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Motivation

What happens when quantum computers become a reality 10-15 years
from now?

Commonly used public-key cryptographic algorithms (based on integer
factorization and discrete log problem) such as:

RSA, DSA, Diffie-Hellman Key Exchange, ECC, ECDSA

will be vulnerable to Shor’s algorithm and will no longer be secure.

I “Worse than Y2K: quantum computing and the end of privacy” – Forbes, 2018.
I “The quantum clock is ticking on encryption - and your data is under threat” – Wired, 2016.
I “Unbreakable: The race to protect our secrets from quantum hacks” – New Scientist, 2018.
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Motivation

The industry is starting to take this threat seriously.

Microsoft Research and IBM Research.

Infineon and NXP Semiconductors.

PQShield and ISARA.

National Cyber Security Centre (NCSC) and probably more...
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Post-quantum cryptography

Quantum computers exploit the power of parallelism.
I Some classically hard computational problems are now trivial.

Shor’s Algorithm (1994)
I Can quickly factorise large numbers

(exponential speed-up).
I Significant implications for current public-key

cryptography.

Grover’s Algorithm (1996)
I Can search an unsorted database faster than a

conventional computer, effects symmetric-key
cryptography, so AES-128 now 64-bit secure.
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Post-Quantum Cryptography
NIST have started a post-quantum standardisation “competition”.

I Similar to previous AES and SHA-3 standardisations.

Submissions breakdown: 42% lattice-based, 25% code-based, 18%
multivariate, 9% other, 3% hash-based, 2% SIDH.

ETSI researching requirements for quantum-safe real-world deployments.
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Related work (Microcontroller)

Code-based relatively low memory consumption, slow performance.

Lattices have good performance, isogenies significantly slower.

Crypto. Scheme PQ Type Device Memory Cycles
QC-MDPC Encrypt [HVMG13] Code ATxmega256 3705 Bytes 37,440,137
QC-MDPC Decrypt [HVMG13] Code ATxmega256 5496 Bytes 26,767,463

SIKE (Total) [SLLH18] Isogenies Cortex-A53 ≤35k Bytes 133,300,000

Saber Encaps [KMRV18] Lattice Cortex-M4 7k Bytes 1,530,000
Saber Decaps [KMRV18] Lattice Cortex-M4 8k Bytes 1,635,000
Kyber768 Encaps [pqm] Lattice Cortex-M4 13.5k Bytes 1,497,789
Kyber768 Decaps [pqm] Lattice Cortex-M4 14.5k Bytes 1,526,564

FrodoKEM-640-cSHAKE Encaps [pqm] Lattice Cortex-M4 58k Bytes 111,688,861
FrodoKEM-640-cSHAKE Decaps [pqm] Lattice Cortex-M4 68k Bytes 112,156,317

NewHope KEX [AJS16] Lattice Cortex-M4 23k Bytes 2,561,438

ECDH scalar multiplication [DHH+15] ECC Cortex-M0 8k Bytes 3,589,850
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Related work (FPGA)
Code-based systems have huge KeyGen / decryption, but fast encryption.
Isogenies have fairly small designs but can be a lot slower.

Table: FPGA consumption and performance of related post-quantum schemes.

Crypto. Scheme PQ Type Device LUT/FF Slice DSP BRAM MHz Ops/sec
Niederreiter KeyGen [WSN18] Code Stratix-V -/- 39122 - 827 230 75
Niederreiter Encrypt [WSN18] Code Stratix-V -/6977 4276 - 0 448 83k
Niederreiter Decrypt [WSN18] Code Stratix-V -/48050 20815 - 88 290 12k

SIDH (Total) [KAKJ17] Isogenies Virtex-7 13k/15k 5k 64 33 191 22

NewHope KEX Server [KLC+17] Lattice Artix-7 20826/9975 7153 8 14 131 19k
NewHope KEX Client [KLC+17] Lattice Artix-7 18756/9412 6680 8 14 133 12.7k
NewHope KEX Server [OG17] Lattice Artix-7 5142/4452 1708 2 4 125 731
NewHope KEX Client [OG17] Lattice Artix-7 4498/4635 1483 2 4 117 653
LWE Encryption [HMO+16] Lattice Spartan-6 6078/4676 1811 1 73 125 1272

ECDH [SG14] Curve25519 Zynq 7020 2783/3592 1029 20 2 200 2519
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Why focus on lattice-based cryptography?

In many cases, lattice-based cryptography outperforms RSA and ECC with
competitive key / signature / ciphertext sizes [HPO+15].

More versatile than code-based, isogeny-based, multivariate, and
hash-based cryptography.

Can be used for encryption, signatures,
FHE, IBE, ABE, etc...

Theoretical foundations are well-studied,
no serious breaks (yet!).
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Lattice-based cryptography in practice
Lattice-based cryptography is important in its own right.

I Benefits from simple mathematical operations such as integer multiplication,
addition, and modular reduction.

Lattice-based cryptography is flourishing:
I 40% lattice-based NIST PQC submissions.
I NewHope key exchange created.
I Ring-LWE encryption and BLISS signatures

outperform RSA and ECC in s/w and h/w.

Lattice-based cryptography is already being considered:
I VPN strongSwan supports post-quantum mode.
I NewHope awarded Internet Defense Prize Winner 2016.
I Google experimenting with NewHope key exchange.
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The Learning With Errors Problem

There is a secret vector s← Zn
q .

An oracle (who knows s) generates a uniform matrix A and noise vector e
distributed normally with standard deviation αq.

The oracle outputs:

(A,b = As+ e mod q).

The distribution of A is uniformly random, b is pseudo-random.

Can you find s, given access to (A,b)?

Can you distinguish (A,b) from a uniformly random (A,b′)?
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Classes of lattices (simplified)

Lattice-based cryptographic schemes generally fall under three classes.

LWE←→ Module-LWE←→ Ring-LWE

Added structures hinder security.

LWE ≥sec. Module-LWE ≥sec. Ring-LWE

However, it can also gain performance.

LWE ≤per. Module-LWE / Ring-LWE

How does Ring-LWE compare with Module-LWE? What about NTRU?
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Structured lattices in practice
Table: Microcontroller cycle counts of related lattice-based schemes.

Crypto. Scheme Lattice Type Device Memory Cycles
*Saber Encaps [KMRV18] Module-LWE Cortex-M4 7k Bytes 1,530,000
*Saber Decaps [KMRV18] Module-LWE Cortex-M4 8k Bytes 1,635,000
*Kyber768 Encaps [pqm] Module-LWE Cortex-M4 13.5k Bytes 1,497,789
*Kyber768 Decaps [pqm] Module-LWE Cortex-M4 14.5k Bytes 1,526,564

*NewHope KEM Encaps [pqm] Ring-LWE Cortex-M4 17.5k Bytes 1,966,358
*NewHope KEM Decaps [pqm] Ring-LWE Cortex-M4 19.5k Bytes 1,977,753

*FrodoKEM-640-cSHAKE Encaps [pqm] LWE Cortex-M4 58k Bytes 111,688,861
*FrodoKEM-640-cSHAKE Decaps [pqm] LWE Cortex-M4 68k Bytes 112,156,317

NTRU-HRSS-KEM KeyGen [pqm] NTRU Cortex-M4 10k Bytes 197,262,297
NTRU-HRSS-KEM Encaps [pqm] NTRU Cortex-M4 9k Bytes 5,166,153
NTRU-HRSS-KEM Decaps [pqm] NTRU Cortex-M4 10k Bytes 15,069,480

Str-NTRU-prime KEM KeyGen [pqm] NTRU Cortex-M4 14.5k Bytes 147,543,618
Str-NTRU-prime KEM Encaps [pqm] NTRU Cortex-M4 11k Bytes 10,631,675
Str-NTRU-prime KEM Decaps [pqm] NTRU Cortex-M4 16k Bytes 30,641,200
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Frodo: Why should we take off the ring!

The design philosophy of FrodoKEM [ABD+] combines:

Conservative yet practical post-quantum constructions.

Security derived from cautious parameterizations of the well-studied
learning with errors problem.

Thus, close connections to conjectured-hard problems on generic,
“algebraically unstructured” lattices.

Parameter selection is far less constrained than vs ideal lattice schemes.
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Frodo: Why should we take off the ring?

These qualities are appealing for practitioners;

Probably the most secure lattice-based candidate.
I Many IoT use cases require long-term, efficient cryptography.

Frodo is ideal for long-term security and constrained (hardware) platforms.
I Suitable for use cases such as satellite communications and V2X.

Frodo is extremely versatile and theoretically sound.

However, it has less implementations than ideal lattice schemes.
I And how do we manage the larger keys and no NTT...
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Frodo’s inception as a key exchange

Frodo was initially proposed as a key exchange scheme [BCD+16].

Inspired by Regev [Reg05], Lindner and Peikert [LP11], Brakerski et al.
[BLP+13], Peikert [Pei14], Bos et al. [BCNS15] and others...

Uses a Diffie-Hellman-like protocol.
I Key exchanges are hidden in LWE instances.

NewHope’s proposal very similar but uses Ring-LWE.

Frodo trades some efficiency for higher security / trust vs NewHope.
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Frodo vs NewHope key exchange

Both offer strong classical and post-quantum secure parameters.

NewHope requires polynomial multiplication, gains efficiency via NTT.
I This makes parameters selection much more restrictive.

Frodo is more simple, uses matrix multiplication and addition.
I Parameters selection does not have any restrictions on structure.

This allows Frodo to be more flexible and easier to scale.

But what about performance...
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Frodo key exchange: Faster than a trip to Mordor
Bandwidth for NewHope around 4 KB and Frodo around 22 KB.

Integrated into TLS and combined with ECDHE:

I Frodo is 1.5x slower than ECDHE for 1 Byte payload.
I Frodo is 1.2x slower than ECDHE for 100 KByte payload.

Integrated into TLS and combined with ECDHE:

I Frodo is 1.6x slower than NewHope for 1 Byte payload.
I Frodo is 1.4x slower than NewHope for 100 KByte payload.

Frodo outperforms NTRU (EES743EP1) and SIDH.

However, this might not be the ideal use case for Frodo...
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Frodo use cases

“To this day it is not clear whether a future (quantum) attack might be
able to exploit this additional structure, introduced in ideal lattices, in
order to break the cryptosystem.”

Conservative, post-quantum use cases would benefit from Frodo.

Satellite communications, critical infrastructure, banking, etc.

Recommended for conservative use cases by PQCRYPTO [ABB+].

SAFEcrypto / Thales investigate LWE for satellite communications1.

1See https://www.safecrypto.eu/more-information/casestudies/ and
https://youtu.be/ZME-ncE8nu0

https://www.safecrypto.eu/more-information/casestudies/
https://youtu.be/ZME-ncE8nu0
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Frodo use cases
Howe et al. [HMO+16] also recommend standard lattices.
Satellite communications being their main focus.
Research was undertaken at Thales during an internship.

More on this later...
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Summary

Post-quantum cryptography is important, quantum threat is serious.

NIST [NIS16] started standardisation of post-quantum cryptography.
I Future rounds will likely involve evaluations on constrained devices, such as

smart cards, as well as comparisons of the schemes in hardware.

Frodo has its place in future cryptographic standards.
I Frodo is ideal for long-term security and constrained (hardware) platforms.

Unstructured lattices have far less implementations.

I So, can we do better with unstructured lattices?
I Are there related implementations we can use as a basis?
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Frodo: key encapsulation from standard lattices

Simple design:
I Free modular arithmetic (q = 216).
I Simple Gaussian sampling.
I Parallelisable matrix-vector operations.
I Key encapsulation without reconciliation.
I Simple code, no complex use of NTT.

CCA-secure with negligible error rate.

Flexible, fine-grained choice of parameters.

Dynamically generated A to defend against all-for-the-price-of-one attacks
(AES and cSHAKE variants).
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Frodo: key encapsulation from standard lattices
Table: Implemented FrodoKEM parameter sets.

Parameters FrodoKEM-640 FrodoKEM-976
D 15 16
q 32768 65536
n 640 976
m̄ = n̄ 8 8
B 2 3
lenµ = l 128 192.
.
.

.

.

.

.

.

.
lenss 128 192
lenχ 16 16
Error (χ) std. dev. 2.75 2.3
H cSHAKE128(·, 128, 0) cSHAKE256(·, 128, 0)
G cSHAKE128(·, 384, 3) cSHAKE256(·, 576, 3)
F cSHAKE128(·, 128, 7) cSHAKE256(·, 192, 7)
Ciphertext size 9,736 Bytes 15,768 Bytes
Classical security 143-bit 103-bit
Quantum security 209-bit 150-bit

Parameters and security estimates are “paranoid”, satisfy NIST Level 1 and 3.
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Frodo: key encapsulation from standard lattices

Algorithm 1 The FrodoKEM key pair generation

1: procedure KEYGEN(1`)
2: Choose uniformly random seeds s||seedE||z←$ U({0, 1}lens+lenE+lenz)
3: Generate pseudo-random seed seedA ← H(z)
4: Generate the matrix A ∈ Zn×nq via A← Frodo.Gen(seedA)
5: S,E← Frodo.SampleMatrix(seedE, n, n̄, Tχ, ·)
6: Compute B← AS + E
7: return public key pk ← seedA||B and secret key sk′ ← (s||seedA||B,S)
8: end procedure
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Frodo: key encapsulation from standard lattices

Algorithm 2 The FrodoKEM encapsulation (shortened)

1: procedure ENCAPS(pk = seedA||B)
2: Choose a uniformly random key µ← U({0, 1}lenµ)
3: Generate pseudo-random values seedE||k||d← G(pk||µ)
4: Sample error matrix S′,E′ ← Frodo.SampleMatrix(seedE, m̄, n, Tχ, ·)
5: Generate the matrix A ∈ Zn×nq via A← Frodo.Gen(seedA)
6: Compute C1 ← S′A + E′

7: Sample error matrix E′′ ← Frodo.SampleMatrix(seedE, m̄, n̄, Tχ, ·)
8: Compute C2 ← S′B + E′′ + Frodo.Encode(µ)
9: Compute ss← F (c1||c2||k||d)

10: return ciphertext c1||c2||d and shared secret ss
11: end procedure
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Frodo: key encapsulation from standard lattices
Algorithm 3 The FrodoKEM decapsulation (shortened)

1: procedure DECAPS(sk = (s||seedA||B,S), c1||c2||d)
2: Compute M← C−B′S
3: Compute µ′ ← Frodo.Decode(M)
4: Parse pk ← seedA||b
5: Generate pseudo-random values seed′E||k′||d′ ← G(pk||µ′)
6: Sample error matrix S′,E′ ← Frodo.SampleMatrix(seed′E, m̄, n, Tχ, ·)
7: Generate the matrix A ∈ Zn×nq via A← Frodo.Gen(seedA)
8: Compute B′′ ← S′A + E′

9: Sample error matrix E′′ ← Frodo.SampleMatrix(seed′E, m̄, n̄, Tχ, ·)
10: Compute C′ ← S′B + E′′ + Frodo.Encode(µ′)
11: if B′||C = B′′||C′ and d = d′ return ss← F (c1||c2||k′||d)
12: else return ss← F (c1||c2||s||d)
13: end procedure
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Frodo: key encapsulation from standard lattices

FrodoKEM is comprised of a number of key modules:

Matrix-matrix multiplication, up to sizes 976.

Uniform and “Gaussian” error generation.

Random oracles via cSHAKE for CCA security.

As well as a number of subsidiary operations:

Matrix packing (and unpacking) to vectors.

Message encoding and decoding.

Parsing vectors and bit-strings.
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Frodo: key encapsulation from standard lattices

A massive design challenge was to balance memory utilisation, whilst not
deteriorating the performance too much to not overexert the limited computing
capabilities of the embedded devices.



11 September 2018

FrodoKEM on constrained devices

FrodoKEM has a number of design options we cover:

Both sets of parameters;
I FrodoKEM-640 aims to match AES-128 security.
I FrodoKEM-976 aims to match AES-192 security.

PRNG from AES and cSHAKE modules.

We focus on FrodoKEM [ABD+], rather than the
key exchange scheme FrodoCCS [BCD+16].

Due to similarities in KeyGen, Encaps, and
Decaps, discussions might be generic.
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FrodoKEM on constrained devices
Our implementations focus on commonly used devices.

Our software design is implemented on the popular ARM Cortex-M4.

Our hardware design is demonstrated on a Xilinx Artix-7 FPGA.
I Using development environment Xilinx Vivado v2017.4.

Figure: STM32F407 Discovery Board Figure: Basys 3 Artix-7 FPGA Board
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Section 3

FrodoKEM on ARM Cortex M4
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FrodoKEM on ARM

Contribution overview:

Optimized memory allocation that makes the implementation small enough
to fit on embedded microcontrollers.

An assembly multiplication routine that speeds up our implementation,
realizing a performance that fits the requirements of common use-cases.

Utilises constant runtime to protect against simple side-channel analysis.

FrodoKEM-640 has a total execution time of 836 ms, running at 168 MHz.

(Update) Will be added to the PQM4 [pqm] library soon!
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FrodoKEM on ARM
Our first problem...

Table: Optimised reference implementation of FrodoKEM (AES from OpenSSL).

Parameter Set / Type
Peak Stack Memory Usage

Static Library Size
KeyGen Encaps Decaps

FrodoKEM-640-AES [ABD+] 72,192 103,072 123,968 81,836
FrodoKEM-976-AES [ABD+] 111,424 159,136 189,176 79,700

Our target platform: STM32F4-Discovery board:
I 192 KBytes RAM
I Split into a 128 KByte module and a 64 KByte module.
I Stack needs to fit into 128 KByte.

Problem: reference implementation needs too much memory!
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FrodoKEM on ARM
Memory analysis of decapsulation.

We analysed the memory occupancy
during each operation.

Wherever possible, reusing already
allocated memory.

This minimised the memory usage for
all designs.

Memory usage for AES versions much
simpler than for cSHAKE versions.
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FrodoKEM on ARM
Dynamic memory consumption of reference implementation.

E′ (Ep) can be generated on-the-fly.
S′ (Sp) is used multiple times.

I Keep in memory first, later replace by B′ (Bp).
We need at least two large matrices.

I Final operation is the comparison of B′ (Bp) and B′′ (BBp).
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FrodoKEM on ARM

Dynamic memory consumption of the proposed implementation.

S′ uses temp for storage.

E′ and E′′ both share Epp.
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FrodoKEM on ARM

Dynamic memory consumption of the proposed implementation.

S′ uses temp for storage.

E′ and E′′ both share Epp.

We have to keep B′ (Bp) and B′′ (BBp) for comparisons.



11 September 2018

Results and Comparisons
Clear difference between AES and cSHAKE implementations.
Due to more efficent AES [SS16], cSHAKE needs load/save from RAM.
Outperforms other Frodo design, but much slower than Kyber / NewHope.

Table: Cycle counts for our full microcontroller implementations (at 168 MHz).

Implementation Platform Security Level Cycle counts
FrodoKEM-640-AES Cortex-M4 128 bits 140,398,055
FrodoKEM-976-AES Cortex-M4 192 bits 315,600,317

FrodoKEM-640-cSHAKE Cortex-M4 128 bits 310,131,435
FrodoKEM-976-cSHAKE Cortex-M4 192 bits 695,001,098

FrodoKEM-640-cSHAKE [pqm] Cortex-M4 128 bits 318,037,129
KyberNIST-768 [pqm] Cortex-M4 192 bits 4,224,704

NewHopeUSENIX-1024 [AJS16] Cortex-M4 255 bits 2,561,438
ECDH scalar multiplication [DHH+15] Cortex-M0 pre-quantum 3,589,850
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Results and Comparisons

Despite being slower, cSHAKE requires less memory than AES.

Our memory optimisations save between 30-40% compared to PQM4.

Versus the referenced designs we also save 66% in peak stack usage.

Table: Stack usage in bytes for our microcontroller implementations.

Operation
FrodoKEM-AES FrodoKEM-cSHAKE FrodoKEM-cSHAKE [pqm]

n = 640 n = 976 n = 640 n = 976 n = 640 % Savings
Keypair 23,396 35,484 22,376 33,800 36,536 39%
Encaps 41,292 63,484 37,792 57,968 58,328 35%
Decaps 51,684 63,628 48,184 58,112 68,680 30%
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Section 4

FrodoKEM on Artix-7 FPGA
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FrodoKEM on FPGA

Artix-7 FPGA – our target platform:

High performance but low cost FPGA, used in hardware design of
NewHope KEX by Oder and Güneysu [OG17].

Includes DSPs with 25-by-18 two’s complement multiplier/accumulator
high-resolution (48-bit) signal processor.

Plenty of memory (Block RAM) to store keys / matrices.

Can potentially use space hardened FPGAs or IoT specialised FPGAs with
dedicated crypto cores.

Essentially zero restrictions on design, unlike Frodo on microcontrollers.
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FrodoKEM on FPGA

Contribution overview:

Proposes a generic LWE multiplication core which computes vector-matrix
multiplication and error addition.

Generates future random values in parallel, minimising delays between
vector-matrix multiplications.

Hybrid pre-calculated / on-the-fly memory management is used, which
continuously updates previous values.

Ensures constant runtime by parallelising other modules with multiplication.

FrodoKEM-640 has a total execution time of 60 ms, running at 167MHz.
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FrodoKEM on FPGA

Figure: An overview of our FPGA design of FrodoKEM Encapsulation.

Similarities in KeyGen, Encaps, and Decaps mean much of this is reused.
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FrodoKEM on FPGA
Variable are dependent on the FSM and row/column (address) count.
Especially, key data (either matrix A or B) and flagkeccak conditionals.

Algorithm 4 The LWE multiplication core.
1: if start acc then
2: sum <= Resize(key data ∗ sp data, SumWidth);
3: else
4: sum <= sum + key data ∗ sp data;
5: end if
6: if add spm then
7: spm data <= ep data + m data;
8: end if;
9: if mac done then

10: c result <= Resize(unsigned(sum + spm data) mod 2**CWidth,CWidth);
11: end if;
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FrodoKEM on FPGA

Memory optimisations of the matrix A, a toy example.

A(i,j) col 1 col 2 col 3 col 4 col 5 · · · col n
row 1 53 -48 11 -63 -87 · · · -33
row 2 92 -14 -41 5 -6 · · · 79
row 3 -85 43 52 42 69 · · · 0
row 4 -15 -33 65 -33 89 · · · -86

...
...

...
...

...
...

. . .
...

row n 92 63 20 -68 100 · · · -5
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Ensures a fixed cost for memory, otherwise BRAMs overloaded.
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FrodoKEM on FPGA
Fast “rounded continuous Gaussian” sampling.

FrodoKEM specifications define a constant-time error sampling method.
We maintain this technique but increase throughput.

I Instead of storing values in a table, a MUX is used, ensuring fast outputs.

Ensures one output per clock cycle, hence constant-runtime.
Area consumption essentially the same due to similar sigma values.

I Essentially the same architecture, just replace the values.

PRNG input to the sampler fulfilled by an AES core.

Probability of (in multiples of 2−15)
Parameters σ 0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 ±11
χFrodoKEM-640 2.75 9456 8857 7280 5249 3321 1844 898 384 144 47 13 3
χFrodoKEM-976 2.3 11278 10277 7774 4882 2545 1101 396 118 29 6 1 -
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FrodoKEM on FPGA
Design choices for cSHAKE.

VHDL code taken from the KECCAK [BDP+12] team’s SHA-3
implementation.
Here, there are a number of design choices:

I High-speed core; which over overexerts the FPGA’s I/O pins.
I *Mid-range core; used in other lattice-based hardware designs.
I Low-area core; small but too slow for our requirements.
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Results and Comparisons
Competes with NewHope area consumption, but much slower performance.
Huge savings in BRAM compared to LWE Encryption [HMO+16].

Table: FPGA consumption and performance of our proposed designs, benchmarked on Artix-7.

Cryptographic Operation LUT/FF Slice DSP BRAM MHz Ops/sec
FrodoKEM-640 Keypair 6621/3511 1845 1 6 167 51
FrodoKEM-640 Encaps 6745/3528 1855 1 11 167 51
FrodoKEM-640 Decaps 7220/3549 1992 1 16 162 49
FrodoKEM-976 Keypair 7155/3528 1981 1 8 167 22
FrodoKEM-976 Encaps 7209/3537 1985 1 16 167 22
FrodoKEM-976 Decaps 7773/3559 2158 1 24 162 21

cSHAKE∗ 2744/1685 766 0 0 172 1.2m
Error+AES Sampler∗ 1901/1140 756 0 0 184 184m

NewHopeUSENIX Server [OG17] 5142/4452 1708 2 4 125 731
NewHopeUSENIX Client [OG17] 4498/4635 1483 2 4 117 653

LWE Encryption [HMO+16] 6078/4676 1811 1 73 125 1272
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Conclusions

We show that hardware significantly minimises the performance distance
between standard and ideal lattice-based KEM, able to utilise less than
2000 slices and remain practical.

Memory optimisations for microcontrollers show 66% savings vs reference
design and 40% vs optimised PQM4 design.

Memory optimisations in all software and hardware designs were critical,
otherwise the platform would have been overexerted.
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Conclusions

Our results show the efficiency of FrodoKEM and help to assess the practical
performance of a possible future post-quantum standard.
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Conclusions

Although rings are still good to use, unless you’re Gollum...
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Future work

(Software) We are looking at masking FrodoKEM, seeing cost analysis.

(Hardware) How would FrodoKEM perform / scale with more multipliers.
I Increase in multipliers would require faster cSHAKE / AES sampling.

Comparison of FrodoKEM vs. other NIST post-quantum candidates,
I Particularly in hardware and across post-quantum types.
I We need more hardware designs! I’m interested in more collaborations.
I See PQCzoo.com for collections of optimised designs and SCA results.

How can we protect FrodoKEM from SCA? Bos et al. [BFM+18] show
interesting results, higher black-box security == easier SCA.

PQCzoo.com
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