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I let π be a target probability distribution on Θ, typically arising as a posterior
distribution in Bayesian inference,

I in Bayesian Statistics we typically consider a modelM(θ), parametrised by
θ ∈ Θ

I there is a prior distribution p(θ) on Θ. It can be chosen to:
I 1. convey prior information or belief about values of θ

2. be uninformative
3. facilitate computations and consequently enable inference

I there is data y that has likellihood l(θ) = l(θ|y) under modelM(θ)

I the posterior distribution π(θ) arises from the Bayes formula as

π(θ) = π(θ|y) :=
p(θ)l(θ|y)∫

Θ
p(θ)l(θ|y)dθ

∝ p(θ)l(θ)
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Example: a diffusion model
I Consider a diffusion modelM(θ) where θ = (µ, σ):

dXt = µdt + σdBt

observed at discrete time points (t0, t1, . . . , tN) as (xt0 , xt1 , . . . , xtN )
I The likelihood function is

l(θ|xt0 , xt1 , . . . , xtN ) =

N∏
i=1

l(θ|xti , xti−1) =

N∏
i=1

φN(µ(ti−ti−1),σ2(ti−ti−1))(xti − xti−1).

I This posterior π(θ) summarises uncertainty about the parameter θ ∈ Θ and is
used for all inferential questions like credible sets, decision making, prediction,
model choice, etc.

I In the diffusion example predicting the value of the diffusion at time t > tN
would amount to repeating the following steps:

1. sample from the posterior θ = (µ, σ) ∼ π(θ)
2. sample Xt ∼ N(xtN + µ(t − tN), σ2(t − tN))
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the MAP estimator

I One of the classical estimation tasks is to compute the Maximum a Posteriori
Estimator (MAP), say θMAP.

I

θMAP := argmaxθπ(θ) = argmaxθ
{

p(θ)l(θ|y1, . . . , yn)
}

I Computing θMAP may be nontrivial, especially if π(θ) is multimodal.
I There are specialised algorithms for doing this.
I Some non-bayesian statistical inference approaches can be rewritten as

bayesian MAP estimators (for example the LASSO).
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the Bayesian estimator

I Bayesian estimator is an estimator that minimizes the posterior expected
value of a loss function.

I The loss function
L(·, ·) : Θ×Θ→ R

I After seeing data (y1, . . . , yn) we choose an estimator θ̂(y1, . . . , yn)

I Its expected loss is

EL(θ, θ̂(y1, . . . , yn)) =

∫
Yn×Θ

L(θ, θ̂(y1, . . . , yn))m(y1, . . . , yn|θ)p(θ)

=

∫
Yn×Θ

L(θ, θ̂(y1, . . . , yn))π(θ)p(dy)

I θ̂(y1, . . . , yn) is a Bayesian estimator if it minimizes the above expected loss.
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the Bayesian estimator and computing integrals
I The most common choice is the quadratic loss function

L(θ1, θ2) = (θ1 − θ2)2

I in which case
θ̂(y1, . . . , yn) = Eπθ

so it is the posterior mean.
I So computing the Bayesian estimator is computing the integral wrt the

posterior ∫
Θ

θπ(θ)

I Similarly answering other inferential questions like credible sets, posterior
variance etc involve computing integrals of the form∫

Θ

f (θ)π(θ).
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The MCMC estimator

I let π be a target probability distribution on X , typically arising as a posterior
distribution in Bayesian inference,

I the goal is to evaluate

I :=

∫
X

f (x)π(dx).

I direct sampling from π is not possible or inefficient
for example π is known up to a normalising constant

I MCMC approach is to simulate (Xn)n≥0, an ergodic Markov chain with
transition kernel P and limiting distribution π, and take ergodic averages
as an estimate of I.

I the usual estimate

Î :=
1
n

t+n∑
k=t

f (Xk)
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∫
X

f (x)π(dx).

I direct sampling from π is not possible or inefficient
for example π is known up to a normalising constant

I MCMC approach is to simulate (Xn)n≥0, an ergodic Markov chain with
transition kernel P and limiting distribution π, and take ergodic averages
as an estimate of I.

I the usual estimate

Î :=
1
n

t+n∑
k=t

f (Xk)
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Asymptotic validity

I

Î :=
1
n

t+n∑
k=t

f (Xk) I :=

∫
X

f (x)π(dx).

I SLLN for Markov chains holds under very mild conditions
I CLT for Markov chains holds under some additional assumptions:

I a mixing condition on P
I an integrability condition for f

and is verifiable in many situations of interest
I CLT

n1/2(Î − I)→ N
(
0, σas(f ,P)

)
I Usually σas(f ,P) >> Varπ(f )
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Î :=
1
n

t+n∑
k=t

f (Xk) I :=

∫
X

f (x)π(dx).

I SLLN for Markov chains holds under very mild conditions
I CLT for Markov chains holds under some additional assumptions:

I a mixing condition on P
I an integrability condition for f

and is verifiable in many situations of interest
I CLT
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Reversibility and stationarity

I How to design P so that Xn converges in distribution to π ?
I Definition. P is reversible with respect to π if

π(x)P(x, y) = π(y)P(y, x)

as measures on X × X
I Lemma. If P is reversible with respect to π then πP = π , so it is also

stationary.
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The Metropolis algorithm

I Idea. Take any transition kernel Q with transition densities q(x, y) and make
it reversible with respect to π

I Algorithm. Given Xn

sample Yn+1 ∼ Q(Xn, ·)
I with probability α(Xn,Yn+1) set Xn+1 = Yn+1 , otherwise set Xn+1 = Xn

I where
α(x, y) = min{1, π(y)q(y, x)

π(x)q(x, y)
}.

I Under mild assumptions on Q the algorithm is ergodic.
I However it’s performance depends heavily on Q
I is is difficult to design the proposal Q so that P has good convergence

properties, especially if X is high dimensional
I For the Random Walk Metropolis Yn+1 ∼ Q(Xn, ·) = N(Xn,Σ) often Σ = σI
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The Gibbs Sampler - exploits conditional distributions

I For Θ = Θ1 ×Θ2 × · · · ×Θd

I denote the marginals of π as
π(θk|θ−k)

where
θ−k = (θ1, . . . , θk−1, θk+1, . . . , θd)

I The Gibbs sampler algorithms iterates between updates of

θi|θ−i ∼ π(θi|θ−i)

I There are two basic coordinate selection strategies:
I (1) in each step pick a coordinate at random (Random Scan Gibbs Sampler)
I (2) Update systematically one after another (Systematic Scan Gibbs Sampler)
I If sampling directly from ∼ π(θi|θ−i) is not possible or not practical, one can

design Pi that admits ∼ π(θi|θ−i) as its invariant distribution. This is called
Metropolis within Gibbs
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The MALA Algorithm
I Is based on the π−limiting Langevin diffusion

dXt =
1
2
∇ log π(Xt)dt + dBt

I Euler discretisation of this diffusion suggests the Metropolis-Hastings proposal

q(·|X(n−1)) := X(n−1) +
h
2
∇ log π(X(n−1)) + h1/2N(0, Id×d)

with the usual accept-reject formula
I MALA works well for “nice” examples, but is unstable for light-tailed π.
I Manifold MALA is based on

dXt =
(σ(Xt)

2
∇ log π(Xt) +

γ(Xt)

2

)
dt +

√
σ(Xt)dBt

γi(θt) =
∑

j

∂σij(θt)

∂θj
,

I Choosing σ is not obvious, often based on the Hessian of π
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Adaptive MCMC in 3 minutes (what it is?)

I Most MCMC algorithms need tuning to be efficient and reliable in large scale
applications

I Tuning requires computing time and human time (performing and assessing
trial runs) and typically expert knowledge

I Hand tuning may not be practical: too many variables, when to stop tuning,
tuning criterion not clear, etc.

I Adaptive MCMC is about tuning MCMC without human intervention
I It uses the trajectory so far to tune the sampling kernel on the fly

(so it is not a Markov chain anymore)
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Adaptive MCMC in 3 minutes (3 examples)

I Random Walk Metropolis with proposal increments

Yn+1 ∼ qσ(Xn, ·) = Xn + σN(0, Id).

Plots for different σ - Goldilock’s principle

in such a simple case.) Assume that the proposal distribution is given by
Q = N(0, �2). Our question of interest is, how should we choose �?

As a first try, let’s choose a small value of �, say � = 0.1, and run the
Metropolis algorithm with that �. The corresponding trace plot, graphing
the values of the Markov chain (horizontal axis) at each iteration n (vertical
axis), is:

Looking at this trace plot, we can see that the chain moves very slowly. It
starts at the state 0, and takes many hundreds of iterations before it moves
appreciably away from zero. In particular, it does not do a very good job of
exploring the target density (shown in red).

As a second try, let’s choose a large value of �, say � = 25. The trace
plot in this case is:

4

In this case, when the chain finally accepts a move, it jumps quite far which
is good. However, since it proposes such large moves, it hardly ever accepts
them. (Indeed, it accepted just 5.4% of the proposed moves, compared to
97.7% when � = 0.1.) So, this chain doesn’t perform very well either.

As a third try, let’s choose a compromise value of �, say � = 2.38. The
trace plot then looks like:

5

In this case, when the chain finally accepts a move, it jumps quite far which
is good. However, since it proposes such large moves, it hardly ever accepts
them. (Indeed, it accepted just 5.4% of the proposed moves, compared to
97.7% when � = 0.1.) So, this chain doesn’t perform very well either.

As a third try, let’s choose a compromise value of �, say � = 2.38. The
trace plot then looks like:

5
I
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Adaptive MCMC in 3 minutes (3 examples)
I Random Scan Gibbs Sampler for 50d Truncated Multivariate Normals

Are uniform 1/d selection probabilities optimal?
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Adaptive MCMC in 3 minutes (3 examples)

I Variable selection (p = 22576) - Metropolis type algorithms
Plots of posterior inclusion probabilities Run 1 vs Run 2 (checking agreement)
Standard Add-Swap-Delete proposal vs. an optimized non-local proposal

I
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Adaptive MCMC in 5 minutes (ingredients that we
need)

I For a given MCMC class we need a parameter to optimize
I An optimization rule that is mathematically sound
I An optimization rule that is computationally cheap
I Need underpinning theory to verify it is ergodic

(it is not Markovian - how do we know bizarre things don’t happen??)
I It needs to work in practice
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the usual MCMC setting
I let π be a target probability distribution on X , typically arising as a posterior

distribution in Bayesian inference,
I the goal is to evaluate

I :=

∫
X

f (x)π(dx).

I direct sampling from π is not possible or inefficient
for example π is known up to a normalising constant

I MCMC approach is to simulate (Xn)n≥0, an ergodic Markov chain with
transition kernel P and limiting distribution π, and take ergodic averages
as an estimate of I.

I the usual estimate

Î :=
1
n

t+n∑
k=t

f (Xk)

I SLLN for Markov chains holds under very mild conditions
I CLT for Markov chains holds under some additional assumptions and is

verifiable in many situations of interestKrys Latuszynski(University of Warwick, UK) MCMC
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Î :=
1
n

t+n∑
k=t

f (Xk)

I SLLN for Markov chains holds under very mild conditions
I CLT for Markov chains holds under some additional assumptions and is

verifiable in many situations of interestKrys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Reversibility and stationarity

I How to design P so that Xn converges in distribution to π ?
I Definition. P is reversible with respect to π if

π(x)P(x, y) = π(y)P(y, x)

as measures on X × X
I Lemma. If P is reversible with respect to π then πP = π , so it is also

stationary.
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The Metropolis algorithm

I Idea. Take any transition kernel Q with transition densities q(x, y) and make
it reversible with respect to π

I Algorithm. Given Xn

sample Yn+1 ∼ Q(Xn, ·)
I with probability α(Xn,Yn+1) set Xn+1 = Yn+1 , otherwise set Xn+1 = Xn

I where
α(x, y) = min{1, π(y)q(y, x)

π(x)q(x, y)
}.

I Under mild assumptions on Q the algorithm is ergodic.
I However it’s performance depends heavily on Q
I is is difficult to design the proposal Q so that P has good convergence

properties, especially if X is high dimensional
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the scaling problem

I take Random Walk Metropolis with proposal increments
I

Yn+1 ∼ qσ(Xn, ·) = Xn + σN(0, Id).

I what happens if σ is small?
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small sigma...

in such a simple case.) Assume that the proposal distribution is given by
Q = N(0, �2). Our question of interest is, how should we choose �?

As a first try, let’s choose a small value of �, say � = 0.1, and run the
Metropolis algorithm with that �. The corresponding trace plot, graphing
the values of the Markov chain (horizontal axis) at each iteration n (vertical
axis), is:

Looking at this trace plot, we can see that the chain moves very slowly. It
starts at the state 0, and takes many hundreds of iterations before it moves
appreciably away from zero. In particular, it does not do a very good job of
exploring the target density (shown in red).

As a second try, let’s choose a large value of �, say � = 25. The trace
plot in this case is:

4
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Yn+1 ∼ qσ(Xn, ·) = Xn + σN(0, Id).

I what happens if σ is small?
I what happens if σ is large?
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large sigma...

In this case, when the chain finally accepts a move, it jumps quite far which
is good. However, since it proposes such large moves, it hardly ever accepts
them. (Indeed, it accepted just 5.4% of the proposed moves, compared to
97.7% when � = 0.1.) So, this chain doesn’t perform very well either.

As a third try, let’s choose a compromise value of �, say � = 2.38. The
trace plot then looks like:

5
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diffusion limit [RGG97]

I take Random Walk Metropolis with proposal increments
I

Yn+1 ∼ qσ(Xn, ·) = Xn + σN(0, Id).

I σ should be neither too small, nor too large (known as Goldilocks principle)
I but how to choose it?
I if the dimension of X goes to ∞ , e.g. X = Rd, and d →∞,
I if the proposal is set as Q = N(x, l2

d Id) for fixed l > 0,
I if we consider

Zt = d−1/2X(1)
bdtc

I then Zt converges to the Langevin diffusion

dZt = h(l)1/2dBt +
1
2

h(l)∇ log π(Zt)dt
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optimal acceptance rate [RGG97]

I Zt converges to the Langevin diffusion

dZt = h(l)1/2dBt +
1
2

h(l)∇ log π(Zt)dt

I where h(l) = 2l2Φ(−Cl/2) is the speed of the diffusion and A(l) = 2Φ(Cl/2)
is the asymptotic acceptance rate.

I maximising the speed h(l) yields the optimal acceptance rate

A(l) = 0.234

which is independent of the target distribution π

I it is a remarkable result since it gives a simple criterion (and the same for all
target distributions π ) to assess how well the Random Walk Metropolis is
performing.
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the scaling problem cd

I take Random Walk Metropolis with proposal increments
I

Yn+1 ∼ qσ(Xn, ·) = Xn + σN(0, Id).

I so the theory says the optimal average acceptance rate

ᾱ :=

∫ ∫
α(x, y)qσ(x, dy)π(dx)

should be approximately α∗ = 0.234
I however it is not possible to compute σ∗ for which ᾱ = α∗.

I It is very tempting to adjust σ on the fly while simulation progress
I some reasons:

I when to stop estimating ᾱ? (to increase or decrease σ)
I we may be in a Metropolis within Gibbs setting of dimension 10000
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I It is very tempting to adjust σ on the fly while simulation progress
I some reasons:
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the Adaptive Scaling Algorithm

1. draw proposal
Yn+1 ∼ qσn(Xn, ·) = Xn + σnN(0, Id),

2. Set Xn+1 according to the usual Metropolis acceptance rate α(Xn,Yn+1).

3. Update scale by

log σn+1 = log σn + γn(α(Xn,Yn+1)− α∗)

where γn → 0.

I Recall we follow a very precise mathematical advice from diffusion limit
analysis [RGG97]

I The algorithm dates back to [GRS98]
(a slightly different version making use of regenerations)

I Exactly this version analyzed in [Vih09]
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Success story of Adaptive Scaling

I The adaptation rule is mathematically appealing (diffusion limit)
I The adaptation rule is computationally simple (acceptance rate)
I It works in applications (seems to improve convergence significantly)
I Improves convergence even in settings that are neither high dimensional, nor

satisfy other assumptions needed for the diffusion limit
I

I Adaptive scaling beyond Metropolis-Hastings?
I YES. Similar optimal scaling results are available for MALA, HMC, etc.
I Every optimal scaling result can be used to design an adaptive version of the

algorithm!
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Adaptive Metropolis algorithm
I Optimal scaling is not the whole story for optimizing the RWM!
I Take target π to be a 20-dimensional N(0,Σ) with highly irregular Σ.
I Both of these Metropolis-Hastings are optimally scaled to have acc rate ≈ 0.23

I

I However, the proposal increments are of the form

qθ = σN(0, Id) and qθ = σN(0,Σ)

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adaptive Metropolis algorithm
I Optimal scaling is not the whole story for optimizing the RWM!
I Take target π to be a 20-dimensional N(0,Σ) with highly irregular Σ.
I Both of these Metropolis-Hastings are optimally scaled to have acc rate ≈ 0.23

I

I However, the proposal increments are of the form

qθ = σN(0, Id) and qθ = σN(0,Σ)

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adaptive Metropolis algorithm
I Optimal scaling is not the whole story for optimizing the RWM!
I Take target π to be a 20-dimensional N(0,Σ) with highly irregular Σ.
I Both of these Metropolis-Hastings are optimally scaled to have acc rate ≈ 0.23

I

I However, the proposal increments are of the form

qθ = σN(0, Id) and qθ = σN(0,Σ)

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adaptive Metropolis algorithm
I Optimal scaling is not the whole story for optimizing the RWM!
I Take target π to be a 20-dimensional N(0,Σ) with highly irregular Σ.
I Both of these Metropolis-Hastings are optimally scaled to have acc rate ≈ 0.23

I

I However, the proposal increments are of the form

qθ = σN(0, Id) and qθ = σN(0,Σ)

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adaptive Metropolis algorithm
I Optimal scaling is not the whole story for optimizing the RWM!
I Take target π to be a 20-dimensional N(0,Σ) with highly irregular Σ.
I Both of these Metropolis-Hastings are optimally scaled to have acc rate ≈ 0.23

I

I However, the proposal increments are of the form

qθ = σN(0, Id) and qθ = σN(0,Σ)

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adaptive Metropolis algorithm
I Indeed, it turns out that the optimal covariance matrix choice is

qθ = σN(0,Σ)

I And if π = N(0,Σ), is a d−dimensional Gaussian, then [RR01]

qθ = N(0,
(2.38)2

d
Σ)

I Moreover, if wrong covariance matrix is used, i.e.

qθ = σN(0, Σ̃)

then the slowdown of the algorithm is given by the following inhomogeneity
factor [RR01]

b = d

∑d
j=1 λj

(
∑d

j=1 λ
1/2
j )2

where λj are eigenvalues of ΣΣ̃−1.
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Adaptive Metropolis algorithm

I This suggests we should estimate Σ on the fly and gives rise to the
Adaptive Metropolis algorithm [HST01]

I Σn - the covariance matrix used at time n is updated by an iterative formula.
I The AM version of [HST01] (the original one) uses

N(0,Σn + εId)

I Modification due to [RR09] is to use

Qn = (1− β)N(0, (2.38)2Σn/d) + βN(0, εId/d).

I the above modification appears more tractable: containment has been verified
for both, exponentially and super-exponentially decaying tails (Bai et al 2009).

I the original version has been analyzed in [SV10] and [FMP10] using different
techniques.
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parametric family of transition kernels Pθ
I typically we can design a family of ergodic transition kernels Pθ, θ ∈ Θ.
I Ex 1a. Θ = R+

Pθ - Random Walk Metropolis with proposal increments

qθ = θN(0, Id)

I Ex 1b. Θ = R+ × {d dimensional covariance matrices}
Pθ - Random Walk Metropolis with proposal increments

qθ = σN(0,Σ)

I Ex 2. Θ = ∆d−1 := {(α1, . . . , αd) ∈ Rd : αi ≥ 0,
∑d

i=1 αi = 1} the
(d − 1)−dimensional probability simplex,
Pθ - Random Scan Gibbs Sampler with coordinate selection probabilities

θ = (α1, . . . , αn)

I In each case values of θ will affect efficiency of Pθ
Krys Latuszynski(University of Warwick, UK) MCMC
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The typical Adaptive MCMC setting

I In a typical Adaptive MCMC setting the parameter space Θ is large
I there is an optimal θ∗ ∈ Θ s.t. Pθ∗ converges quickly.
I there are arbitrary bad values in Θ, say if θ ∈ Θ̄−Θ then Pθ is not

ergodic.
I if θ ∈ Θ∗ := a region close to θ∗, then Pθ shall inherit good convergence

properties of Pθ∗ .
I When using adaptive MCMC we hope θn will eventually find the region

Θ∗ and stay there essentially forever. And that the adaptive algorithm A will
inherit the good convergence properties of Θ∗ in the limit.

I

I We are looking for a Theorem:
You can actually run your Adaptive MCMC algorithm A, and it will do what it is
supposed to do! (under verifiable conditions)
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Adaptive Gibbs Sampler - a generic algorithm

I AdapRSG
1. Set pn := Rn(pn−1,Xn−1, . . . ,X0) ∈ Y ⊂ [0, 1]d

2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities pn

3. Draw Y ∼ π(·|Xn−1,−i)
4. Set Xn := (Xn−1,1, . . . ,Xn−1,i−1, Y,Xn−1,i+1, . . . ,Xn−1,d)

I Given target distribution π, what are the optimal selection probabilities p?
I Similarly clean and operational criteria as in the Metropolis-Hastings case, are

not available
I Little guidance in literature
I We need something that

I has universal appeal,
I is easy enough to compute and code,
I works in practice
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Adaptive Random Scan Metropolis within Gibbs

AdapRSMwG

1. Set pn := Rn(pn−1,Xn−1, . . . ,X0) ∈ Y
2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities pn

3. Draw Y ∼ QXn−1,−i(Xn−1,i, ·)
4. With probability

min

(
1,

π(Y|Xn−1,−i) qXn−1,−i(Y,Xn−1,i)

π(Xn−1|Xn−1,−i) qXn−1,−i(Xn−1,i,Y)

)
, (1)

accept the proposal and set

Xn = (Xn−1,1, . . . ,Xn−1,i−1,Y,Xn−1,i+1, . . . ,Xn−1,d) ;

otherwise, reject the proposal and set Xn = Xn−1.
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Adaptive RS adaptive Metropolis within Gibbs
AdapRSadapMwG

1. Set pn := Rn(pn−1,Xn−1, . . . ,X0, γn−1, . . . , γ0) ∈ Y
2. Set γn := R′n(αn−1,Xn−1, . . . ,X0, γn−1, . . . , γ0) ∈ Γ1 × . . .× Γn

3. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities α, i.e.
with Pr(i = j) = pj

4. Draw Y ∼ QXn−1,−i,γn−1(Xn−1,i, ·)
5. With probability (2),

min

(
1,

π(Y|Xn−1,−i) qXn−1,−i,γn−1(Y,Xn−1,i)

π(Xn−1|Xn−1,−i) qXn−1,−i,γn−1(Xn−1,i,Y)

)
,

accept the proposal and set

Xn = (Xn−1,1, . . . ,Xn−1,i−1,Y,Xn−1,i+1, . . . ,Xn−1,d) ;

otherwise, reject the proposal and set Xn = Xn−1.
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Adapting the Gibbs Sampler: IF... IF...[CLR18a]
I If π was Gaussian...
I If we knew the covariance matrix Σ of π
I Then for RSGS(p) and the target

π = N(µ,Σ),

I we could compute the Spectral Gap (L2-convergence rate) of RSGS(p)
(building on Amit 1991, 1996 and Roberts and Sahu 1997)

I

G(p) =
1

λmax

(
M(Σ, p)

) ,
where M(·, ·) is a known d × d matrix-valued function.

I So one could take

popt = argmaxpG(p) = argmin
p∈∆d−1

λmax

(
M(Σ, p)

)
,

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adapting the Gibbs Sampler: IF... IF...[CLR18a]
I If π was Gaussian...
I If we knew the covariance matrix Σ of π
I Then for RSGS(p) and the target

π = N(µ,Σ),

I we could compute the Spectral Gap (L2-convergence rate) of RSGS(p)
(building on Amit 1991, 1996 and Roberts and Sahu 1997)

I

G(p) =
1

λmax

(
M(Σ, p)

) ,
where M(·, ·) is a known d × d matrix-valued function.

I So one could take

popt = argmaxpG(p) = argmin
p∈∆d−1

λmax

(
M(Σ, p)

)
,

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adapting the Gibbs Sampler: IF... IF...[CLR18a]
I If π was Gaussian...
I If we knew the covariance matrix Σ of π
I Then for RSGS(p) and the target

π = N(µ,Σ),

I we could compute the Spectral Gap (L2-convergence rate) of RSGS(p)
(building on Amit 1991, 1996 and Roberts and Sahu 1997)

I

G(p) =
1

λmax

(
M(Σ, p)

) ,
where M(·, ·) is a known d × d matrix-valued function.

I So one could take

popt = argmaxpG(p) = argmin
p∈∆d−1

λmax

(
M(Σ, p)

)
,

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adapting the Gibbs Sampler: IF... IF...[CLR18a]
I If π was Gaussian...
I If we knew the covariance matrix Σ of π
I Then for RSGS(p) and the target

π = N(µ,Σ),

I we could compute the Spectral Gap (L2-convergence rate) of RSGS(p)
(building on Amit 1991, 1996 and Roberts and Sahu 1997)

I

G(p) =
1

λmax

(
M(Σ, p)

) ,
where M(·, ·) is a known d × d matrix-valued function.

I So one could take

popt = argmaxpG(p) = argmin
p∈∆d−1

λmax

(
M(Σ, p)

)
,

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adapting the Gibbs Sampler: IF... IF...[CLR18a]
I If π was Gaussian...
I If we knew the covariance matrix Σ of π
I Then for RSGS(p) and the target

π = N(µ,Σ),

I we could compute the Spectral Gap (L2-convergence rate) of RSGS(p)
(building on Amit 1991, 1996 and Roberts and Sahu 1997)

I

G(p) =
1

λmax

(
M(Σ, p)

) ,
where M(·, ·) is a known d × d matrix-valued function.

I So one could take

popt = argmaxpG(p) = argmin
p∈∆d−1

λmax

(
M(Σ, p)

)
,

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adapting the Gibbs Sampler: IF... IF...[CLR18a]
I If π was Gaussian...
I If we knew the covariance matrix Σ of π
I Then for RSGS(p) and the target

π = N(µ,Σ),

I we could compute the Spectral Gap (L2-convergence rate) of RSGS(p)
(building on Amit 1991, 1996 and Roberts and Sahu 1997)

I

G(p) =
1

λmax

(
M(Σ, p)

) ,
where M(·, ·) is a known d × d matrix-valued function.

I So one could take

popt = argmaxpG(p) = argmin
p∈∆d−1

λmax

(
M(Σ, p)

)
,

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Adapting the Gibbs Sampler: Complications...

I

popt = argmaxpG(p) = argmin
p∈∆d−1

λmax

(
M(Σ, p)

)
,

I Issue 1: π is not Gaussian
I Issue 2: Σ and hence M(Σ, p) are not known.
I Issue 3: λmax is expensive to compute.
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Some properties of G(p)

I

G(p) =
1

λmax

(
M(Σ, p)

) .
I G is concave and a.s. differentiable w.r.t. Lebesgue measure on ∆d−1.
I Gradient of G at p:

∇G(p) = F(Σ, p, x),

where F is a known d − 1 dimensional vector-valued function and x is in the
eigenspace of the maximal eigenvalue, i.e.

M(Σ, p)x =
1

G(p)
x, ‖x‖ = 1
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Guidance from the Gaussian case
I We can use the guidance from the Gaussian case to optimise general

posteriors
I Many posterior distributions in Bayesian inference will be close to Gaussians

by the Bernstein-von Mieses Theorem
I We can estimate Σn on the fly.
I Solving

argmaxp

(
G(p)

)
is expensive and we can not afford a full solution after every update of Σn.

I In [CLR18a] a version of sub-gradient stochastic optimisation algorithm for
convex functions is developed that progresses gradually stochastic
optimisation as Σn stabilises.

I The sub-gradient computation relies on a single step of the power method
with a noisy matrix estimate.

I The adaptation step is realised after a fixed number of iterations have been
obtained that contribute significantly to the covariance matrix estimate.
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Toy Example 1 - a difficult pair

I

Corr =



1 −ρ1 0 0 · · · 0
−ρ1 1 0 0 · · · 0

0 0 1 −ρ2 · · · 0
0 0 −ρ2 1 · · · 0
...

...
...

. . .
...

...
0 · · · · · · 0 1 −ρk

0 · · · · · · 0 −ρk 1


I Speedup of up to k = d/2 times.
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Toy Example 2 - a star-like correlation structure

I

Σ =



1 c c c · · · c
c 1 0 0 · · · 0
c 0 1 0 · · · 0
c 0 0 1 · · · 0
...

...
...

. . .
...

...
c · · · · · · 0 1 0
c · · · · · · 0 0 1


.

I Speedup of up to d/2 times.
I Sampling from Graphical Models
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Simulations

I Consider coordinate-wise RSGS in d−dimensions. Denote

hi =
xi√

Varπ(xi)

to be normalized linear functions depending on one coordinate only.
I We will focus on the worst performing coordinate in the sense of CLT

asymptotic variance
max

i
σ2

as(hi)
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Truncated Multivariate Normals, d=50
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Truncated Multivariate Normals, d=50

1/G(p) max
i

σ2
as(hi)

vanilla 6384 248
adaptive 1850 72
vanilla

adaptive 3.45 3.44
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Poisson Hierarchical Model, d=50, Gibbs Sampler
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Poisson Hierarchical Model, d=50, Gibbs Sampler

1/G(p) max
i

σ2
as(hi)

vanilla 13435 482
adaptive 1355 52
vanilla

adaptive 9.9 9.27
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Poisson Hierarchical, d=50, Metropolis within Gibbs
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Poisson Hierarchical, d=50, Metropolis within Gibbs

1/G(p) max
i
σ2

as(hi)

RWMwG (vanilla) 13244 1993
ARWMwG (partially

adaptive)
13244 971

ARWMwAG (adaptive) 1376 138
partially adaptive

adaptive 9.63 7
vanilla

adaptive 9.63 14.45
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Computational cost for the Poisson Hierarchical Model

max
i

σ2
as(hi) Cost per 5000

iterations
Cost of

adaptation
ARSGS 52 0.37 0.0025

ARWMwAG 138 0.028 0.0025
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Summary of Adaptive Gibbs

I The Adaptive Gibbs Sampler uses a principled optimisation strategy based on
the Gaussian model and the Spectral Gap to guide adaptation

I ARSGS and ARWMwAG are useful even if the target is not normal or even
not continuous

I [CLR18a] provides full implementations of the algorithms that can be readily
used in applications

I Adaptation can be done in parallel with the sampling
(and it is only a fraction of the sampling cost anyway)

I Adaptive Gibbs Samplers are provably ergodic under weak regularity
conditions (some theory in a moment!)
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Variable selection setting

I

y = α1 + Xγβγ + ε, ε ∼ N(0, σ2In)

where y is an (n× 1)-dimensional vector of responses, X = (x1, . . . , xp) is an
(n× p)-dimensional data matrix and γ = (γ1, . . . , γp) ∈ Γ = {0, 1}p is a vector
of indicator variables in which γi denotes whether the i-th variable is included
in the model (when γi = 1).

I Bayesian variable selection involves placing a prior on the parameters of the
regression model above, (α, βγ , σ

2), as well as on the model γ.
I Sampling from the posterior model space is often difficult (exponential growth)
I Has been addressed via adaptive MCMC in a number of papers

[NK05, JS13, CGL11].
I Briefly talk about [GLS17]

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

Adaptive MCMC in 3 minutes
Optimal Scaling of the Random Walk Metropolis algorithm
Optimizing within a parametric family
Adapting the Gibbs sampler
Adaptive MCMC for variable selection problems

Variable selection setting

I

y = α1 + Xγβγ + ε, ε ∼ N(0, σ2In)

where y is an (n× 1)-dimensional vector of responses, X = (x1, . . . , xp) is an
(n× p)-dimensional data matrix and γ = (γ1, . . . , γp) ∈ Γ = {0, 1}p is a vector
of indicator variables in which γi denotes whether the i-th variable is included
in the model (when γi = 1).

I Bayesian variable selection involves placing a prior on the parameters of the
regression model above, (α, βγ , σ

2), as well as on the model γ.
I Sampling from the posterior model space is often difficult (exponential growth)
I Has been addressed via adaptive MCMC in a number of papers

[NK05, JS13, CGL11].
I Briefly talk about [GLS17]
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The individual adaptation algorithm [GLS17]

I The probability of proposing to move from model γ to γ′ is given in a product
form

qη(γ, γ′) =

p∏
j=1

qη,j(γj, γ
′
j )

where η = (A,D) = (A1, . . . ,Ap,D1, . . . ,Dp),
qη,j(γj = 0, γ′j = 1) = Aj and
qη,j(γj = 1, γ′j = 0) = Dj.

I The parameters are optimised to approximate iid sampling of variables for
which data is not informative.

I How much improvement can we get by addressing the simple part of the
posteriors?
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Synthetic data example

I Consider the synthetic data example analysed in [YWJ16]
I The speedup over the vanilla sampler of [YWJ16] is as follows

I
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Some Counterexamples
Formal setting
Coupling as a convenient tool

a fundamental problem

I adaptive MCMC algorithms learn about π on the fly and use this information
during the simulation

I the transition kernel Pn used for obtaining Xn|Xn−1 is allowed to depend on
{X0, . . . ,Xn−1}

I consequently the algorithms are not Markovian!
I standard MCMC theory of validating the simulation does not apply
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ergodicity: a toy counterexample

I Let X = {0, 1} and π be uniform.
I

P1 =

[
1/2 1/2
1/2 1/2

]
and P2 = (1− ε)

[
1 0
0 1

]
+ εP1 for some ε > 0.

I π is the stationary distribution for both, P1 and P2.
I Consider Xn , evolving for n ≥ 1 according to the following adaptive kernel:

Qn =

{
P1 if Xn−1 = 0
P2 if Xn−1 = 1

I Note that after two consecutive 1 the adaptive process Xn is trapped in 1 and
can escape only with probability ε.

I Let q̄1 := limn→∞ P(Xn = 1) and q̄0 := limn→∞ P(Xn = 0).
I Now it is clear, that for small ε we will have q̄1 � q̄0 and the procedure fails to

give the expected asymptotic distribution.
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Adaptive Gibbs sampler - a generic algorithm
AdapRSG

1. Set αn := Rn(αn−1,Xn−1, . . . ,X0) ∈ Y ⊂ [0, 1]d

2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities αn

3. Draw Y ∼ π(·|Xn−1,−i)

4. Set Xn := (Xn−1,1, . . . ,Xn−1,i−1,Y,Xn−1,i+1, . . . ,Xn−1,d)

I It is easy to get tricked into thinking that if step 1 is not doing anything ”crazy”
then the algorithm must be ergodic.

I Theorem 2.1 of [LC06] states that ergodicity of adaptive Gibbs samplers
follows from the following two conditions:

(i) αn → α a.s. for some fixed α ∈ (0, 1)d; and
(ii) The random scan Gibbs sampler with fixed selection probabilities α induces an

ergodic Markov chain with stationary distribution π.
I The above theorem is simple, neat and wrong.
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a cautionary example that disproves [LC06]

I Let X = {(i, j) ∈ N× N : i = j or i = j + 1} ,
I with target distribution given by π(i, j) ∝ j−2

I consider a class of adaptive random scan Gibbs samplers with update rule
given by:

Rn

(
αn−1,Xn−1 = (i, j)

)
=


{

1
2 + 4

an
, 1

2 −
4
an

}
if i = j,

{
1
2 −

4
an
, 1

2 + 4
an

}
if i = j + 1,

for some choice of the sequence (an)∞n=0 satisfying 8 < an ↗∞
I if an →∞ slowly enough, then Xn is transient with positive probability, i.e.

P(X1,n →∞) > 0.
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Ergodicity of an adaptive algorithm - framework
I X valued process of interest Xn
I Θ valued random parameter θn

representing the choice of kernel when updating Xn to Xn+1
I Define the filtration generated by {(Xn, θn)}

Gn = σ(X0, . . . ,Xn, θ0, . . . , θn),

I Thus
P(Xn+1 ∈ B | Xn = x, θn = θ,Gn−1) = Pθ(x,B)

I The distribution of θn+1 given Gn depends on the algorithm.
I Define

A(n)(x, θ,B) = P(Xn ∈ B ‖ X0 = x, θ0 = θ)

T(x, θ, n) = ‖A(n)(x, θ, ·)− π(·)‖TV

I We say the adaptive algorithm is ergodic if

lim
n→∞

T(x, θ, n) = 0 for all x ∈ X and θ ∈ Θ.
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Tools for establishing ergodicity
I (Diminishing Adaptation) Let Dn = supx∈X ‖PΓn+1(x, ·)− PΓn(x, ·)‖ and

assume limn→∞ Dn = 0 in probability
I (Simultaneous uniform ergodicity) For all ε > 0, there exists N = N(ε) s.t.
‖PN

γ (x, ·)− π(·)‖ ≤ ε for all x ∈ X and γ ∈ Y
I (Containment condition) Let Mε(x, γ) = inf{n ≥ 1 : ‖Pn

γ(x, ·)− π(·)‖ ≤ ε}
and assume {Mε(Xn, γn)}∞n=0 is bounded in probability,
i.e. given X0 = x∗ and Γ0 = γ∗, for all δ > 0,
there exists N s.t. P[Mε(Xn,Γn) ≤ N|X0 = x∗,Γ0 = γ∗] ≥ 1− δ for all n ∈ N.

I Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (simultaneous uniform ergodicity)⇒ ergodicity.

I Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (containment)⇒ ergodicity.
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Containment: a closer look

I (Containment condition) Mε(x, γ) = inf{n ≥ 1 : ‖Pn
γ(x, ·)− π(·)‖ ≤ ε}

given X0 = x∗ and Γ0 = γ∗, for all δ > 0,
there exists N s.t. P[Mε(Xn,Γn) ≤ N|X0 = x∗,Γ0 = γ∗] ≥ 1− δ for all n ∈ N.

I Containment can be verified using simultaneous geometrical ergodicity or
simultaneous polynomial ergodicity. (details in [BRR10])

I The family {Pγ : γ ∈ Y} is Simultaneously Geometrically Ergodic if
I there exist a uniform νm-small set C i.e.

for each γ Pm
γ(x, ·) ≥ δνγ(·) for all x ∈ C.

I PγV ≤ λV + bIC for all γ.
I S.G.E. implies containment
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Adaptive random scan Metropolis within Gibbs

AdapRSMwG

1. Set αn := Rn(αn−1,Xn−1, . . . ,X0) ∈ Y
2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities αn

3. Draw Y ∼ QXn−1,−i(Xn−1,i, ·)
4. With probability

min

(
1,

π(Y|Xn−1,−i) qXn−1,−i(Y,Xn−1,i)

π(Xn−1|Xn−1,−i) qXn−1,−i(Xn−1,i,Y)

)
, (2)

accept the proposal and set

Xn = (Xn−1,1, . . . ,Xn−1,i−1,Y,Xn−1,i+1, . . . ,Xn−1,d) ;

otherwise, reject the proposal and set Xn = Xn−1.
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Adaptive random scan adaptive Metropolis within
Gibbs
AdapRSadapMwG
1. Set αn := Rn(αn−1,Xn−1, . . . ,X0, γn−1, . . . , γ0) ∈ Y
2. Set γn := R′n(αn−1,Xn−1, . . . ,X0, γn−1, . . . , γ0) ∈ Γ1 × . . .× Γn

3. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities α, i.e.
with Pr(i = j) = αj

4. Draw Y ∼ QXn−1,−i,γn−1(Xn−1,i, ·)
5. With probability (2),

min

(
1,

π(Y|Xn−1,−i) qXn−1,−i,γn−1(Y,Xn−1,i)

π(Xn−1|Xn−1,−i) qXn−1,−i,γn−1(Xn−1,i,Y)

)
,

accept the proposal and set

Xn = (Xn−1,1, . . . ,Xn−1,i−1,Y,Xn−1,i+1, . . . ,Xn−1,d) ;

otherwise, reject the proposal and set Xn = Xn−1.
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Ergodicity Adaptive Random Scan Gibbs [ŁRR13]

I Assuming that RSG(β) is uniformly ergodic and |αn − αn−1| → 0 , we can
prove ergodicity of

I AdapRSG
I AdapRSMwG
I AdapRSadapMwG

by establishing diminishing adaptation and simultaneous uniform ergodicity
I Assuming that |αn − αn−1| → 0 and regularity conditions for the target and

proposal distributions (in the spirit of Roberts Rosenthal 98, Fort et al 03)
ergodicity of

I AdapRSMwG
I AdapRSadapMwG

can be verified by establishing diminishing adaptation and containment (by
simultaneous geometrical ergodicity, using results of Bai et al 2008)
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Adaptive Metropolis - versions and stability
I Recall the Adaptive Metropolis Algorithm with proposals

Yn+1 ∼ qσn(Xn, ·) = Xn + N(0,Σn),

I The theory suggests increment

N(0, (2.38)2Σn/d)

I The AM version of [HST01] (the original one) uses

N(0,Σn + εId)

I Modification due to [RR09] is to use

Qn = (1− β)N(0, (2.38)2Σn/d) + βN(0, εId/d).

I the above modification appears more tractable: containment has been verified
for both, exponentially and super-exponentially decaying tails (Bai et al 2009).

I the original version has been analyzed in [SV10] and [FMP10] using different
techniques.
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a new class: AdapFail Algorithms

I an adaptive algorithm A ∈ AdapFail, if with positive probability, it is
asymptotically less efficient then ANY MCMC algorithm with fixed θ.

I more formally, AdapFail can be defined e.g. as follows: A ∈ AdapFail, if

∀ε∗>0, ∃0<ε<ε∗ , s.t. lim
K→∞

inf
θ∈Θ

lim
n→∞

P
(

Mε(Xn, θn) > KMε(X̃n, θ)
)
> 0 ,

where {X̃n} is a Markov chain independent of {Xn}, which follows the fixed
kernel Pθ.

I Lemma [ŁR14]:If containment doesn’t hold for A then A ∈ AdapFail.
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The fly in the ointment

I Theoretical properties of adaptive MCMC have been studied using a range of
techniques, such as: coupling, martingale approximations, stability of
stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola,
Saksman, Fort, Atchade, ... )

I Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and
(even) less operational than that of standard MCMC

I Using it without theoretical support may be dangerous (convergence
counterexamples, AdapFail algorithms)

I Is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

The fly in the ointment
AirMCMC - a save

The fly in the ointment

I Theoretical properties of adaptive MCMC have been studied using a range of
techniques, such as: coupling, martingale approximations, stability of
stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola,
Saksman, Fort, Atchade, ... )

I Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and
(even) less operational than that of standard MCMC

I Using it without theoretical support may be dangerous (convergence
counterexamples, AdapFail algorithms)

I Is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

The fly in the ointment
AirMCMC - a save

The fly in the ointment

I Theoretical properties of adaptive MCMC have been studied using a range of
techniques, such as: coupling, martingale approximations, stability of
stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola,
Saksman, Fort, Atchade, ... )

I Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and
(even) less operational than that of standard MCMC

I Using it without theoretical support may be dangerous (convergence
counterexamples, AdapFail algorithms)

I Is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

The fly in the ointment
AirMCMC - a save

The fly in the ointment

I Theoretical properties of adaptive MCMC have been studied using a range of
techniques, such as: coupling, martingale approximations, stability of
stochastic approximation (Roberts, Rosenthal, Moulines, Andrieu, Vihola,
Saksman, Fort, Atchade, ... )

I Still, the theoretical underpinning of Adaptive MCMC is (even) weaker and
(even) less operational than that of standard MCMC

I Using it without theoretical support may be dangerous (convergence
counterexamples, AdapFail algorithms)

I Is it possible to modify other challenging adaptive algorithms to make them
easier to analyze without destroying their empirical properties?

Krys Latuszynski(University of Warwick, UK) MCMC



MCMC in Bayesian Statistics
Design and Asymptotic Validity

Adaptive Algorithms - Methodology
Theory and Ergodicity

Air MCMC (Theory and Ergodicity II)

The fly in the ointment
AirMCMC - a save

AirMCMC - Adapting increasingly rarely [CLR18b]

I Pγ , γ ∈ Γ - a parametric family of π-invariant kernels;
Adaptive MCMC steps:
(1) Sample Xn+1 from Pγn (Xn, ·).
(2) Given {X0, ..,Xn+1, γ

0, .., γn} update γn+1 according to some adaptation rule.
I How tweak the strategy to make theory easier?
I Do we need to adapt in every step?
I How about adapting increasingly rarely?
I AirMCMC Sampler [CLR18b]

Initiate X0 ∈ X , γ0 ∈ Γ. γ := γ0 k := 1, n := 0.
(1) For i = 1, .., nk

1.1. sample Xn+i ∼ Pγ(Xn+i−1, ·);
1.2. given {X0, ..,Xn+i, γ0, .., γn+i−1} update γn+i according to some adaptation rule.

(2) Set n := n + nk, k := k + 1. γ := γn.
I Will such a strategy be efficient? With say nk = ckβ

I Will it be mathematically more tractable?
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AirMCMC - a simulation study

I π(x) = l(|x|)
|x|1+r , x ∈ R,

I Air version of RWM adaptive scaling
I The example is polynomially ergodic (not easy for the sampler)
I AirRWM

Initiate X0 ∈ R, γ ∈ [q1, q2]. k := 1, n := 0, a sequence {ck}k≥1.
(1) For i = 1, .., nk

(1.1.) sample Y ∼ N(Xn+i−1, γ), aγ :=
φ(Y)

φ(Xn+i−1)
;

(1.2.) Xn+i :=

{
Y with probability aγ ,

Xn+i−1 with probability 1− aγ ;
(1.3.) a := a + aγ .

If i = nk then
γ := exp

(
log(γ) + cn

(
a
nk
− 0.44

))
.

(2) Set n := n + nk, k := k + 1, a := 0.
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AirMCMC - inhomogeneity factor, d=100
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AirMCMC - simulation effort, d=100
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AirMCMC theory

I Theorem 1
I Kernels Simultaneously Geometrically Ergodic (SGE)
I nk ≥ ckβ , β > 0
I sup |f (x)|

V1/2(x)
<∞

Then
I WLLN
I if β > 0, also SLLN
I if β ≥ 1, also MSE = O(1/n)
I if β > 1 and a bit more regularity, also CLT holds!

I

I Counterparts of this theorem also for
I Kernels locally SGE
I Kernels Polynomially Simultaneously Ergodic

I Note that diminishing adaptation is not needed!
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