# Recent Advances in Decoding Random Binary Linear Codes - and Their Implications to Crypto 

Alexander May

Horst Görtz Institute for IT-Security
Faculty of Mathematics
Ruhr-University of Bochum

Lattice Coding and Crypto Meeting MAY 2017, UCL

## Linear Codes and Distance

## Definition Linear Code

A linear code is a $k$-dimensional subspace of $\mathbb{F}_{2}^{n}$.

Represent via:

- Generator matrix $G$

$$
C=\left\{\mathbf{x} G \in \mathbb{F}_{2}^{n} \mid \mathbf{x} \in \mathbb{F}_{2}^{k}\right\}, \text { where } G \in \mathbb{F}_{2}^{k \times n}
$$

- Parity check matrix $H$

$$
C=\left\{\mathbf{c} \in \mathbb{F}_{2}^{n} \mid H \mathbf{c}=\mathbf{0}\right\}, \text { where } H \in \mathbb{F}_{2}^{n-k \times n}
$$

- Random Code: $G \in_{R} \mathbb{F}_{2}^{k \times n}$ respectively $H \in \in_{R} \mathbb{F}_{2}^{n-k \times n}$
- Random codes are hard instances for decoding.
- Crypto motivation: Scramble structured C in "random" SCT.
- Good generic hardness criterion.


## Bounded and Full Distance Decoding

## Definition Distance

$d=\min _{\mathbf{c} \neq \mathbf{c}^{\prime} \in C}\left\{\Delta\left(\mathbf{c}, \mathbf{c}^{\prime}\right)\right\}$, where $\Delta$ is the Hamming distance.
Remark: Unique decoding of $\mathbf{c}+\mathbf{e}$ when $\Delta(\mathbf{e}) \leq \frac{d-1}{2}$.

## Definition Bounded Distance Decoding (BD)

Given : $H, \mathbf{x}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in C, \Delta(\mathbf{e}) \leq \frac{d-1}{2}$
Find : $\mathbf{e}$ and thus $\mathbf{c}=\mathbf{x}+\mathbf{e}$

## Syndrome Decoding

- Syndrome s :=Hx=H(c+e)=Hc+He=He. . .
- Bounded Distance is the usual case in crypto.

Definition Full Distance Decoding (FD)
Given : $H, \mathbf{x} \in \mathbb{F}_{2}^{n}$
Find : $\mathbf{c}$ with $\Delta(\mathbf{c}, \mathbf{x}) \leq d$

## On Running Times

- Running time of any decoding algorithm is a function of $(n, k, d)$.
- Look at map $\mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n-k}$ with $\mathbf{e} \mapsto \mathrm{He}$ with $\Delta(\mathbf{e}) \leq d$.
- Map is injective if $\binom{n}{d}<2^{n-k}$.
- Write $\binom{n}{d} \approx 2^{H\left(\frac{d}{n}\right) n}$, which yields

$$
\left.H\left(\frac{d}{n}\right)<1-\frac{k}{n} . \quad \text { (Gilbert-Varshamov bound }\right)
$$

- For random codes this bound is sharp.
- Hence, we can directly link $d$ to $n, k$.
- Running time becomes a function of $n, k$ only.
- Since BD/FD decoding is NP-hard we expect running time

$$
T(n, k)=2^{f\left(\frac{k}{n}\right) n}
$$

- For simplifying, we are mainly interested in $T(n)=\max _{k}\{T(n, k)\}$.


## Running Time graphically



## The Way to go

| 0.097 | 0.102 | 0.112 | 0.117 | 0.121 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 0 |  |
| MO (15) | BJMM (12) | MMT (11) | Stern (89) Prange (62) |  |  |

Figure: Full Distance decoding (FD)

| 0.0473 | 0.0494 | 0.0537 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0.0557 | 0.0576 |
|  |  |  |  |  |
| $M O$ (15) | BJMM (12) | MMT (11) | Stern (89) Prange (62) |  |

Figure: Bounded Distance decoding (BD)

## Let's just start.

Goal: Solve $\mathrm{He}=\mathbf{s}$ for small weight $\mathbf{e}$.
Assumption: Wlog we know $\omega:=\Delta(\mathbf{e})$.
Algorithm Exhaustive Search
INPUT: $H, \mathbf{x}, \omega$
(1) For all $\mathbf{e} \in \mathbb{F}_{2}^{n}$ with $\Delta(\mathbf{e})=\omega$ : Check whether $H \mathbf{e}=\mathbf{s}=H \mathbf{x}$. OUTPUT: e

Running time: $T(n)=\binom{n}{\omega} \leq 2^{0.386 n}$.

## Allowed Transformations

Linear algebra transformation for $\mathbf{s}=$ He.
© Column permutation:

$$
\mathbf{s}=H \mathbf{e}=H P P^{-1} \mathbf{e}
$$

for some permutation matrix $P \in \mathbb{F}_{2}^{n \times n}$.
(2) Elementary row operations:

$$
G H \mathbf{e}=G \mathbf{s}=: \mathbf{s}^{\prime}
$$

for some invertible matrix $G \in \mathbb{F}_{2}^{n-k \times n-k}$.
Easy special cases:
(1) Quadratic case: $H \in \mathbb{F}_{2}^{n \times n}$. Compute $\mathbf{e}=H^{-1} \mathbf{s}$.
(2) Any weight $\Delta(\mathbf{e})$ : Compute $G H \mathbf{e}=\left(H^{\prime} \mid I_{n-k}\right) \mathbf{e}=G \mathbf{s}$.

Remark: Hardness/unicity comes from under-defined + small weight.

Prange's algorithm (1962)
Idea: $\left(H^{\prime} \mid I_{n-k}\right)\left(\mathbf{e}_{1} \| \mathbf{e}_{2}\right)=H^{\prime} \mathbf{e}_{1}+\mathbf{e}_{2}=\mathbf{s}^{\prime}$

## Algorithm Prange

INPUT: H, x, $\omega$
REPEAT
(1) Permute columns, construct systematic $\left(H^{\prime} \mid I_{n-k}\right)$. Fix $p<\omega$.
(2) For all $\mathbf{e}_{1} \in \mathbb{F}_{2}^{k}$ with $\Delta\left(\mathbf{e}_{1}\right)=p$ :

- If $\left(\Delta\left(H^{\prime} \mathbf{e}_{1}+\mathbf{s}^{\prime}\right)=\omega-p\right)$, success.

UNTIL success
OUTPUT: Undo permutation of $\mathbf{e}=\left(\mathbf{e}_{1} \| H^{\prime} \mathbf{e}_{1}+\mathbf{s}^{\prime}\right)$.
Running time:

- Outer loop has success prob $\frac{\binom{k}{\rho}\left(\begin{array}{c}n-k \\ \omega-\rho \\ \omega \\ \omega\end{array}\right)}{\left(\begin{array}{l}\omega\end{array}\right)}$.

- Yields running time $T(n)=2^{\frac{1}{17} n}$, with constant memory.

Stern's algorithm (1989)
Meet in the Middle:

$$
\left(H_{1}\left|H_{2}\right| I_{n-k}\right)\left(\mathbf{e}_{1} \| \mathbf{e}_{2}| | \mathbf{e}_{3}\right)=H_{1} \mathbf{e}_{1}+H_{2} \mathbf{e}_{2}+\mathbf{e}_{3}=\mathbf{s}^{\prime}
$$

## Algorithm Stern

INPUT: $H, \mathbf{x}, \omega$
REPEAT
(1) Permute columns, construct systematic $\left(H_{1}\left|H_{2}\right| I_{n-k}\right)$. Fix $p<\omega$.
(2) For all $\mathbf{e}_{1} \in \mathbb{F}_{2}^{\frac{k}{2}}$ with $\Delta\left(\mathbf{e}_{1}\right)=\frac{p}{2}$ : Store $H_{1} \mathbf{e}_{1}$ in sorted $L_{1}$.
(3) For all $\mathbf{e}_{2} \in \mathbb{F}_{2}^{\frac{k}{2}}$ with $\Delta\left(\mathbf{e}_{2}\right)=\frac{p}{2}$ : Store $H_{2} \mathbf{e}_{2}+\mathbf{s}^{\prime}$ in sorted $L_{2}$.
(4) Search for elements in $L_{1}, L_{2}$ that differ by $\Delta\left(\mathbf{e}_{3}\right)=\omega-p$.

UNTIL success
OUTPUT: Undo permutation of $\mathbf{e}=\left(\mathbf{e}_{1}\left\|\mathbf{e}_{2}\right\| H_{1} \mathbf{e}_{1}+H_{2} \mathbf{e}_{2}+\mathbf{s}^{\prime}\right)$.

- Step 4: Look for vectors that completely match in $\ell$ coordinates.
- $T(n)=2^{\frac{1}{18}}$, but requires memory to store $L_{1}, L_{2}$.


## Representation Technique (Howgrave-Graham, Joux)

 Meet in the Middle- Split $\mathbf{e}=\left(\mathbf{e}_{1} \| \mathbf{e}_{2}\right)$ as $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{F}_{2}^{\frac{k}{2}}$ with weight $\Delta\left(\mathbf{e}_{i}\right)=\frac{p}{2}$ each.
- Combination of $\mathbf{e}_{1}, \mathbf{e}_{2}$ is via concenation.
- Unique representation of $\mathbf{e}$ in terms of $\mathbf{e}_{1}, \mathbf{e}_{2}$.

Representation [May, Meurer, Thomae 2011]

- Split $\mathbf{e}=\mathbf{e}_{1}+\mathbf{e}_{2}$ as $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{F}_{2}^{k}$ with weight $\Delta\left(\mathbf{e}_{i}\right)=\frac{p}{2}$ each.
- Combination of $\mathbf{e}_{1}, \mathbf{e}_{2}$ is via addition in $\mathbb{F}_{2}^{k}$.
- $\mathbf{e}$ has many representations as $\mathbf{e}_{1}+\mathbf{e}_{2}$.

Example for $k=8, p=4$ :

$$
\begin{aligned}
(01101001) & =(01100000)+(00001001) \\
& =(01001000)+(00100001) \\
& =(01000001)+(00101000) \\
& =(00101000)+(01000001) \\
& =(00100001)+(01001000) \\
& =(00001001)+(01100000)
\end{aligned}
$$

## Pros and Cons of representations

## Representation [MMT 2011, Asiacrypt 2011]

- Split $\mathbf{e}=\mathbf{e}_{1}+\mathbf{e}_{2}$ as $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{F}_{2}^{k}$ with weight $\Delta\left(\mathbf{e}_{i}\right)=\frac{p}{2}$ each.
- Disadvantages:
- List lengths of $L_{1}, L_{2}$ increases from $\binom{k / 2}{p / 2}$ to $\binom{k}{p / 2}$.
- Addition of $\mathbf{e}_{1}, \mathbf{e}_{2}$ usually yields Hamming weight smaller $p$.
- Advantage:
- $\mathbf{e}$ has $\binom{p}{p / 2}=: R$ representations as $\mathbf{e}_{1}+\mathbf{e}_{2}$.
- Construct via Divide \& Conquer only $\frac{1}{R}$-fraction of $L_{1}, L_{2}$.
- Since many solutions exist, it is easier to construct a special one.
- Example: Look only for $H_{1} \mathbf{e}_{1}, H_{2} \mathbf{e}_{2}+\mathbf{s}^{\prime}$ with last $\log \left(\frac{1}{R}\right)$ coord. 0.
- Advantage (may) dominate whenever

$$
\frac{\binom{k}{p / 2}}{\binom{D}{p / 2}}<\binom{k / 2}{p / 2} .
$$

Result: Yields running time $2^{\frac{1}{19} n}$.

## More representations (Becker,Joux,May,Meurer 2012)

## Idea:

- Choose $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{F}_{2}^{k}$ with weight $\Delta\left(\mathbf{e}_{i}\right)=\frac{p}{2}+\epsilon$ each.
- Choose $\epsilon$ such that $\epsilon$ 1-positions cancel on expectation.
- In MMT: $\binom{p}{p / 2}$ representations of 1 's as

$$
1=1+0=0+1 .
$$

- Now: Additionally $\binom{k-p}{\epsilon}$ representations of 0 's as

$$
0=1+1=0+0
$$

- Paper subtitle:
"How $1+1=0$ Improves Information Set Decoding".
- Yields $T(n)=2^{\frac{1}{20} n}$.


## How to construct special solutions



## A word about memory

|  | Bounded Distance |  | Full Distance |  |
| :--- | :---: | :---: | :---: | :---: |
|  | time | space | time | space |
| Prange | 0.05752 | - | 0.1208 | - |
| Stern | 0.05564 | 0.0135 | 0.1167 | 0.0318 |
| Ball-collision | 0.05559 | 0.0148 | 0.1164 | 0.0374 |
| MMT | 0.05364 | 0.0216 | 0.1116 | 0.0541 |
| BJMM | 0.04934 | 0.0286 | 0.1019 | 0.0769 |

Stern's algorithm (1989)
Meet in the Middle:

$$
\left(H_{1}\left|H_{2}\right| I_{n-k}\right)\left(\mathbf{e}_{1} \| \mathbf{e}_{2}| | \mathbf{e}_{3}\right)=H_{1} \mathbf{e}_{1}+H_{2} \mathbf{e}_{2}+\mathbf{e}_{3}=\mathbf{s}^{\prime}
$$

## Algorithm Stern

INPUT: $H, \mathbf{x}, \omega$
REPEAT
(1) Permute columns, construct systematic $\left(H_{1}\left|H_{2}\right| I_{n-k}\right)$. Fix $p<\omega$.
(2) For all $\mathbf{e}_{1} \in \mathbb{F}_{2}^{\frac{k}{2}}$ with $\Delta\left(\mathbf{e}_{1}\right)=\frac{p}{2}$ : Store $H_{1} \mathbf{e}_{1}$ in sorted $L_{1}$.
(3) For all $\mathbf{e}_{2} \in \mathbb{F}_{2}^{\frac{k}{2}}$ with $\Delta\left(\mathbf{e}_{2}\right)=\frac{p}{2}$ : Store $H_{2} \mathbf{e}_{2}+\mathbf{s}^{\prime}$ in sorted $L_{2}$.
(4) Search for elements in $L_{1}, L_{2}$ that differ by $\Delta\left(\mathbf{e}_{3}\right)=\omega-p$.

UNTIL success
OUTPUT: Undo permutation of $\mathbf{e}=\left(\mathbf{e}_{1}\left\|\mathbf{e}_{2}\right\| H_{1} \mathbf{e}_{1}+H_{2} \mathbf{e}_{2}+\mathbf{s}^{\prime}\right)$.

- Step 4: Look for vectors that completely match in $\ell$ coordinates.
- $T(n)=2^{\frac{1}{18}}$, but requires memory to store $L_{1}, L_{2}$.


## Nearest Neighbor Problem

## Definition Nearest Neighbor Problem

Given $: L_{1}, L_{2} \subset_{R} \mathbb{F}_{2}^{n}$ with $\left|L_{i}\right|=2^{\lambda n}$
Find $\quad:$ all $(\mathbf{u}, \mathbf{v}) \in L_{1} \times L_{2}$ with $\Delta(\mathbf{u}, \mathbf{v})=\gamma n$.

## Easy cases:

(1) $\gamma=\frac{1}{2}$

- Test every combination in $L_{1} \times L_{2}$.
- Run time $2^{2 \lambda n(1+o(1))}$.
(2) $\gamma=0$
- Sort lists and find matching pairs.
- Run time $2^{\lambda n(1+o(1))}$.


## Theorem May, Ozerov 2015

Nearest Neighbor can be solved in $2^{\frac{1}{1-\gamma} \lambda n(1+o(1))}$.

## Main Idea of Nearest Neighbor

Observation: Nearest Neighbors are also locally near.

$$
\begin{array}{l|l|l|}
\mathbf{u} \in \mathbf{L}_{1} \\
\mathbf{v} \in \mathbf{L}_{2} & \mathbf{L}_{1} & \mathbf{L}_{2} \\
& & =\text { size: } 2^{\lambda n} \\
& =-
\end{array}
$$

create exponentiallv manv sublists by choosing random partitions $P$


For at least one sublist pair we have $(\mathbf{u}, \mathbf{v}) \in \mathbf{L}_{1}^{\prime} \times \mathbf{L}_{2}^{\prime}$ w.o.p.

## Nearest Neighbor algorithm

## Algorithm Nearest Neighbor

INPUT: $L_{1}, L_{2} \subset_{R} \mathbb{F}_{2}^{n}$
REPEAT sufficiently often:
(0) Randomly compute a partition $P$ of $[n]$.
(2) For each set $p \in P$

- Compute weight in a random half of the $p$-coordinates of $L_{1}, L_{2}$.
(3) Keep only those vectors with a certain weight (depending on $\gamma$ ).
(3) Search the remaining filtered lists naively.

OUTPUT: all $(\mathbf{u}, \mathbf{v}) \in L_{1} \times L_{2}$ with $\Delta(\mathbf{u}, \mathbf{v})=\gamma n$

- Filters out until $L_{1}, L_{2}$ reach polynomial size.
- Algorithm has quite large polynomial overheads.
- Yields $T(n)<2^{\frac{1}{11} n}$ for Bounded Distance Decoding.


## Improvements graphically



## Asymptotical or Real?

Yann Hamdaoui and Nicolas Sendrier,
"A Non Asymptotic Analysis of Information Set Decoding", 2013

| $(n, k, d)$ | Stern | MMT | BJMM |
| :---: | :---: | :---: | :---: |
| $(1024,524,50)$ | 55.60 | 54.75 | 52.90 |
| $(2048,1696,32)$ | 81.60 | 79.50 | 76.82 |
| $(4096,3844,21)$ | 81.23 | 78.88 | 78.46 |

## Asymptotics for Defended McEliece

| $(n, k, \omega)$ | Security | w/o NN | w/ NN |
| :---: | :---: | :---: | :---: |
| $(1632,1269,34)$ | 80 | 59 | 57 |
| $(2960,288,57)$ | 128 | 107 | 104 |
| $(4096,3844,117)$ | 256 | 240 | 232 |

## Conclusion

MMT, BJMM relevant for cryptographic keysizes! Breakpoint for MO?

But: The improvements asymptotically vanish for McEliece.

## The LPN Problem and its Relation to Codes

Problem Learning Parities with Noise (LPN ${ }_{n, p}$ )
Given: $\quad\left(\mathbf{a}_{i},\left\langle\mathbf{a}_{i}, \mathbf{s}\right\rangle+e_{i}\right) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}$ with $\operatorname{Pr}\left[e_{i}=1\right]=p$. Find: $\quad \mathbf{s} \in \mathbb{F}_{2}^{n}$

- Notation: $A \mathbf{s}=\mathbf{b}+\mathbf{e}$. For $p=0$ : Compute $\mathbf{s}=A^{-1} \mathbf{b}$.
- Best algorithm: BKW with time/sample/space $2^{\frac{n}{\log \left(\frac{n}{p}\right)}}$.


## Algorithm GaUSS

(1) REPEAT
(1) Take $n$ fresh samples. Compute $\mathbf{s}^{\prime}=A^{-1} \mathbf{b}$.
(2) UNTIL $\mathbf{s}^{\prime}=\mathbf{s}$

## Theorem

GAUSS runs in time/sample complexity $\left(\frac{1}{1-p}\right)^{n}$ and poly space.


Getting the samples down.
Algorithm Pooled Gauss (Esser, Kübler, May - Crypto 2017)
(1) Choose a pool of $\Theta\left(n^{2}\right)$ samples.
(2) REPEAT

- Take $n$ samples from the pool. Compute $\mathbf{s}^{\prime}=A^{-1} \mathbf{b}$.
(3) UNTIL $\mathbf{s}^{\prime}=\mathbf{s}$


## Theorem

Pooled Gauss runs in time $\left(\frac{1}{1-p}\right)^{n}$ with poly samples/space.

## Theorem

Pooled Gauss quantumly runs in $\left(\frac{1}{1-p}\right)^{\frac{n}{2}}$ with poly samples/space.

## Corollary

Let $p(n) \rightarrow 0$. Then Pooled Gauss runs in $e^{p n}$.

## Decoding LPN with Preprocessing

## Algorithm LPN with Preprocessing

INPUT: LPN ${ }_{n, p}$ instance
(1) Modify: Use many samples to produce pool of dim-reduced ones. Results in $\mathrm{LPN}_{n^{\prime}, p^{\prime}}$ instance with $n^{\prime}<n$ and $p^{\prime} \geq p$, e.g. use BKW.
(2) Decode: Use decoding to solve $\mathrm{LPN}_{n^{\prime}, p^{\prime}}$, e.g. Pooled Gauss.
(3) Complete: Recover rest of $\mathbf{s}$, e.g. via enumeration or iterating.

Yields HYBRID algorithm that optimally uses space.

- For polynomial space: Put all efforts in Decode.
- For arbitrary space: Put all efforts in Modify.


## Bit Complexity Estimates for Memory $\leq 2^{60}$

Largest RAM today: IBM 20 -Petaflops with $1.6 \mathrm{~PB}<2^{54}$ bits.

Table: Hybrid

| $p$ | $n$ |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | 256 | 384 | 448 | 512 | 576 | 640 | 768 | 1280 |  |
| $\frac{1}{\sqrt{n}}$ | $\mathbf{4 6}$ | 53 | 56 | 59 | $\mathbf{6 2}$ | $\mathbf{6 4}$ | $\mathbf{6 8}$ | $\mathbf{8 2}$ |  |
| 0.05 | $\mathbf{4 2}$ | 53 | 58 | $\mathbf{6 3}$ | $\mathbf{6 8}$ | $\mathbf{7 3}$ | $\mathbf{8 2}$ | $\mathbf{1 2 0}$ |  |
| 0.125 | 60 | 88 | 99 | $\mathbf{1 1 0}$ | $\mathbf{1 2 1}$ | $\mathbf{1 3 2}$ | $\mathbf{1 5 4}$ | $\mathbf{2 3 9}$ |  |
| 0.25 | 81 | 139 | 158 | $\mathbf{1 7 8}$ | $\mathbf{1 9 7}$ | $\mathbf{2 1 6}$ | $\mathbf{2 5 5}$ | 407 |  |
| 0.4 | 108 | 174 | 207 | 240 | $\mathbf{2 7 3}$ | $\mathbf{3 0 0}$ | $\mathbf{3 5 5}$ | 575 |  |

## Bit Complexity Estimates for Memory $\leq 2^{60}$

Table: Well-Pooled MMT

| $p$ | $n$ |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | 256 | 384 | 448 | 512 | 576 | 640 | 768 | 1280 |  |
| $\frac{1}{\sqrt{n}}$ | 37 | 42 | 45 | 47 | 48 | 51 | 54 | 66 |  |
| 0.05 | 33 | 43 | 48 | 57 | 58 | 62 | 70 | 102 |  |
| 0.125 | 57 | 77 | 88 | 97 | 102 | 118 | 138 | 219 |  |
| 0.25 | 92 | 128 | 148 | 166 | 185 | 204 | 242 | 392 |  |
| 0.4 | 129 | 183 | 211 | 238 | 265 | 292 | 347 | 568 |  |

## NIST Security Levels

| Table: $p=\frac{1}{8}$ |  |  |
| :---: | ---: | ---: |
| $n$ | Classic | Quantum |
| 715 | $\mathbf{1 2 8}$ | 90 |
| 1115 | $\mathbf{1 9 2}$ | 127 |
| 1520 | $\mathbf{2 5 6}$ | 164 |
| 450 | 86 | 64 |
| 615 | 112 | 80 |
| 1130 | 194 | $\mathbf{1 2 8}$ |


| Table: $p=\frac{1}{4}$ |  |  |
| :---: | ---: | ---: |
| $n$ | Classic | Quantum |
| 386 | $\mathbf{1 2 8}$ | 91 |
| 602 | $\mathbf{1 9 2}$ | 130 |
| 810 | $\mathbf{2 5 6}$ | 167 |
| 243 | 87 | 64 |
| 330 | 112 | $\mathbf{8 0}$ |
| 594 | 190 | $\mathbf{1 2 8}$ |

## Experiments

Table: Solved instances

| Algorithm | $n$ | $p$ | Pool | BKW | Decode | Total |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| WP MMT | 243 | 0.125 | 6.73 d | - | 8.34 d | $\mathbf{1 5 . 0 7 \mathrm { d }}$ |
| WP MMT | 135 | 0.25 | 5.65 d | - | 8.19 d | $\mathbf{1 3 . 8 4 \mathrm { d }}$ |
| HYBRID | 135 | 0.25 | 2.21 d | 1.72 h | 3.41 d | 5.69 d |

## Conclusions and Questions

- Improvement for BD

$$
2^{\frac{1}{17} n} \rightarrow 2^{\frac{1}{18} n} \rightarrow 2^{\frac{1}{19} n} \rightarrow 2^{\frac{1}{20} n} \rightarrow 2^{\frac{1}{21} n} .
$$

- Extensions to codes over $\mathbb{F}_{q}$ possible, but less effective.
- More applications of representations, nearest neighbors?
- May threaten McEliece security. Implementations?
- LPN with $n=512, p=\frac{1}{4}$ or even $p=\frac{1}{8}$ seems (practically) secure.
- Generalization of LPN to LWE decoding only good for small error.
- Cryptanalysis: Real implementations + extrapolation.
- There is a need for small memory algorithms. What is small?
- Rule of thumb: If using time $T=2^{n}$, limit memory to $M=2^{\frac{n}{2}}$ ?


## On the Shape of Cryptanalysis

Usefulness of Cryptanalysis:

- Provable security never solves problems, but transfers them.
- Eventually one has to use Cryptanalysis for finding keys!
- Cryptanalysis is useful, and will be in the future.
- Only $5-10 \%$ of papers is Cryptanalysis.

How to do Cryptanalysis:

- Do real experiments on small to medium scale!
- Extrapolate to large scale by asymptotical analysis.
- Asymptotical improvements are relevant improvements.
- Changing the constant in the exponent is significant!


## On the Shape of Cryptanalysis

What you should avoid in Cryptanalysis:

- Pseudo-concrete estimates using strange counting of steps.
- Your algorithm requires only $2^{79.99}$ operations for 80 -bit security.
- As a reviewer:
- "After 30 pages of proofs, I need convincing experiments".
- "You did better, but do not cite my work. Reject."
- Do not outsource cryptanalysis to other fields.

Why you should work in Cryptanalysis:

- You really solve problems, and not relate them to others.
- You can implement your algorithm, let it run and output solutions.
- It is fun to destroy things!

If you absolutely hate Cryptanalysis, still encourage it.

- If you invent a scheme, instantiate it with parameters.

