈ Λ∗, ||ψ(x)|| ≤ M}.

In particular we would like to �nd such a function f that
|ψ(Λ∗) ∩ B(M)| ≈ f (M).
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Density of units in division algebras

Definition

Let us suppose that D is an index n Q-central division algebra. If

D ⊗Q R ∼= Mn(R),

we say that D is not rami�ed at the in�nite place. If 2|n and

D ⊗Q R ∼= Mn/2(H),

we say that D is rami�ed at the in�nite place.

The density of units heavily depend on the used algebra.

This density is roughly de�ned by the rami�cation in the in�nite place.
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Density of the unit group

Let us suppose that we have an index n Q-central division algebra
D = (L/Q, σ, γ) and an order Λ ⊂ D.

Proposition (V., Lu, Luzzi, 2013)

If D is rami�ed at the in�nite place we have that

|ψ(Λ∗) ∩ B(M)| ≈ cMn2−2n,

where c is a constant.

Proposition (V., Lu, Luzzi, 2013)

If D is unrami�ed at the in�nite place we have that

|ψ(Λ∗) ∩ B(M)| ≈ KMn2−n,

where K is a constant.
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Structure of the unit group

In algebraic number �elds we had that if

K ⊗Q R ' Cr2 ⊕ Rr1 .

Then the unit group did grow like

log(M)r2+r1−1.

The same way the structure of

A⊗Q R

did de�ne the density of the unit group of the division algebra.
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Structure of the unit group

In general we can �nd the density of the unit group of a division
algebra.

However, it's algebraic structure is a more or less complete mystery.

To begin with it's an in�nite non-commutative group inside some Lie
group.

This in unlike in the case of number �elds, where the unit group had
really simple structure.
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