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Motivation

algebraic number theory can be used to design lattices with extra
multiplicative structure

from number fields through the canonical embedding

from division algebras through the left regular representation

Question: can you exploit this extra structure to improve lattice
reduction?

in coding theory: for decoding

in lattice-based cryptography: for attacks
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Outline

1 Coding for wireless communications
Single antenna systems
MIMO systems

2 Decoding

3 Algebraic reduction
Single antenna systems
MIMO systems
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Coding for wireless channels

algebraic number theory is an effective tool to design codes that
are full-rate, full-diversity and information-lossless

in order to increase data rates, both the number of antennas and
the size of the signal set can be increased

this entails a high decoding complexity which is a challenge for
practical implementation
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Rayleigh fading channels

fading channel: the signal is scattered by many obstacles and
propagates through multiple paths

when the number of paths is large, fading and noise can be modelled as
Gaussian random variables h ∼ NC(0, 1), w ∼ NC(0, σ2):

y = h x + w
received signal channel codeword noise

open loop: channel is known at the receiver, but not at the transmitter
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Digital modulation

32−QAM
16−QAM

8−QAM4−QAM

quadrature-amplitude modulation: a binary information vector is used
to modulate an analog waveform

the set of waveforms s ∈ C is a finite subset (constellation) in a lattice

example: with 16-QAM modulation, each symbol carries 4 data bits
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2 Decoding
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Single antenna systems: code design criteria
Received signal over n time slots:

y1
y2
...
yn

 =


h1

h2

. . .
hn



x1

x2

...
xn

 +


w1

w2

...
wn


y = H x + w

Diversity order and product distance

To minimize the error probability, one should maximize the diversity order L,
i.e. the minimum number of distinct components between any two
constellation points, and the product distance dp(x,x′) =

∏
i=1,...,n
xi 6=x′i

|xi − x′i|

•

•

•

•
L = 1

before fading

•
•

•
•

L = 2

•
•

•
•

after fading
••

• •
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Lattice codes from number fields

K field extension of degree n of Q(i), σ1, . . . , σn embeddings K → C
that fix Q(i)

OK ring of integers of K, {θ1, . . . , θn} basis of OK over Z[i].

(relative) canonical embedding φ : OK → Cn

x 7→ x = (σ1(x), σ2(x), . . . , σn(x))t

x = s1θ1 + . . .+ snθn ∈ OK , s = (s1, . . . , sn) ∈ Z[i]n

⇒ x = ψ(x) = s1ψ(θ1) + . . .+ snψ(θn) = Φs lattice point

Λ = ψ(OK) ideal lattice

Full diversity property

∀x ∈ Λ \ {0},
n∏
i=1

|xi|2 =

n∏
i=1

|σi(x)|2 = NK/Q(x) ≥ 1

constructions of Z[i]n from ideal lattices [Bayer-Fluckiger et al. 2006]
⇒ Φ unitary
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Multiple antenna systems: space-time coding

modulation
space-time

coding decoding demodulation
s ŝbits bits

channel+noise

H , W
X Y

Yn×t = Hn×m Xm×t + Wn×t
received signal channel codeword noise

m transmit antennas, n receive antennas, t frame length

introduce a dependency between the spatial (antenna) and temporal
domain: codewords are represented by matrices or space-time blocks

H , W random with i.i.d. complex Gaussian entries

the matrix element xij ∈ C represents the signal sent by antenna i at
time j
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MIMO techniques in communication standards

HSPA+ (3G UMTS standard): 2× 2 MIMO for mobile phones,
since 2010

LTE (4G): 2× 2 and 4× 4 MIMO (2600 MHz and 800 MHz
frequency bands), since 2014

WiFi: routers and laptops have 2 or 3 antennas

5G: hundreds of antennas at the base station (massive MIMO)
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Rate-reliability trade-off

modulation coding decoding demodulation
s ŝbits bits

channel + noise

X Y

multiplexing gain:
- send independent data on each antenna
- improve the rate

diversity gain:
- send multiple copies of the same data through independent paths
- improve the reliability

can you do both things at the same time?
⇒ diversity - multiplexing gain trade-off (DMT) [Zheng and Tse 2003]
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s ŝbits bits

channel + noise

X Y

multiplexing gain:
- send independent data on each antenna
- improve the rate

diversity gain:
- send multiple copies of the same data through independent paths
- improve the reliability

can you do both things at the same time?
⇒ diversity - multiplexing gain trade-off (DMT) [Zheng and Tse 2003]

Laura Luzzi Algebraic reduction for lattice decoding Lattice Coding and Crypto Meeting 13



Rate-reliability trade-off

modulation coding decoding demodulation
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Design criteria for space-time codes

Union bound estimate of the error probability [Tarokh et al 1998]

For a linear code, the difference of two codewords is still a codeword:

Pe ≤
∑

X∈C\{0}

1

(det(I + SNRXX†))n

⇒ At high signal-to noise ratio (SNR), Pe ≤
∑

X∈C\{0}

1

SNRnm(det(XX†))n

rank criterion: each nonzero codeword should be full-rank

determinant criterion: maximize inf
X∈C\{0}

det(XX†)

⇒ the multiplicative structure of the code plays a role

codes with non-vanishing determinant for any signal set achieve the
DMT [Elia et al. 2006]
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Space-time codes from cyclic division algebras

F number field of degree k

K/F cyclic Galois extension of degree n, Gal(K/F ) =< σ >

Cyclic algebra

A = (K/F, σ, γ) = K ⊕ eK ⊕ · · · ⊕ en−1K

where e ∈ A satisfies the following properties:

xe = eσ(x) ∀x ∈ K,

en = γ ∈ F ∗

A is a division algebra if every nonzero element is invertible
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Space-time codes from cyclic division algebras

Left regular representation ψ : A →Mn(K) ⊂Mn(C)

a = x0 + ex1 + . . .+ en−1xn−1 ∈ A

ψ(a) =


x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

. . .
...

xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)



Obtain a matrix lattice Λ ⊂Mn(C) from a discrete subset of A:

a subring O ⊂ A containing the identity is an order if it is a
OF -module and generates A as a linear space over Q

Λ = ψ(O) is a matrix lattice in Mn(C)
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Non-vanishing determinant property

the determinant of the regular representation of an element is its
reduced norm:

det(ψ(a)) = NA/F (a) 6= 0 if a 6= 0

problem: the minimum determinant of the code C might vanish
when |C| → ∞

Construction of NVD codes [Oggier et al. 2006], [Elia et al. 2006]

if a ∈ Λ, NA/F (a) ∈ OF

F = Q or Q(
√
−d) ⇒ the ring of integers OF is discrete

C ⊂ ψ(O) ⇒ inf
X∈C\{0}

|detX| ≥ 1
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Examples

Alamouti code [Alamouti 1998]

2 transmit and 1 receive antenna, used in WiFi and 4G standards

A is the algebra of Hamilton quaternions

X =
1√
2

(
s1 −s̄2

s2 s̄1

)
, s1, s2 ∈ Z[i]

Golden Code [Belfiore et al 2005]

2× 2 MIMO, optional profile in WiMAX standard

A = (Q(i, θ)/Q(i), σ, i), θ golden number, α = 1 + iσ(θ)

X =
1√
5

(
α(s1 + s2θ) α(s3 + s4θ)

σ(α)i(s3 + s4σ(θ)) σ(α)(s1 + s2σ(θ))

)
, s1, s2, s3, s4 ∈ Z[i]
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Lattice point representation
Example: the Golden Code

X =

(
x1 x3
x2 x4

)
=

1
√

5

(
α(s1 + s2θ) α(s3 + s4θ)
ᾱi(s3 + s4θ̄) ᾱ(s1 + s2θ̄)

)

x = v(X) =


x1
x2
x3
x4

 =
1
√

5


α αθ 0 0
0 0 ᾱi ᾱθ̄i
0 0 α αθ
ᾱ ᾱθ̄ 0 0




s1
s2
s3
s4

 = Φs

Vectorized system

y = HlΦs + w

Hl linear map corresponding to multiplication by H

Φ (unitary) generator matrix

s information vector

Maximum likelihood (ML) decoding

Solve the closest vector problem (CVP) in the lattice generated by Hl:

x̂ = argmin
x′∈v(C)

∥∥y −Hlx′∥∥2
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How hard are lattice problems in wireless
communications?

for general lattices, SVP and CVP are NP-hard [Ajtai 1998, Goldreich
1999]

in lattice-based cryptography, average-case hardness is needed rather
than worst-case hardness

Ajtai discovered a connection between worst-case and average-case
complexity of lattice problems

Different notions of random lattices

in mathematics: use the invariant measure on the space of lattices
SLn(R)/ SLn(Z) derived from the Haar measure on SLn(R)

in cryptography: generator matrix is uniform mod q

in communications: generator matrix has Gaussian entries
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Decoding MIMO lattices

ML decoders

Sphere Decoder, Schnorr-Euchner algorithm...

optimal performance but exponential complexity

Suboptimal decoders

zero forcing (ZF), successive interference cancellation (SIC)...

polynomial complexity, but poor performance

can be improved by preprocessing techniques
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Sphere-decoding algorithm (Finkhe-Pohst)

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

×

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

×

enumerate all the lattice points inside a sphere centered in the
received signal

when a lattice point is found, the radius of the sphere can be
updated

apply a change of basis which maps the lattice into ZN : the
sphere becomes an ellipsoid

Laura Luzzi Algebraic reduction for lattice decoding Lattice Coding and Crypto Meeting 23



Complexity of sphere decoding
J. Jalden, B. Ottersten, “On the Complexity of Sphere Decoding in Digital Communications”, IEEE Transactions
on Signal Processing vol 53 n.4, 2005

[Jaldén and Ottersten 2005]: the average complexity of the sphere
decoding algorithm at fixed SNR is exponential and scales like LγN ,
where γ ∈ (0, 1] depends on the SNR

various techniques to reduce the complexity of sphere decoding:
pruning of the decision tree, pre-processing, design of special
fast-decodable codes...

is it possible to achieve good performance with polynomial complexity?
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Channel preprocessing

Example: ZF decoding

y = Hx + w

x̂ZF =
⌊
H−1y

⌉
=
⌊
x +H−1w

⌉
if H is orthogonal, ZF decoding is optimal

if H is ill-conditioned, the noise H−1w is amplified

Solution: channel preprocessing by lattice reduction improves
the performance of suboptimal decoders

Laura Luzzi Algebraic reduction for lattice decoding Lattice Coding and Crypto Meeting 25



Channel preprocessing

Example: ZF decoding

y = Hx + w

x̂ZF =
⌊
H−1y

⌉
=
⌊
x +H−1w

⌉
if H is orthogonal, ZF decoding is optimal

if H is ill-conditioned, the noise H−1w is amplified

Solution: channel preprocessing by lattice reduction improves
the performance of suboptimal decoders

Laura Luzzi Algebraic reduction for lattice decoding Lattice Coding and Crypto Meeting 25



Preprocessing using LLL reduction

find a better lattice basis

Hred = HT,

T unimodular

LLL-ZF decoder
= LLL + Babai rounding

compute the pseudo-
inverse H†red

x̂LLL−ZF = T
(⌊
H†redy

⌉)

LLL-SIC decoder
= LLL + Babai nearest plane

QR decomposition of Hred

ỹ = QHy = Rx +QHw

recursively compute x̃N =
⌊

ỹN
rNN

⌉
,

x̃i =

⌊
ỹi−

∑N
j=i+1 rij x̃j

rii

⌉
, i = N−1, . . . , 1

x̂LLL− SIC = T x̃
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LLL-ZF decoder
= LLL + Babai rounding

compute the pseudo-
inverse H†red

x̂LLL−ZF = T
(⌊
H†redy

⌉)

LLL-SIC decoder
= LLL + Babai nearest plane

QR decomposition of Hred

ỹ = QHy = Rx +QHw

recursively compute x̃N =
⌊

ỹN
rNN

⌉
,

x̃i =
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ỹi−

∑N
j=i+1 rij x̃j

rii
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Preprocessing using LLL reduction

Complexity

average number of iterations in the LLL algorithm for Rayleigh fading
matrices ∼ O

(
N2 logN

)
[Jalden et al. 2008]

the worst-case number of iterations is unbounded

each iteration requires O(N2) operations, which can be reduced to
O(N) for LLL-SIC [Ling, Howgrave-Graham 2007]

the average complexity of LLL-SIC is bounded by O(N3 logN)

improved decoding techniques based on LLL:

decoding by embedding [Luzzi, Rekaya, Belfiore 2010], [Luzzi, Stehlé,
Ling 2013]

decoding by sampling [Liu, Ling, Stehlé 2011], [Wang, Liu, Ling 2013]
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Algebraic reduction

up to now, algebraic tools have been used for coding but not for
decoding

algebraic reduction is a right preprocessing method that exploits
the multiplicative structure of the code

main idea: absorb part of the channel into the code

approximate the channel matrix with a unit of the code
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Outline

1 Coding for wireless communications
Single antenna systems
MIMO systems

2 Decoding

3 Algebraic reduction
Single antenna systems
MIMO systems
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Algebraic reduction for fast fading channels
G. Rekaya, J.-C. Belfiore, E. Viterbo, “A very efficient lattice reduction tool on fast fading channels”, ISITA 2004

Single antenna case:
y = Hx + w,

x = ψ(x) ∈ Λ = ψ(OK) ideal lattice

x = s1θ1 + . . .+ snθn ∈ OK

Normalization of the received signal:

y′ =
y

n
√

det(H)
= H1x + w′, det(H1) = 1

Principle

Approximate H1 = diag(h′1, . . . , h
′
n) with Ul = diag(σ1(u), σ2(u), . . . , σn(u)),

where u is a unit of OK
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The group of units O∗K
Dirichlet’s unit theorem

K algebraic number field with r1 real Q-embeddings and 2r2 complex
Q-embeddings, r = r1 + r2 − 1.
∃u1, . . . , ur fundamental units such that every u ∈ O∗K can be written as

u = ζue11 · · ·u
er
r ,

where ζ ∈ R, the cyclic group of roots of unity in OK .

The logarithmic lattice

Focus on the totally complex case: r1 = 0, r2 = n. Consider f : O∗K → Rn

u 7→ f(u) = (log |σ1(u)| , . . . , log |σn(u)|)

Then f(O∗K) is an (n− 1)-dimensional lattice in Rn:∏n

i=1
|σi(x)|2 = NK/Q(x) = 1 ⇒

∑n

i=1
log |σi(x)| = 0

the volume of the logarithmic lattice depends on the regulator of the
number field
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Algebraic reduction for fast fading channels

Approximate H1 = diag(h′1, . . . , h
′
n) with Ul = diag(σ1(u), σ2(u), . . . , σn(u)),

where u is a unit of OK :

H1 = EUl, E = diag(e1, . . . , en) approximation error

Units and unimodular transformations

u unit of OK ⇔ UlΦ = ΦTu with Tu unimodular (with entries in Z[i]).

Proof: ux ∈ OK ⇒ ux =
∑
i s
′
iθi

Ulψ(x) = ψ(ux) = Φs′ = UlΦs

⇒ s′ = Φ−1UlΦ︸ ︷︷ ︸
Tu

s, Tu unimodular

Received signal:

y′ = EUlΦs + w′ = EΦTus + w′ = EΦs′ + w′, s′ ∈ Z[i]n
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Algebraic reduction for fast fading channels

apply a suboptimal decoder (i.e. ZF):

ŝ′ =
⌊
Φ−1E−1y′

⌉
=

s′ + Φ−1︸︷︷︸
unitary

E−1w′



the i-th component of the equivalent noise is (E−1w′)i = σi(u)
h′i

w′i

to minimize noise variance,
∣∣∣σi(u)h′i

∣∣∣ should be small ∀i = 1, . . . , n

⇒ |log |σi(u)| − log |h′i|| should be small

How to find u?

find the closest point to (log |h′1| , . . . , log |h′n|) in the logarithmic lattice.

advantage: the logarithmic lattice is fixed once and for all and doesn’t
depend on the channel
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Algebraic reduction for fast fading channels

algebraic reduction + ZF achieves the optimal diversity order

it outperforms LLL + ZF in high dimension

Recent results

used in [Campello, Ling, Belfiore 2017] to show that mod-p lattices achieve
constant gap to compound capacity for n-antenna systems with reduced
complexity

the performance depends on the covering radius rcov of the logarithmic
lattice

no known general bounds for rcov

bounds for rcov in cyclotomic fields of prime power index [Cramer,
Ducas, Peikert, Regev 2016]
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Outline

1 Coding for wireless communications
Single antenna systems
MIMO systems

2 Decoding

3 Algebraic reduction
Single antenna systems
MIMO systems
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Algebraic reduction for MIMO systems
L. Luzzi, G. Rekaya - Ben Othman, J.-C. Belfiore, “Algebraic reduction for the Golden Code”, Adv. Math.
Commun. 2012

Multiple antenna case:
Y = HX +W

A = (K/Q(i), σ, γ) division algebra, [K : Q(i)] = n

X ∈ ψ(Oα), O maximal order of A

Normalization of the received signal: Y ′ = Y√
det(H)

Y ′ = H1X +W ′, det(H1) = 1

Idea: approximate H1 with a unit U ∈ O1
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Algebraic reduction for MIMO systems

H1 = EU, E approximation error

in vectorized form:
y′ = ElUlΦs + w′

Al linear map corresponding to left multiplication by A

Φ generator matrix of the code lattice

s ∈ Z[i]N vector of QAM information signals, N = n2

U unit ⇔ UlΦ = ΦT with T unimodular

y′ = ElΦT s + w′ = ElΦs′ + w′ s′ ∈ Z[i]N
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Algebraic reduction for MIMO systems

y′ = ElΦs′ + w′ s′ ∈ Z[i]N

Apply ZF detection:

ŝ′ =
⌊
Φ−1E−1y′

⌉
=
⌊
s′ + Φ−1E−1

l w′
⌉

the variance of the i-th noise component is bounded by

σ2
i ≤

Nσ2

|det(H)|
2
n

∥∥Φ−1
∥∥2
F

∥∥E−1
∥∥2 ∀i = 1, . . . , N

How to choose U?

⇒ Choose U that minimizes
∥∥E−1

∥∥
F

=
∥∥UH−1

1

∥∥
F
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Quaternion case

O1 is a discrete subgroup Γ of SL2(C)

H1 ∈ SL2(C) −→ find U ∈ Γ s.t. ‖E‖F =
∥∥H1U

−1
∥∥
F

is small

Action of SL2(C) on hyperbolic 3-space

H3 = {(z, r) | z ∈ C, r ∈ R+}

with the hyperbolic distance ρ such that cosh ρ(P, P ′) = 1 + d(P,P ′)
2rr′

A =

(
a b
c d

)
J = (0, 0, 1) 7→ A(J) =

(
Re(bd̄+ ac̄)

|c|2 + |d|2
,

Im(bd̄+ ac̄)

|c|2 + |d|2
,

1

|c|2 + |d|2

)

Relation to Frobenius norm: ‖A‖2F = 2 cosh ρ(J,A(J))

∥∥H1U
−1
∥∥
F

is small ⇔ U−1(J) is close to H−1
1 (J)
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|c|2 + |d|2
,

1

|c|2 + |d|2

)

Relation to Frobenius norm: ‖A‖2F = 2 cosh ρ(J,A(J))

∥∥H1U
−1
∥∥
F

is small ⇔ U−1(J) is close to H−1
1 (J)
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Fundamental domain and generators of the group

Poincaré’s polyhedron theorem

the fundamental domain P for the action of Γ on H3 is a compact
hyperbolic polyhedron

the copies v(P), v ∈ Γ are isometric and form a tiling of H3

there is a correspondence between a set of generators of the group and
the set of side-pairings which map a face of P into another face

v(J)

v(P)

J

P

Tamagawa volume formula

Vol(P) =
ζF (2)

4π2
|DF |

3
2

∏
p|δO

(Np − 1)
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Discrete subgroups and fundamental domains

Example: action of Z2 on R2

the area enclosed by
bisectors is a fundamental
domain for the action

the images of the
fundamental domain form a
tiling of R2

Action of Γ on H3

the bisectors are Euclidean
spheres

the fundamental domain is a
hyperbolic polyhedron

the images of the
fundamental domain form a
tiling of H3
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Intersecting bisectors: the Golden Code
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Intersecting bisectors: the Golden Code

Projection on the plane {r = 0}
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The fundamental polyhedron

Projection on the plane {r = 0}
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Finding the generators

The generators of the group
correspond to the
side-pairings of the
fundamental polyhedron

Golden Code: 8 generators for the unit group

U1 =

(
iθ 0
0 iθ̄

)
U5 =

(
1 + i 1 + iθ̄

i(1 + iθ) 1 + i

)
U2 =

(
i 1 + i

i− 1 i

)
U6 =

(
1 + i 1 + iθ

i(1 + iθ̄) 1 + i

)
U3 =

(
θ 1 + i

i− 1 θ̄

)
U7 =

(
1− i θ̄ + i
i(θ + i) 1− i

)
U4 =

(
θ −1− i

−i+ 1 θ̄

)
U8 =

(
1− i θ + i
i(θ̄ + i) 1− i

)

actually this is not a minimal set: 6 units are enough
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The approximation algorithm

the polyhedra adjacent to the
fundamental polyhedron P
are of the form U(P), with U
a generator

Unit search algorithm

1) find the generator U such
that U(J) is closest to
H−1

1 (J)

2) every U is an isometry
⇒ apply U−1

Repeat steps 1-2 until J is the
closest point to H−1

1 (J)

this algorithm is suboptimal -
does not solve the word
problem for groups!

J

J

U−1(J)

U−1H−1
1 (J)

U−1

U(J)

H−1
1 (J)
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Performance of algebraic reduction

3 6 9 12 15 18 21
10

−4

10
−3

10
−2

10
−1

10
0

SNR

F
E

R

Golden Code, 16−QAM

 

 

ML
AR+ZF
LLL+ZF
AR+ZF−DFE
LLL+ZF−DFE

Laura Luzzi Algebraic reduction for lattice decoding Lattice Coding and Crypto Meeting 48



Complexity of algebraic reduction
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0
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4 Average complexity in flops (64−QAM) 

 

 

AR
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the average number of iterations in the AR algorithm is only 1.923

with high probability, H−1
1 (J) is already contained in P or one of the

neighboring polyhedra

advantage: if fading is slow, AR requires only a slight adjustment of the
previous approximation
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Generalization to other codes (quaternion algebras)

general algorithm to find generators of the unit group [Swan 1971,
Corrales et al. 2004, Page 2015]

Design codes that are optimal for algebraic reduction

the quality of the approximation depends on the diameter of the
fundamental polyhedron (not directly related to volume!)

the speed of the approximation depends on the number of generators of
the unit group

the unit group can be very complex in general

for the “Golden +” code algebra [Vehkalahti et al. 2009] it seems to have
hundreds of generators

quaternion algebras over Q (ζ3) with 3 generators [Alves-Belfiore 2012]
and over Q(

√
−7) with small Tamagawa volume [Alves-Belfiore 2015]
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Higher-dimensional division algebras

algebraic reduction still applies for higher-dimensional algebras and
achieves the receive diversity

in general, O1 is a cocompact discrete subgroup of SLn(C)

however, finding the generators of the unit group is a difficult open
problem in computational algebra

the choice of a group action and a relevant metric is not straightforward

some recent results in [Braun et al. 2015]

Related work

the growth rate of units of bounded norm characterizes DMT and error
performance of division algebra codes [Vehkalahti, Lu, Luzzi 2013], [Luzzi,
Vehkalahti 2018]
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Thank you for your attention!!
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