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Linear Codes and Distance

Definition Linear Code
A linear code is a k -dimensional subspace of Fn

2.

Represent via:
Generator matrix G

C = {xG ∈ Fn
2 | x ∈ Fk

2}, where G ∈ Fk×n
2

Parity check matrix H
C = {c ∈ Fn

2 | Hc = 0}, where H ∈ Fn−k×n
2

Random Code: G ∈R Fk×n
2 respectively H ∈R Fn−k×n

2
I Random codes are hard instances for decoding.
I Crypto motivation: Scramble structured C in “random" SCT .
I Good generic hardness criterion.
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Bounded and Full Distance Decoding
Definition Distance
d = minc6=c′∈C{∆(c,c′)}, where ∆ is the Hamming distance.

Remark: Unique decoding of c + e when ∆(e) ≤ d−1
2 .

Definition Bounded Distance Decoding (BD)

Given : H,x = c + e with c ∈ C,∆(e) ≤ d−1
2

Find : e and thus c = x + e

Syndrome Decoding
Syndrome s := Hx = H(c + e) = Hc + He = He.
Bounded Distance is the usual case in crypto.

Definition Full Distance Decoding (FD)

Given : H,x ∈ Fn
2

Find : c with ∆(c,x) ≤ d
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On Running Times

Running time of any decoding algorithm is a function of (n, k ,d).
Look at map Fn

2 → Fn−k
2 with e 7→ He with ∆(e) ≤ d .

Map is injective if
(n

d

)
< 2n−k .

Write
(n

d

)
≈ 2H( d

n )n, which yields

H(d
n ) < 1− k

n . (Gilbert-Varshamov bound)
For random codes this bound is sharp.
Hence, we can directly link d to n, k .
Running time becomes a function of n, k only.
Since BD/FD decoding is NP-hard we expect running time

T (n, k) = 2f ( k
n )n.

For simplifying, we are mainly interested in T (n) = maxk{T (n, k)}.
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Running Time graphically
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The Way to go
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Figure: Full Distance decoding (FD)
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Figure: Bounded Distance decoding (BD)
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Let’s just start.

Goal: Solve He = s for small weight e.
Assumption: Wlog we know ω := ∆(e).

Algorithm Exhaustive Search
INPUT: H, x, ω

1 For all e ∈ Fn
2 with ∆(e) = ω: Check whether He = s = Hx.

OUTPUT: e

Running time: T (n) =
(n
ω

)
≤ 20.386n.
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Allowed Transformations

Linear algebra transformation for s = He.
1 Column permutation:

s = He = HPP−1e
for some permutation matrix P ∈ Fn×n

2 .
2 Elementary row operations:

GHe = Gs =: s′

for some invertible matrix G ∈ Fn−k×n−k
2 .

Easy special cases:
1 Quadratic case: H ∈ Fn×n

2 . Compute e = H−1s.
2 Any weight ∆(e): Compute GHe = (H ′ | In−k )e = Gs.

Remark: Hardness/unicity comes from under-defined + small weight.
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Prange’s algorithm (1962)
Idea: (H ′ | In−k )(e1 || e2) = H ′e1 + e2 = s′

Algorithm Prange
INPUT: H, x, ω
REPEAT

1 Permute columns, construct systematic (H ′ | In−k ). Fix p < ω.
2 For all e1 ∈ Fk

2 with ∆(e1) = p:
1 If (∆(H ′e1 + s′) = ω − p), success.

UNTIL success
OUTPUT: Undo permutation of e = (e1||H ′e1 + s′).

Running time:

Outer loop has success prob
(k

p)(n−k
ω−p)

(n
ω)

.

Inner loop has running time
(k

p

)
. Total: (n

ω)
(n−k
ω−p)

, optimal for p = 0.

Yields running time T (n) = 2
1

17 n, with constant memory.
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Stern’s algorithm (1989)
Meet in the Middle:

(H1 | H2 | In−k )(e1||e2||e3) = H1e1 + H2e2 + e3 = s′

Algorithm Stern
INPUT: H, x, ω
REPEAT

1 Permute columns, construct systematic (H1 | H2 | In−k ). Fix p < ω.

2 For all e1 ∈ F
k
2
2 with ∆(e1) = p

2 : Store H1e1 in sorted L1.

3 For all e2 ∈ F
k
2
2 with ∆(e2) = p

2 : Store H2e2 + s′ in sorted L2.
4 Search for elements in L1,L2 that differ by ∆(e3) = ω − p.

UNTIL success
OUTPUT: Undo permutation of e = (e1||e2||H1e1 + H2e2 + s′).

Step 4: Look for vectors that completely match in ` coordinates.
T (n) = 2

1
18 , but requires memory to store L1,L2.
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Representation Technique (Howgrave-Graham, Joux)
Meet in the Middle

Split e = (e1||e2) as e1,e2 ∈ F
k
2
2 with weight ∆(ei) = p

2 each.
Combination of e1,e2 is via concenation.
Unique representation of e in terms of e1,e2.

Representation [May, Meurer, Thomae 2011]
Split e = e1 + e2 as e1,e2 ∈ Fk

2 with weight ∆(ei) = p
2 each.

Combination of e1,e2 is via addition in Fk
2.

e has many representations as e1 + e2.

Example for k = 8,p = 4:

(01101001) = (01100000) + (00001001)
= (01001000) + (00100001)
= (01000001) + (00101000)
= (00101000) + (01000001)
= (00100001) + (01001000)
= (00001001) + (01100000)
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Pros and Cons of representations
Representation [MMT 2011, Asiacrypt 2011]

Split e = e1 + e2 as e1,e2 ∈ Fk
2 with weight ∆(ei) = p

2 each.
Disadvantages:

I List lengths of L1,L2 increases from
(k/2

p/2

)
to

( k
p/2

)
.

I Addition of e1,e2 usually yields Hamming weight smaller p.
Advantage:

I e has
( p

p/2

)
=: R representations as e1 + e2.

Construct via Divide & Conquer only 1
R -fraction of L1,L2.

Since many solutions exist, it is easier to construct a special one.
Example: Look only for H1e1,H2e2 + s′ with last log( 1

R ) coord. 0.
Advantage (may) dominate whenever

( k
p/2)

( p
p/2)

<
(k/2

p/2

)
.

Result: Yields running time 2
1

19 n.
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More representations (Becker,Joux,May,Meurer 2012)

Idea:
Choose e1,e2 ∈ Fk

2 with weight ∆(ei) = p
2 + ε each.

Choose ε such that ε 1-positions cancel on expectation.
In MMT:

( p
p/2

)
representations of 1’s as

1 = 1 + 0 = 0 + 1.
Now: Additionally

(k−p
ε

)
representations of 0’s as
0 = 1 + 1 = 0 + 0.

Paper subtitle:
"How 1 + 1 = 0 Improves Information Set Decoding".

Yields T (n) = 2
1

20 n.
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How to construct special solutions

. . .
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Figure: Illustration of the BJMM algorithm.
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A word about memory

Bounded Distance Full Distance
time space time space

Prange 0.05752 - 0.1208 -
Stern 0.05564 0.0135 0.1167 0.0318
Ball-collision 0.05559 0.0148 0.1164 0.0374
MMT 0.05364 0.0216 0.1116 0.0541
BJMM 0.04934 0.0286 0.1019 0.0769
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Stern’s algorithm (1989)
Meet in the Middle:

(H1 | H2 | In−k )(e1||e2||e3) = H1e1 + H2e2 + e3 = s′

Algorithm Stern
INPUT: H, x, ω
REPEAT

1 Permute columns, construct systematic (H1 | H2 | In−k ). Fix p < ω.

2 For all e1 ∈ F
k
2
2 with ∆(e1) = p

2 : Store H1e1 in sorted L1.

3 For all e2 ∈ F
k
2
2 with ∆(e2) = p

2 : Store H2e2 + s′ in sorted L2.
4 Search for elements in L1,L2 that differ by ∆(e3) = ω − p.

UNTIL success
OUTPUT: Undo permutation of e = (e1||e2||H1e1 + H2e2 + s′).

Step 4: Look for vectors that completely match in ` coordinates.
T (n) = 2

1
18 , but requires memory to store L1,L2.
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Nearest Neighbor Problem

Definition Nearest Neighbor Problem

Given : L1, L2 ⊂R Fn
2 with |Li | = 2λn

Find : all (u,v) ∈ L1 × L2 with ∆(u,v) = γn.

Easy cases:
1 γ = 1

2
I Test every combination in L1 × L2.
I Run time 22λn(1+o(1)).

2 γ = 0
I Sort lists and find matching pairs.
I Run time 2λn(1+o(1)).

Theorem May, Ozerov 2015

Nearest Neighbor can be solved in 2
1

1−γ λn(1+o(1)).
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Main Idea of Nearest Neighbor

Observation: Nearest Neighbors are also locally near.

L1 L2
u ∈ L1
v ∈ L2 size: 2λn

create exponentially many sublists
by choosing random partitions P

L′1 L′2 L′1 L′2 · · · L′1 L′2 L′1 L′2

For at least one sublist pair we have (u,v) ∈ L′1 × L′2 w.o.p.
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Nearest Neighbor algorithm

Algorithm Nearest Neighbor
INPUT: L1,L2 ⊂R Fn

2
REPEAT sufficiently often:

1 Randomly compute a partition P of [n].
2 For each set p ∈ P

1 Compute weight in a random half of the p-coordinates of L1,L2.
2 Keep only those vectors with a certain weight (depending on γ).

3 Search the remaining filtered lists naively.
OUTPUT: all (u,v) ∈ L1 × L2 with ∆(u,v) = γn

Filters out until L1,L2 reach polynomial size.
Algorithm has quite large polynomial overheads.

Yields T (n) < 2
1

21 n for Bounded Distance Decoding.
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Improvements graphically
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Asymptotical or Real?

Yann Hamdaoui and Nicolas Sendrier,
“A Non Asymptotic Analysis of Information Set Decoding", 2013

(n, k ,d) Stern MMT BJMM
(1024, 524, 50) 55.60 54.75 52.90

(2048, 1696, 32) 81.60 79.50 76.82
(4096, 3844, 21) 81.23 78.88 78.46
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Asymptotics for Defended McEliece

(n, k , ω) Security w/o NN w/ NN
(1632, 1269, 34) 80 59 57
(2960, 288, 57) 128 107 104

(4096, 3844, 117) 256 240 232

Conclusion
MMT, BJMM relevant for cryptographic keysizes! Breakpoint for MO?

But: The improvements asymptotically vanish for McEliece.
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The LPN Problem and its Relation to Codes
Problem Learning Parities with Noise (LPNn,p)

Given: (ai , 〈ai ,s〉+ ei) ∈ Fn
2 × F2 with Pr[ei = 1] = p.

Find: s ∈ Fn
2

Notation: As = b + e. For p = 0 : Compute s = A−1b.

Best algorithm: BKW with time/sample/space 2
n

log( n
p ) .

Algorithm GAUSS

1 REPEAT
1 Take n fresh samples. Compute s′ = A−1b.

2 UNTIL s′ = s

Theorem

GAUSS runs in time/sample complexity
(

1
1−p

)n
and poly space.

Proof: Pr[Iteration of REPEAT successful] = (1− p)n.
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Getting the samples down.
Algorithm POOLED GAUSS (Esser, Kübler, May – Crypto 2017)

1 Choose a pool of Θ(n2) samples.
2 REPEAT

1 Take n samples from the pool. Compute s′ = A−1b.
3 UNTIL s′ = s

Theorem

POOLED GAUSS runs in time
(

1
1−p

)n
with poly samples/space.

Theorem

POOLED GAUSS quantumly runs in
(

1
1−p

) n
2 with poly samples/space.

Corollary
Let p(n)→ 0. Then POOLED GAUSS runs in epn.
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Decoding LPN with Preprocessing

Algorithm LPN with Preprocessing
INPUT: LPNn,p instance

1 Modify: Use many samples to produce pool of dim-reduced ones.
Results in LPNn′,p′ instance with n′ < n and p′ ≥ p, e.g. use BKW.

2 Decode: Use decoding to solve LPNn′,p′ , e.g. POOLED GAUSS.
3 Complete: Recover rest of s, e.g. via enumeration or iterating.

Yields HYBRID algorithm that optimally uses space.
For polynomial space: Put all efforts in Decode.
For arbitrary space: Put all efforts in Modify.
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Bit Complexity Estimates for Memory ≤ 260

Largest RAM today: IBM 20-Petaflops with 1.6PB< 254 bits.

Table: HYBRID

p
n

256 384 448 512 576 640 768 1280
1√
n 46 53 56 59 62 64 68 82

0.05 42 53 58 63 68 73 82 120

0.125 60 88 99 110 121 132 154 239

0.25 81 139 158 178 197 216 255 407

0.4 108 174 207 240 273 300 355 575
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Bit Complexity Estimates for Memory ≤ 260

Table: WELL-POOLED MMT

p
n

256 384 448 512 576 640 768 1280
1√
n 37 42 45 47 48 51 54 66

0.05 33 43 48 57 58 62 70 102

0.125 57 77 88 97 102 118 138 219

0.25 92 128 148 166 185 204 242 392

0.4 129 183 211 238 265 292 347 568
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NIST Security Levels

Table: p = 1
8

n Classic Quantum

715 128 90
1115 192 127
1520 256 164
450 86 64
615 112 80

1130 194 128

Table: p = 1
4

n Classic Quantum

386 128 91
602 192 130
810 256 167
243 87 64
330 112 80
594 190 128
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Experiments

Table: Solved instances

Algorithm n p Pool BKW Decode Total

WP MMT 243 0.125 6.73 d - 8.34 d 15.07 d

WP MMT 135 0.25 5.65 d - 8.19 d 13.84 d
HYBRID 135 0.25 2.21 d 1.72 h 3.41 d 5.69 d
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Conclusions and Questions

Improvement for BD

2
1

17 n → 2
1

18 n → 2
1

19 n → 2
1

20 n → 2
1
21 n.

Extensions to codes over Fq possible, but less effective.
More applications of representations, nearest neighbors?
May threaten McEliece security. Implementations?
LPN with n = 512,p = 1

4 or even p = 1
8 seems (practically) secure.

Generalization of LPN to LWE decoding only good for small error.
Cryptanalysis: Real implementations + extrapolation.
There is a need for small memory algorithms. What is small?
Rule of thumb: If using time T = 2n, limit memory to M = 2

n
2 ?
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On the Shape of Cryptanalysis

Usefulness of Cryptanalysis:
Provable security never solves problems, but transfers them.
Eventually one has to use Cryptanalysis for finding keys!
Cryptanalysis is useful, and will be in the future.
Only 5-10% of papers is Cryptanalysis.

How to do Cryptanalysis:
Do real experiments on small to medium scale!
Extrapolate to large scale by asymptotical analysis.
Asymptotical improvements are relevant improvements.
Changing the constant in the exponent is significant!
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On the Shape of Cryptanalysis
What you should avoid in Cryptanalysis:

Pseudo-concrete estimates using strange counting of steps.
Your algorithm requires only 279.99 operations for 80-bit security.
As a reviewer:

I “After 30 pages of proofs, I need convincing experiments”.
I “You did better, but do not cite my work. Reject."

Do not outsource cryptanalysis to other fields.

Why you should work in Cryptanalysis:
You really solve problems, and not relate them to others.
You can implement your algorithm, let it run and output solutions.
It is fun to destroy things!

If you absolutely hate Cryptanalysis, still encourage it.
If you invent a scheme, instantiate it with parameters.
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