Recent Advances in Decoding Random Binary Linear Codes – and Their Implications to Crypto

Alexander May

Horst Görtz Institute for IT-Security Faculty of Mathematics Ruhr-University of Bochum

LATTICE CODING AND CRYPTO MEETING MAY 2017, UCL

.

Linear Codes and Distance

Definition Linear Code

A linear code is a k-dimensional subspace of \mathbb{F}_2^n .

Represent via:

• Generator matrix G

$$C = \{ \mathbf{x} G \in \mathbb{F}_2^n \mid \mathbf{x} \in \mathbb{F}_2^k \}, ext{ where } G \in \mathbb{F}_2^{k imes n}$$

• Parity check matrix H

$$C = \{ \mathbf{c} \in \mathbb{F}_2^n \mid H\mathbf{c} = \mathbf{0} \}, \text{ where } H \in \mathbb{F}_2^{n-k imes n}$$

- Random Code: $G \in_R \mathbb{F}_2^{k \times n}$ respectively $H \in_R \mathbb{F}_2^{n-k \times n}$
 - Random codes are hard instances for decoding.
 - Crypto motivation: Scramble structured C in "random" SCT.
 - Good generic hardness criterion.

Bounded and Full Distance Decoding

Definition Distance

 $d = \min_{\mathbf{c} \neq \mathbf{c}' \in C} \{\Delta(\mathbf{c}, \mathbf{c}')\},$ where Δ is the Hamming distance.

Remark: Unique decoding of $\mathbf{c} + \mathbf{e}$ when $\Delta(\mathbf{e}) \leq \frac{d-1}{2}$.

Definition Bounded Distance Decoding (BD)

Given :
$$H, \mathbf{x} = \mathbf{c} + \mathbf{e}$$
 with $\mathbf{c} \in C, \Delta(\mathbf{e}) \leq \frac{d-1}{2}$

Find : **e** and thus $\mathbf{c} = \mathbf{x} + \mathbf{e}$

Syndrome Decoding

- Syndrome $\mathbf{s} := H\mathbf{x} = H(\mathbf{c} + \mathbf{e}) = H\mathbf{c} + H\mathbf{e} = H\mathbf{e}$.
- Bounded Distance is the usual case in crypto.

Definition Full Distance Decoding (FD)

Given : $H, \mathbf{x} \in \mathbb{F}_2^n$

Find : **c** with $\Delta(\mathbf{c}, \mathbf{x}) \leq d$

On Running Times

- Running time of any decoding algorithm is a function of (*n*, *k*, *d*).
- Look at map $\mathbb{F}_2^n \to \mathbb{F}_2^{n-k}$ with $\mathbf{e} \mapsto H\mathbf{e}$ with $\Delta(\mathbf{e}) \leq d$.
- Map is injective if $\binom{n}{d} < 2^{n-k}$.
- Write $\binom{n}{d} \approx 2^{H(\frac{d}{n})n}$, which yields

 $H(\frac{d}{n}) < 1 - \frac{k}{n}$. (Gilbert-Varshamov bound)

- For random codes this bound is sharp.
- Hence, we can directly link *d* to *n*, *k*.
- Running time becomes a function of *n*, *k* only.
- Since BD/FD decoding is NP-hard we expect running time

$$T(n,k)=2^{f(\frac{k}{n})n}.$$

• For simplifying, we are mainly interested in $T(n) = \max_k \{T(n,k)\}$.

・ロト ・四ト ・ヨト ・ヨト

Running Time graphically

Alex May (HGI Bochum)

The Way to go

Let's just start.

Goal: Solve $H\mathbf{e} = \mathbf{s}$ for small weight \mathbf{e} . **Assumption:** Wlog we know $\omega := \Delta(\mathbf{e})$.

Algorithm Exhaustive Search

INPUT: *Η*, **x**, *ω*

• For all $\mathbf{e} \in \mathbb{F}_2^n$ with $\Delta(\mathbf{e}) = \omega$: Check whether $H\mathbf{e} = \mathbf{s} = H\mathbf{x}$. OUTPUT: \mathbf{e}

Running time: $T(n) = \binom{n}{\omega} \leq 2^{0.386n}$.

A (10) A (10)

Allowed Transformations

Linear algebra transformation for $\mathbf{s} = H\mathbf{e}$.

Column permutation:

$$\mathbf{s} = H\mathbf{e} = HPP^{-1}\mathbf{e}$$

for some permutation matrix $P \in \mathbb{F}_2^{n \times n}$.

2 Elementary row operations:

GHe = Gs =: s'

for some invertible matrix $G \in \mathbb{F}_2^{n-k \times n-k}$.

Easy special cases:

- **Quadratic case**: $H \in \mathbb{F}_{2}^{n \times n}$. Compute $\mathbf{e} = H^{-1}\mathbf{s}$.
- **2** Any weight $\Delta(\mathbf{e})$: Compute $GH\mathbf{e} = (H' | I_{n-k})\mathbf{e} = G\mathbf{s}$.

Remark: Hardness/unicity comes from under-defined + small weight.

< 回 > < 回 > < 回 > -

Prange's algorithm (1962) Idea: $(H' | I_{n-k})(\mathbf{e}_1 || \mathbf{e}_2) = H'\mathbf{e}_1 + \mathbf{e}_2 = \mathbf{s}'$

Algorithm Prange

INPUT: *Η*, **x**, *ω* REPEAT

- Permute columns, construct systematic $(H' | I_{n-k})$. Fix $p < \omega$.
- 2 For all e₁ ∈ F₂^k with Δ(e₁) = p:
 1 If (Δ(H'e₁ + s') = ω − p), success.

UNTIL success

OUTPUT: Undo permutation of $\mathbf{e} = (\mathbf{e}_1 || H' \mathbf{e}_1 + \mathbf{s}')$.

Running time:

- Outer loop has success prob $\frac{\binom{k}{p}\binom{n-k}{\omega-p}}{\binom{n}{2}}$.
- Inner loop has running time $\binom{k}{p}$. Total: $\frac{\binom{k}{\omega}}{\binom{n-k}{2}}$, optimal for p = 0.

• Yields running time $T(n) = 2^{\frac{1}{17}n}$, with constant memory.

Stern's algorithm (1989) Meet in the Middle:

 $(H_1 | H_2 | I_{n-k})(\mathbf{e}_1 || \mathbf{e}_2 || \mathbf{e}_3) = H_1 \mathbf{e}_1 + H_2 \mathbf{e}_2 + \mathbf{e}_3 = \mathbf{s}'$

Algorithm Stern

INPUT: H, **x**, ω REPEAT

• Permute columns, construct systematic $(H_1 | H_2 | I_{n-k})$. Fix $p < \omega$.

- **2** For all $\mathbf{e}_1 \in \mathbb{F}_2^{\frac{k}{2}}$ with $\Delta(\mathbf{e}_1) = \frac{p}{2}$: Store $H_1\mathbf{e}_1$ in sorted L_1 .
- So For all $\mathbf{e}_2 \in \mathbb{F}_2^{\frac{2}{2}}$ with $\Delta(\mathbf{e}_2) = \frac{p}{2}$: Store $H_2\mathbf{e}_2 + \mathbf{s}'$ in sorted L_2 .

Search for elements in L_1, L_2 that differ by $\Delta(\mathbf{e}_3) = \omega - p$.

UNTIL success **OUTPUT:** Undo permutation of $\mathbf{e} = (\mathbf{e}_1 || \mathbf{e}_2 || H_1 \mathbf{e}_1 + H_2 \mathbf{e}_2 + \mathbf{s}').$

Step 4: Look for vectors that completely match in ℓ coordinates.
 T(n) = 2^{1/18}, but requires memory to store L₁, L₂.

Representation Technique (Howgrave-Graham, Joux) Meet in the Middle

• Split $\mathbf{e} = (\mathbf{e}_1 || \mathbf{e}_2)$ as $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{F}_2^{\frac{k}{2}}$ with weight $\Delta(\mathbf{e}_i) = \frac{p}{2}$ each.

- Combination of **e**₁, **e**₂ is via concenation.
- Unique representation of **e** in terms of **e**₁, **e**₂.

Representation [May, Meurer, Thomae 2011]

- Split $\mathbf{e} = \mathbf{e}_1 + \mathbf{e}_2$ as $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{F}_2^k$ with weight $\Delta(\mathbf{e}_i) = \frac{p}{2}$ each.
- Combination of e₁, e₂ is via addition in F^k₂.
- **e** has many representations as $\mathbf{e}_1 + \mathbf{e}_2$.

Example for k = 8, p = 4:

$$\begin{array}{l} (01101001) &= (01100000) + (00001001) \\ &= (01001000) + (00100001) \\ &= (01000001) + (00101000) \\ &= (00101000) + (01000001) \\ &= (00001001) + (01100000) \end{array}$$

Pros and Cons of representations

Representation [MMT 2011, Asiacrypt 2011]

- Split $\mathbf{e} = \mathbf{e}_1 + \mathbf{e}_2$ as $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{F}_2^k$ with weight $\Delta(\mathbf{e}_i) = \frac{p}{2}$ each.
- Disadvantages:
 - List lengths of L_1, L_2 increases from $\binom{k/2}{p/2}$ to $\binom{k}{p/2}$.
 - Addition of e₁, e₂ usually yields Hamming weight smaller p.
- Advantage:
 - **e** has $\binom{p}{p/2} =: R$ representations as $\mathbf{e}_1 + \mathbf{e}_2$.
- Construct via Divide & Conquer only $\frac{1}{R}$ -fraction of L_1, L_2 .
- Since many solutions exist, it is easier to construct a special one.
- **Example:** Look only for $H_1 \mathbf{e}_1, H_2 \mathbf{e}_2 + \mathbf{s}'$ with last $\log(\frac{1}{B})$ coord. 0.
- Advantage (may) dominate whenever

$$\frac{\binom{k}{p/2}}{\binom{p}{p/2}} < \binom{k/2}{p/2}.$$

Result: Yields running time $2^{\frac{1}{19}n}$.

More representations (Becker, Joux, May, Meurer 2012)

Idea:

- Choose $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{F}_2^k$ with weight $\Delta(\mathbf{e}_i) = \frac{p}{2} + \epsilon$ each.
- Choose ϵ such that ϵ 1-positions cancel on expectation.
- In MMT: $\binom{p}{p/2}$ representations of 1's as

1 = 1 + 0 = 0 + 1.

• Now: Additionally $\binom{k-p}{\epsilon}$ representations of 0's as

0 = 1 + 1 = 0 + 0.

Paper subtitle:

"How 1 + 1 = 0 Improves Information Set Decoding". • Yields $T(n) = 2^{\frac{1}{20}n}$.

How to construct special solutions

A word about memory

	Bounded	Distance	Full Distance		
	time space		time	space	
Prange	0.05752	-	0.1208	-	
Stern	0.05564	0.0135	0.1167	0.0318	
Ball-collision	0.05559	0.0148	0.1164	0.0374	
MMT	0.05364	0.0216	0.1116	0.0541	
BJMM	0.04934	0.0286	0.1019	0.0769	

Э.

イロト イヨト イヨト イヨト

Stern's algorithm (1989) Meet in the Middle:

$$(H_1 | H_2 | I_{n-k})(\mathbf{e}_1 | | \mathbf{e}_2 | | \mathbf{e}_3) = H_1 \mathbf{e}_1 + H_2 \mathbf{e}_2 + \mathbf{e}_3 = \mathbf{s}'$$

Algorithm Stern

INPUT: H, **x**, ω REPEAT

• Permute columns, construct systematic $(H_1 | H_2 | I_{n-k})$. Fix $p < \omega$.

- **2** For all $\mathbf{e}_1 \in \mathbb{F}_2^{\frac{k}{2}}$ with $\Delta(\mathbf{e}_1) = \frac{p}{2}$: Store $H_1\mathbf{e}_1$ in sorted L_1 .
- So For all $\mathbf{e}_2 \in \mathbb{F}_2^{\frac{2}{2}}$ with $\Delta(\mathbf{e}_2) = \frac{p}{2}$: Store $H_2\mathbf{e}_2 + \mathbf{s}'$ in sorted L_2 .

Search for elements in L_1, L_2 that differ by $\Delta(\mathbf{e}_3) = \omega - p$.

UNTIL success **OUTPUT:** Undo permutation of $\mathbf{e} = (\mathbf{e}_1 || \mathbf{e}_2 || H_1 \mathbf{e}_1 + H_2 \mathbf{e}_2 + \mathbf{s}').$

Step 4: Look for vectors that completely match in ℓ coordinates.
 T(n) = 2^{1/18}, but requires memory to store L₁, L₂.

Nearest Neighbor Problem

Definition Nearest Neighbor Problem

Given : L_1 , $L_2 \subset_R \mathbb{F}_2^n$ with $|L_i| = 2^{\lambda n}$ Find : all $(\mathbf{u}, \mathbf{v}) \in L_1 \times L_2$ with $\Delta(\mathbf{u}, \mathbf{v}) = \gamma n$.

Easy cases:

- **1** $\gamma = \frac{1}{2}$
 - Test every combination in $L_1 \times L_2$.
 - Run time $2^{2\lambda n(1+o(1))}$.
- 2 $\gamma = 0$
 - Sort lists and find matching pairs.
 - Run time $2^{\lambda n(1+o(1))}$.

Theorem May, Ozerov 2015

Nearest Neighbor can be solved in $2^{\frac{1}{1-\gamma}\lambda n(1+o(1))}$.

э.

Main Idea of Nearest Neighbor

Observation: Nearest Neighbors are also **locally** near.

For at least one sublist pair we have $(\mathbf{u}, \mathbf{v}) \in \mathbf{L}'_1 \times \mathbf{L}'_2$ w.o.p.

Nearest Neighbor algorithm

Algorithm Nearest Neighbor

INPUT: $L_1, L_2 \subset_R \mathbb{F}_2^n$ REPEAT sufficiently often:

- Randomly compute a partition P of [n].
- **2** For each set $p \in P$
 - Compute weight in a random half of the p-coordinates of L₁, L₂.
 - Ø Keep only those vectors with a certain weight (depending on γ).
- Search the remaining filtered lists naively.

OUTPUT: all $(\mathbf{u}, \mathbf{v}) \in L_1 \times L_2$ with $\Delta(\mathbf{u}, \mathbf{v}) = \gamma n$

- Filters out until L_1, L_2 reach polynomial size.
- Algorithm has quite large polynomial overheads.
- Yields $T(n) < 2^{\frac{1}{2!}n}$ for Bounded Distance Decoding.

イロト イポト イヨト イヨト

Improvements graphically

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

Asymptotical or Real?

Yann Hamdaoui and Nicolas Sendrier,

"A Non Asymptotic Analysis of Information Set Decoding", 2013

(<i>n</i> , <i>k</i> , <i>d</i>)	Stern	MMT	BJMM
	55.60		52.90
(2048, 1696, 32)	81.60	79.50	76.82
(4096, 3844, 21)	81.23	78.88	78.46

(日)

Asymptotics for Defended McEliece

(n, k, ω)	Security	w/o NN	w/ NN
(1632, 1269, 34)	80	59	57
(2960, 288, 57)	128	107	104
(4096, 3844, 117)	256	240	232

Conclusion

MMT, BJMM relevant for cryptographic keysizes! Breakpoint for MO?

But: The improvements asymptotically vanish for McEliece.

The LPN Problem and its Relation to Codes **Problem** Learning Parities with Noise $(LPN_{n,p})$ **Given:** $(\mathbf{a}_i, \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i) \in \mathbb{F}_2^n \times \mathbb{F}_2$ with $Pr[e_i = 1] = p$. **Find:** $\mathbf{s} \in \mathbb{F}_2^n$

- Notation: $A\mathbf{s} = \mathbf{b} + \mathbf{e}$. For p = 0: Compute $\mathbf{s} = A^{-1}\mathbf{b}$.
- Best algorithm: BKW with time/sample/space $2^{\frac{n}{\log(\frac{n}{p})}}$.

Algorithm GAUSS

REPEAT

• Take *n* fresh samples. Compute $\mathbf{s}' = A^{-1}\mathbf{b}$.

2 UNTIL s' = s

Theorem

GAUSS runs in time/sample complexity $\left(\frac{1}{1-\rho}\right)^n$ and poly space.

Proof: $\Pr[\text{Iteration of REPEAT successful}] = (1 - p)^n$

Getting the samples down.

Algorithm POOLED GAUSS (Esser, Kübler, May – Crypto 2017)

- Choose a pool of $\Theta(n^2)$ samples.
- 2 REPEAT

① Take *n* samples from the pool. Compute $\mathbf{s}' = A^{-1}\mathbf{b}$.

UNTIL s' = s

Theorem

POOLED GAUSS runs in time $\left(\frac{1}{1-p}\right)^n$ with poly samples/space.

Theorem

POOLED GAUSS **quantumly** runs in
$$\left(\frac{1}{1-p}\right)^{\frac{n}{2}}$$
 with poly samples/space.

Corollary

Let $p(n) \rightarrow 0$. Then POOLED GAUSS runs in e^{pn} .

Decoding LPN with Preprocessing

Algorithm LPN with Preprocessing

INPUT: LPN_{n,p} instance

- Modify: Use many samples to produce pool of dim-reduced ones. Results in LPN_{n',p'} instance with n' < n and p' ≥ p, e.g. use BKW.</p>
- **2 Decode**: Use decoding to solve LPN_{n',p'}, e.g. POOLED GAUSS.
- Somplete: Recover rest of s, e.g. via enumeration or iterating.

Yields HYBRID algorithm that optimally uses space.

- For polynomial space: Put all efforts in **Decode**.
- For arbitrary space: Put all efforts in **Modify**.

A (10) > A (10) > A (10)

Bit Complexity Estimates for Memory $\leq 2^{60}$

Largest RAM today: IBM 20-Petaflops with 1.6PB< 2⁵⁴ bits.

p	п							
Ρ	256	384	448	512	576	640	768	1280
$\frac{1}{\sqrt{n}}$	46	53	56	59	62	64	68	82
0.05	42	53	58	63	68	73	82	120
0.125	60	88	99	110	121	132	154	239
0.25	81	139	158	178	197	216	255	407
0.4	108	174	207	240	273	300	355	575

Table: HYBRID

Bit Complexity Estimates for Memory $\leq 2^{60}$

Table: WELL-POOLED MMT

р	n							
٣	256	384	448	512	576	640	768	1280
$\frac{1}{\sqrt{n}}$	37	42	45	47	48	51	54	66
0.05	33	43	48	57	58	62	70	102
0.125	57	77	88	97	102	118	138	219
0.25	92	128	148	166	185	204	242	392
0.4	129	183	211	238	265	292	347	568

æ

NIST Security Levels

Table: $p = \frac{1}{8}$

Table: $p = \frac{1}{4}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

	ım
715 128 90 386 128 9	
	91
1115 192 127 602 192 13	30
1520 256 164 810 256 16	67
450 86 64 243 87 6	64
615 112 80 330 112 8	80
<u>1130 194 128 594 190 12</u>	28

Э.

Table: Solved instances

Algorithm	п	р	Pool	BKW	Decode	Total
WP MMT	243	0.125	6.73 d	-	8.34 d	15.07 d
WP MMT Hybrid	135 135	0.20	5.65 d 2.21 d	- 1.72 h	8.19 d 3.41 d	13.84 d 5.69 d

æ

イロト イヨト イヨト イヨト

Conclusions and Questions

Improvement for BD

$$2^{\frac{1}{17}n} \to 2^{\frac{1}{18}n} \to 2^{\frac{1}{19}n} \to 2^{\frac{1}{20}n} \to 2^{\frac{1}{21}n}.$$

- Extensions to codes over \mathbb{F}_q possible, but less effective.
- More applications of representations, nearest neighbors?
- May threaten McEliece security. Implementations?
- LPN with n = 512, $p = \frac{1}{4}$ or even $p = \frac{1}{8}$ seems (practically) secure.
- Generalization of LPN to LWE decoding only good for small error.
- Cryptanalysis: Real implementations + extrapolation.
- There is a need for small memory algorithms. What is small?
- Rule of thumb: If using time $T = 2^n$, limit memory to $M = 2^{\frac{n}{2}}$?

On the Shape of Cryptanalysis

Usefulness of Cryptanalysis:

- Provable security never solves problems, but transfers them.
- Eventually one has to use Cryptanalysis for finding keys!
- Cryptanalysis is useful, and will be in the future.
- Only 5-10% of papers is Cryptanalysis.

How to do Cryptanalysis:

- Do real experiments on small to medium scale!
- Extrapolate to large scale by asymptotical analysis.
- Asymptotical improvements are relevant improvements.
- Changing the constant *in the exponent* is significant!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

On the Shape of Cryptanalysis

What you should **avoid** in Cryptanalysis:

- Pseudo-concrete estimates using strange counting of steps.
- Your algorithm requires only 2^{79.99} operations for 80-bit security.
- As a reviewer:
 - After 30 pages of proofs, I need convincing experiments".
 - "You did better, but do not cite my work. Reject."
- Do not outsource cryptanalysis to other fields.

Why you should work in Cryptanalysis:

- You really solve problems, and not relate them to others.
- You can implement your algorithm, let it run and output solutions.
- It is fun to destroy things!

If you absolutely hate Cryptanalysis, still **encourage** it.

• If you invent a scheme, instantiate it with parameters.

< 回 > < 回 > < 回 > -