Lattice Reduction and Factorization for Equalization

Robert F.H. Fischer Sebastian Stern

Institut für Nachrichtentechnik, Universität Ulm

Introduction

Digital Communications:
- abstract high-level view of digital communications
 - a point x drawn from some signal constellation \mathcal{A} is transmitted
 (a point can represent $\log_2 |\mathcal{A}|$ bits of information)
 - the channel adds (interference and) noise n
 - the received symbols is $y = x + n$
 - at the receiver, decisions have to be taken
- since we can use quadrature modulation (modulation of amplitude and phase), all signals are complex-valued

Channel Coding:
- for reducing the error rate, channel coding is employed
- in block codes (codelength η) not all \mathcal{A}^η combinations are used but only those which can be distinguished reliably
- a trade-off between transmission rate (bit rate) and error rate is possible

Outline

- Introduction
- Equalization
 - Structure of the Signals
 - Maximum-Likelihood Detection
 - Linear Equalization
- Lattice-Reduction-Aided Equalization
 - LRA Scheme
 - IF Scheme
- Factorization Task
 - Criteria
 - Constraints
- Lattices and Lattice Problems
 - Shortest Independent Vector Problem
 - Lattice Basis Reduction
- Numerical Results
- LRA Decision-Feedback Equalization
 - Structure
 - Sorting
 - Algorithm
- Numerical Results
- Summary

Introduction (II)

Situation: multipoint-to-point transmission, **MIMO multiple-access channel**
- K non-cooperating single-antenna users
- central base station with N_R receive antennas
- joint processing/decoding at the receiver side possible

Channel Encoding / Mapping:
- channel coding done over the finite field \mathbb{F}_p
 - $(q_k$ and c_k taken from \mathbb{F}_p)
- mapping \mathcal{M} of finite-field symbols c_k to complex-valued points x_k
 - taken from some signal constellation \mathcal{A}
Introduction (III)

Question: How to perform equalization / decoding?

Usual Approach:
- joint equalization / decoding typically much too complex
 ➔ separate equalization / decoding
- channel decoding
 - individual (per user)
 - over a temporal block (code word)
- low-complexity equalization strategy (as for the uncoded case)
 - over the users
 - per time step

Signal Constellations and Codes

Signal Constellation: Construction
- signal point lattice
 \[\Lambda_a \]
 typically: \(\Lambda_a = \mathbb{Z} \) or \(\Lambda_a = \mathbb{G} = \mathbb{Z} + j \mathbb{Z} \)
- "shaping" lattice
 \[\Lambda_s \]
 and its Voronoï region \(\mathcal{R}_V(\Lambda_s) \)
 (typically a sublattice of \(\Lambda_a \))
- **signal constellation**
 \[\mathcal{A} = \Lambda_a \cap \mathcal{R}_V(\Lambda_s) \]
- **lattice code**
 do everything in \(N \) dimensions
 \[\mathcal{C} = \Lambda_a \cap \mathcal{R}_V(\Lambda_s) \]

Intuition (IV)

Equalization of MIMO Channel:

\[y = Hx + n \]

done symbol-by-symbol (independently over the time steps) in the uncoded case

Equalization Schemes:
- linear equalization
 according to zero-forcing (ZF) or minimum mean-squared error (MMSE) criterion
- decision-feedback equalization (DFE)
 aka successive interference cancellation, (V-)BLAST
- lattice-reduction-aided (LRA) / integer-forcing (IF) schemes
 low-complexity, high-performance schemes
- maximum-likelihood detection (MLD) / lattice decoding
 optimum procedure, highest complexity

Decoding and Demapping

Channel Encoding and Decoding:

Encoding:
- encoding ENC over \(F_p \)
- mapping \(\mathcal{M} \) to signal point in \(\mathcal{C} \)

Decoding:
- lattice decoding (in signal space) w.r.t. to \(\Lambda_s \)
- demapping \(\mathcal{M}^{-1} \) to \(\hat{c} \in F_p \)
- encoder inverse ENC\(^{-1} \)

Variant:
- demapping modulo \(\Lambda_a \), i.e., \(\text{mod} \mathcal{M}^{-1} \)
Structure of the Signals

Visualization: (real-valued example $K = 2$, $A = \mathbb{Z}$, $|A| = 3$)

\[x, Hx, y = Hx + n \]

Maximum-Likelihood Detection

Optimum Detection Rule: ML criterion $f_X(x)$: probability density function

\[\hat{x} = \arg\max_{x \in A^K} f_Y(y | x) = \arg\min_{x \in A^K} \|y - Hx\|^2 \]

- lattice decoding — high complexity per time step efficient implementation via the Sphere Decoder
- for combination with channel decoding generation of soft output required

Lattice:
- K-dim. lattice spanned by basis vectors b_1, b_2, \ldots, b_K — basis matrix
 \[B = [b_1 \ b_2 \ \cdots \ b_K] \]
- real-valued lattice
 \[\Lambda = \{ \lambda = \sum_{k=1}^{K} z_k b_k = B [z_1 \ z_2 \ \cdots \ z_K] \mid z_k \in \mathbb{Z} \} \]

Lattice Structure of the Signal:
- for $x \subset G^K = (\mathbb{Z} + j\mathbb{Z})^K$ the noise-free receive vectors
 \[z = Hx \]
 are taken from the complex-valued lattice $\Lambda = HG^K$ spanned by the columns h_k of the channel matrix
 \[H = [h_1 \ h_2 \ \cdots \ h_K] \]

Linear Equalization

Linear Equalization: simple strategy — filtering followed by individual decision/decoding

- this equalization strategy / scheme can be optimized either according to the zero-forcing (ZF) or minimum mean-squared error (MMSE) criterion
- zero-forcing criterion: \(I: \) identity matrix; \((\cdot)^{\dagger}: \) (left) pseudoinverse
 \[F_{LE} \cdot H = I \quad \Rightarrow \quad F_{LE,ZF} = (H^H H)^{-1} H^H \]
- minimum mean-squared error criterion: \(\varsigma \approx 1/\sigma_e^2 \)
 \[\text{error signal } e = F_{LE} y - x; \text{ error covariance matrix } \Phi_e = E\{ee^H\} \]
 \[\text{trace } (\Phi_e) \rightarrow \min \quad \Rightarrow \quad F_{LE,MMSE} = (H^H H + \varsigma I)^{-1} H^H \]
Linear Equalization (II)

Problem of equalizing the signal
- the noise is filtered, too \(\Rightarrow\) noise enhancement
- individual threshold decision per dimension not optimum

Lattice-Reduction-Aided Equalization

Visualization:

\[
H = \begin{bmatrix} h_1 & h_2 \end{bmatrix}
\]

Linear Equalization (III)

Noise Enhancement:
- ZF solution \(F_{ZF} = (H^H H)^{-1} H^H \)

\[
r = F_{ZF} y = x + F_{ZF} n
\]
- noise variance (n i.i.d. components with variance \(\sigma_n^2 \))

\[
\sigma_{n_k}^2 = \sigma_n^2 \cdot \|f_k\|^2
\]
- noise enhancement

\[
E_k = \sigma_{n_k}^2 / \sigma_n^2 = \|f_k\|^2
\]

(biased) MMSE solution \(F_{LE, MMSE} = (H^H H + \zeta I)^{-1} H^H \)

or with \(H = \begin{bmatrix} \mathbf{H} \end{bmatrix} \) we have \(F_{LE, MMSE} = (H^H H + \zeta I)^{-1} H^H \)
- error covariance matrix

\[
\Phi_{ee} / \sigma_n^2 = (H^H H + \zeta I)^{-1} = (H^H H)^{-1}
\]
- noise enhancement

\[
E_k = \left[\frac{\Phi_{ee}}{\sigma_n^2} \right]_{k,k} = \|f_k\|^2
\]

Visualization:

\[
H = \begin{bmatrix} h_1 & h_2 \end{bmatrix}
\]

\[
C = \begin{bmatrix} c_1 & c_2 \end{bmatrix}
\]

\[
= HZ, \quad Z \in \mathbb{Z}^{2 \times 2} / \{ \text{det}(Z) = 1 \}
\]
Lattice-Reduction-Aided Equalization

Visualization:

\[
H = \begin{bmatrix} h_1 & h_2 \end{bmatrix}
\]
\[
C = \begin{bmatrix} c_1 & c_2 \end{bmatrix}
= HZ , \quad Z \in \mathbb{Z}_{2 \times 2} | \det(Z) = 1
\]

Integer-Forcing Schemes

Compute-And-Forward Strategy in Relaying:

- the receiver decodes an integer linear combination of the codewords
- resolution of linear combinations at some central unit on only finite-field symbols are communicated — processing over \(\mathbb{F}_p \)

Equalization Schemes

Linear Equalization:

Lattice-Reduction-Aided Equalization: \([YW02],[WF03]\)

Compute-And-Forward Strategy in Relaying:

- the receiver decodes an integer linear combination of the codewords
- resolution of linear combinations at some central unit on only finite-field symbols are communicated — processing over \(\mathbb{F}_p \)
- if a joint/central receiver is present, some preprocessing can be done prior to channel decoding — integer-forcing receiver \([ZNEG14]\)
Integer-Forcing Equalization:

- the users have to use the same linear code (or subcodes thereof) any integer linear combination of valid codewords is a valid codeword over \(\mathbb{F}_p \)
- a linear mapping has to be applied the arithmetics over \(\mathbb{F}_p \) has to match that over \(\mathbb{R} \) (or \(\mathbb{C} \)) modulo \(p \)
- this only works if the cardinality of the signal constellation is a prime number and equal to the field size \(p \)
- the integer matrix has only to be invertible over \(\mathbb{F}_p \)
 \(\Rightarrow \) \(\mathbb{Z}_p \) only has to have full rank

Fischer: Lattice Reduction and Factorization for Equalization

Structure

<table>
<thead>
<tr>
<th>Lattice-Reduction-Aided Equalization</th>
<th>Integer-Forcing Equalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-oriented</td>
<td>signal-oriented</td>
</tr>
<tr>
<td>joint receiver</td>
<td>distributed antenna systems</td>
</tr>
<tr>
<td>treat integer interference over</td>
<td></td>
</tr>
<tr>
<td>(\mathbb{G} = \mathbb{Z} + \mathbb{J} \mathbb{Z})</td>
<td>(\mathbb{F}_p)</td>
</tr>
<tr>
<td>constraint on signal constellation and mapping</td>
<td>Incorporation of coding match arithmetic in (\mathbb{R}) (or (\mathbb{C})) and (\mathbb{F}_p) one-dim. (p)-ary constellation, (p) a prime</td>
</tr>
</tbody>
</table>

Equalization Schemes

Points to discuss:

- structure
 - LRA vs. IF
 - respective constraints on signal constellations and codes
- factorization task \(\mathbb{H} = \mathbb{CZ} \)
 - optimization criterion
 - performance measure
 - suited algorithm
- constraints on \(\mathbb{Z} \)
 - unimodular matrix — \(|\text{det}(\mathbb{Z})| = 1 \)
 - shortest basis problem
 - full-rank matrix — \(\text{rank}(\mathbb{Z}) = K \)
 - shortest independent vector problem

Factorization Task

Basic Idea of LRA Schemes:

- choose a “more suited” representation of the lattice, a reduced basis
- perform equalization with respect to this new basis; integer linear combinations of the data symbols are detected

Procedure:

- input/output relation
 \(\mathbb{y} = \mathbb{Hx} + \mathbb{n} = \mathbb{CZx} + \mathbb{n} \)
- ZF linear equalization of \(\mathbb{C} \) — equalization matrix \(\mathbb{F}_\text{LE},\mathbb{C} = \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 \end{bmatrix} = \mathbb{C}^+ \)
 \(\mathbb{r} = \mathbb{F}_\text{LE},\mathbb{C} \mathbb{y} = \mathbb{F}_\text{LE},\mathbb{C} (\mathbb{CZx} + \mathbb{n}) = \mathbb{Zx} + \mathbb{F}_\text{LE},\mathbb{C} \mathbb{n} \)
- the noise power in branch \(k \) is given by (\(\mathbb{m} \): i.i.d. components with variance \(\sigma_m^2 \))
 \[\sigma_{n_k}^2 = \sigma_m^2 \cdot \| \mathbf{f}_k \|_2^2 = \sigma_m^2 \cdot E_k \]
 with noise enhancement \(E_k = \| f_k \|_2^2 \)
Factorization Task (II)

Problem: given \(H \), find \(C \) and \(Z \) such that

- factorization of \(H \)
 \[H = CZ \]
- \(Z \) is an integer matrix
 \[Z \in \mathbb{Z}^{K \times K}, \quad \text{rank}(Z) = K \]
- if applicable: \(|\det(Z)| = 1 \) (unimodular)
- \(C \), the "reduced channel", or
 \(F_{LE} \), the "equalization matrix", have desired properties

Required: to solve this factorization problem, we need
- a meaningful criterion
- a practical algorithm

Factorization Criteria

Criterion I:

- lattice reduction may directly applied to the channel matrix \(H \)
 \[H = C_I Z_I \]

- typically, the orthogonality defect of \(C_I = [c_1 \ldots c_K] \) is minimized
 \[\delta(C_I) = \prod_{k=1}^{K} \|c_k\| \]

- this means that the basis vectors \(c_k \), the column vectors of \(C_I \)
 should be as short as possible (have small Euclidean norm)
- shortest basis/independent vector problem

- a substitute criterion is optimized, instead of system performance

Factorization Criteria (II)

Criterion II:

- for square channel matrices, the ZF equalization matrix reads
 \[F_{LE} = C^{-1} = (HZ^{-1})^{-1} = ZH^{-1} \]
- the squared row norms of \(F_{LE} \) give the noise enhancement
- factorization task
 \[(X^{-H})^{-1} = (X^{-1})^H \]
 \[H^{-H} = F_{II}^H Z_{II}^{-H} \]

- the column vectors of \(F_{II}^H \) should be as short as possible
- if \(Z_{II}^{-1} \) is an unimodular integer matrix, \(Z_{II}^{-H} \) has also this property
- for non-square channel matrices the left pseudoinverse is used
 \[(H^{-H})^H = F_{II}^H Z_{II}^{-H} \]

\(H \in \mathbb{C}^{N \times K}, N \geq K \)

Factorization Criteria (III)

Criterion III:

- the MMSE solution can be calculated as ZF solution for the augmented channel matrix
 \[H = C_{III} Z_{III} \]

- factorization task (\(\zeta = \sigma_n^2/\sigma_x^2 \))
 \[\begin{bmatrix} H & \sqrt{\zeta} I \end{bmatrix} \hat{C}_{III} = Z_{III} \]

- optimum MMSE equalization matrix
 \[F_{LE,MMSE,C} = \left(\begin{bmatrix} C_{III}^H \end{bmatrix}^{-1} C_{III} \right)^{-1} C_{III}^H \]
 \[= \left(C_{III}^H C_{III} + \zeta Z_{III}^H Z_{III} \right)^{-1} C_{III}^H \]
 \[= Z_{III} (H^H H + \zeta I)^{-1} H^H = Z_{III} F_{LE,MMSE,H} \]

- the column vectors of \(C_{III} \) should be as short as possible
- as in Criterion I, a substitute measure is optimized
- in almost all cases \(Z_I = Z_{III} \)

Factorization Criteria (IV)

Criterion IV: [FWSSSU12], [ZNEG14], [FCS16]

- applying MMSE linear equalization, the noise enhancement is given by
 \[E_k = \left(\Phi_{kk} \right)_{kk} / \sigma_n^2 = \left(C^H C + \zeta Z^H Z^{-1} \right)_{kk} \]
 \[= \left[Z (H^H H + \zeta I)^{-1} Z^H \right]_{kk} = z_k^H (H^H H + \zeta I)^{-1} z_k \]
 with \(Z^H = [z_1, \ldots, z_K] \)

- \(L \) is any square root of \((H^H H + \zeta I)^{-1} = (H^H H)^{-1} \); we may choose \(L = H^+ \)

- factorization task (using \(L^H Z = (H^+)^H Z \), \(H^+ \) is the dual lattice)
 \[(H^+)^H = F^H Z^{-1} \]

- the column vectors of \(F^H \) should be as short as possible

Factorization Criteria (V)

Summary: (in each case \(Z \in \mathbb{C}^{K \times K} \))

- the criteria available in the literature can be classified as follows

<table>
<thead>
<tr>
<th>Based on channel matrix (H) ("ZF solution")</th>
<th>Augmented matrix (\mathcal{H}) ("MMSE solution")</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(H = CZ)</td>
</tr>
<tr>
<td>((H^+)^H)</td>
<td>((H^+)^H = F^H Z^{-1})</td>
</tr>
</tbody>
</table>

Involved lattices:
- \(H \): lattice spanned by channel matrix
- \((H^+)^H \): dual lattice

Constraint on \(Z \)

Constraint on the Integer Matrix \(Z \in \mathbb{Z}^{K \times K} \):

- typically, in LRA equalization it has been forced
 \[\det(Z) = 1 \] unimodular matrix

 hence a change of basis is performed
 \(\Rightarrow \) Lattice Basis Reduction

- in IF equalization, the constraint is relaxed to
 \[\text{rank}(Z) = K \] full-rank matrix

 (to be precise: \(\text{rank}(Z_{\mathbb{C}}) = K \))

 \(\Rightarrow \) Shortest Independent Vector Problem

Observation: [FCS16]

using the LRA equalization structure, unimodularity of \(Z \) is not required

\(\Rightarrow \) both, LRA and IF, can use the same factorization criterion and the same constraint on \(Z \)!

Visualization (real-valued example \(K = 2, |A| = 5 \))

- vectors \(\bar{x} = Zx \), with \(x \in A^K \)

 example \(Z = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \), \(\det(Z) = 1 \)

Lattices and Lattice Problems

Lattice:
- We deal with complex-valued lattices

\[\Lambda(G) = \{ \lambda = \sum_{k=1}^{K} z_k g_k | z_k \in \mathbb{C} \} \]

where

\[G = [g_1, \ldots, g_K] \in \mathbb{C}^{N \times K} \]

is its generator matrix (basis) consisting of \(K \in \mathbb{N} \) linearly independent basis vectors \(g_k \in \mathbb{C}^N, N \geq K, N \in \mathbb{N} \)

\((N \)-dimensional lattice of rank \(K \))

Alternative Description:
- Instead of dealing with the complex-valued generator matrix \(G \), one can use the real-valued equivalent \([\text{Win'04}]\)

\[G_{\text{real}} = \begin{bmatrix} \text{Re}(G) & -\text{Im}(G) \\ \text{Im}(G) & \text{Re}(G) \end{bmatrix} \]

of doubled dimension

Minkowski's Successive Minima:
- \(k^{th}, k = 1, \ldots, K \), successive minimum of \(\Lambda(G) \) \([\text{Cas'97}, \text{LLS'90}, \text{DKWZ'15}]\)

\[\rho_k(\Lambda(G)) = \inf \{ r_k | \dim (\text{span} (\Lambda(G) \cap B_N(r_k))) = k \} \]

with
- \(B_N(r) \): \(N \)-dimensional ball (over \(\mathbb{C} \)) with radius \(r \) centered at the origin
- \(\text{span}(\cdot) \): linear span

\(\rho_k(\Lambda(G)) \) is the norm of the shortest vector of the lattice \(\Lambda(G) \)

Visualization:
- For any matrix \(G \in \mathbb{C}^{N \times K} \) can be decomposed into the form

\[G = G^* R \]

with
- \(G^* = [g_1^*, \ldots, g_K^*] \): Gram-Schmidt orthogonalization of \(G \) with orthogonal columns \(g_1^*, \ldots, g_K^* \)
- \(R = [r_{l,k}] \in \mathbb{C}^{K \times K} \): upper triangular with unit main diagonal

Gram-Schmidt (GS) Orthogonalization:
- Successive procedure

\[g_k^* = g_k - \sum_{l=1}^{k-1} r_{l,k} g_l^* \]

\[r_{l,k} = \frac{(g_l^*)^H g_k^*}{\|g_l^*\|^2}, \quad l = 1, \ldots, k \]

Visualization:
Lattices and Lattice Problems (IV)

Given: a complex-valued lattice \(\Lambda(G) \) of rank \(K \)

Shortest Independent Vector Problem (SIVP):
- find set \(\mathcal{G} = \{ \lambda_1, \ldots, \lambda_K \} \) of \(K \) linearly independent vectors \(\lambda_k \in \Lambda(G) \), such that
 \[
 \max_{k=1,\ldots,K} \| \lambda_k \| = \rho_K(\Lambda(G))
 \]
- the largest vector has to be as short as possible; the norms of all shorter vectors do not matter

Successive Minima Problem (SMP):
- find set \(\mathcal{G} = \{ \lambda_1, \ldots, \lambda_K \} \) of \(K \) linearly independent vectors \(\lambda_k \in \Lambda(G) \), such that
 \[
 \| \lambda_k \| = \rho_k(\Lambda(G)), \quad k = 1, \ldots, K
 \]
- all lattice vectors in the set \(\mathcal{G} \) have to be as short as possible; naturally, SMP is also a solution to SIVP
- efficient strategies for solving the (C)SMP are available \([\text{DKWZ}'15],[\text{FCS}'16]\)

Lattices and Lattice Problems (V)

Set of Linearly Independent Vectors:
- the obtained vectors are lattice points \(\lambda_k \in \Lambda(G) \), hence
 \[
 \lambda_k = Gu_k, \quad \text{with} \quad u_k \in \mathbb{C}^K, \quad \forall k
 \]
- the matrix \(V \equiv [\lambda_1, \ldots, \lambda_K] \) is related to \(G \) via
 \[
 V = GU
 \]
 or
 \[
 G = VU^{-1}
 \]
 with \(U \in \mathbb{C}^{K \times K} \) and \(|\det(U)| \in \overline{G} \setminus \{0\} \)

Lattices and Lattice Problems (VI)

Lattice Basis Reduction:
- find set \(\mathcal{G} = \{ \lambda_1, \ldots, \lambda_K \} \) of \(K \) linearly independent vectors \(\lambda_k \in \Lambda(G) \), such that
 \[
 \Lambda(G) = \Lambda(G_i)
 \]
 with
 \[
 G_i = [g_{i,1}, \ldots, g_{i,K}] = [\lambda_1, \ldots, \lambda_K]
 \]
- the generator matrices are related by
 \[
 G_i = GU
 \]
 or
 \[
 G = G_iU^{-1}
 \]
 where \(U \in \mathbb{C}^{K \times K} \) is unimodular, i.e., \(|\det(U)| = 1 \); hence \(U^{-1} \in \mathbb{C}^{K \times K} \)

Lattices and Lattice Problems (VII)

Lenstra-Lenstra-Lovász (LLL) Reduction:
- a generator matrix \(G = [g_1, \ldots, g_K] \in \mathbb{C}^{N \times K} \) with Gram–Schmidt orthogonal basis \(G' = [g'_1, \ldots, g'_K] \) and upper triangular matrix \(R \) is called (C)LLL-reduced, if
 1. for \(1 \leq l < k \leq K \), it is size-reduced according to
 \[
 |\text{Re}(r_{l,k})| \leq 0.5 \quad \text{and} \quad |\text{Im}(r_{l,k})| \leq 0.5
 \]
 2. for \(k = 2, \ldots, K \) and a parameter \(0.5 < \delta \leq 1 \)
 \[
 \| g_k \|^2 \geq (\delta - |r_{k-1,k}|^2)\| g_{k-1} \|^2
 \]
- the parameter \(\delta \) controls the trade-off between “strength” of the LLL reduction and computational complexity — usually \(\delta = 0.75 \); the case \(\delta = 1 \) is denoted as optimal LLL reduction \([\text{A03}]\)
- for \(\delta < 1 \) the algorithm has polynomial complexity \([\text{A03}]\)
Lattices and Lattice Problems (VIII)

Hermite-Korkine-Zolotareff (HKZ) Reduction:
- a generator matrix \(G = [g_1, \ldots, g_K] \in \mathbb{C}^{N \times K} \) with Gram-Schmidt orthogonal basis \(G^\perp = [g_1^\perp, \ldots, g_K^\perp] \) and upper triangular matrix \(R \) is called (C)HKZ-reduced, if

1. for \(1 \leq l < k \leq K \), it is size-reduced according to
 \[\text{Re}\{r_{lk}\} \leq 0.5 \quad \text{and} \quad \text{Im}\{r_{lk}\} \leq 0.5 \]
2. for \(k = 1, \ldots, K \), the columns of \(G^\perp \) fulfill
 \[\|g_k^\perp\| = \rho_1(\Lambda(G^{(k)})) \]
 (shortest (non-zero) vector in \(\Lambda(G^{(k)}) \))

- \(\Lambda(G^{(k)}) \): sublattice of rank \(K - k + 1 \) and dimension \(N \) with generator matrix \(G^{(k)} = [0, \ldots, 0, g_k^\perp, \ldots, g_K^\perp] R \)
- \(\Lambda(G^{(k)}) \) is the orth. projection of \(\Lambda(G) \) onto the orth. complement of \(\{g_1, \ldots, g_{k-1}\} \)

since shortest vectors have to be found, the problem is NP-hard;
- efficient (complex-valued) algorithms available

Application to Equalization

Recall: Criterion IV
- MMSE linear equalization via \(F^H = ZH^+ = \begin{bmatrix} h_1 \\ \vdots \\ h_N \end{bmatrix} \)
- noise enhancement
 \[E_k = \| \tilde{f}_k \|^2 = \| (H^+)^k z_k \|^2 \rightarrow \min \]
 with \(Z^H = [z_1, \ldots, z_K] \)
- factorization task
 \[(H^+)^k = F^H Z^{-1} \]
- the column vectors of \(F^H \) should be as short as possible

Lattices and Lattice Problems (IX)

Minkowski (MK) Reduction:
- a generator matrix \(G = [g_1, \ldots, g_K] \in \mathbb{C}^{N \times K} \) is called (CMK-reduced, if

\[\|g_k\| \leq \|g_k^\prime\|, \quad k = 1, \ldots, K \]
\[\forall G^\prime = [g_1^\prime, \ldots, g_{K-1}^\prime, g_K^\prime, \ldots, g_K^\prime] \]

with
\[\Lambda(G^\prime) = \Lambda(G) \]

\(G \) is Minkowski-reduced if for \(k = 1, \ldots, K \) the basis vector \(g_i \) has minimum norm among all possible lattice points \(g_i^\prime \) for which the set \(\{g_1, g_2, \ldots, g_{i-1}, g_i^\prime, g_i^\prime, \ldots, g_K^\prime\} \) can be extended to a basis of \(\Lambda(G) \)

- in contrast to the SMP where only the \(K \) shortest independent lattice vectors have to be found, here the \(K \) shortest vectors have to be obtained that form a basis of the lattice

- efficient (real-valued) algorithm available

in the real-valued case, the calculation of a greatest common divisor (gcd) is required;
- in the complex-valued case the gcd for Gaussian integers has to be used (calculated via the Euclidean Algorithm)

Application to Equalization (II)

Factorization Problem: \(Z^H = [z_1, \ldots, z_K] \)
- \(|\det(Z^H)| = 1 \) required

\[Z^H = \arg\min_{g_k \in \mathbb{C}^{K \times K}} \max_{k=1,\ldots,K} \| (H^+)^k z_k \|^2 \] \(\Rightarrow \) shortest basis problem (SBP)

- the MK-reduced basis is directly defined by the length of its basis vectors
- it consists of the \(K \) shortest lattice vectors that form a basis of the lattice (not only the norm is minimized)

\(\Rightarrow \) Minkowski reduction gives the optimum integer matrix \(Z \)

- full-rank matrix \(Z \) sufficient

\[Z^H = \arg\min_{g_k \in \mathbb{C}^{K \times K}} \max_{k=1,\ldots,K} \| (H^+)^k z_k \|^2 \] \(\Rightarrow \) shortest independent vector problem (SIVP)

- this problem is optimally solved—in a stricter sense—if the \(K \) successive minima of \(\Lambda(H^+)^{(k)} \) are obtained

\(\Rightarrow \) Minkowski’s successive minima give the optimum integer matrix \(Z \)
Numerical Results

Obtained Vectors z_k:
- factorization of G

\[
G = \begin{bmatrix}
 0.8 + 0j & -0.5 + 0j & -0.1 - 0j & 0.7 - 1j \\
 0.3 - 0j & 0.1 + 0j & 0.2 - 0j & 0.2 + 1j \\
 0.1 - 0j & -0.2 + 0j & 0.1 + 0j & 0.3 - 1j \\
 0.8 - 0j & 0.1 - 0j & 0.2 + 0j & 0.2 - 1j \\
\end{bmatrix}
\]

u_k:
- LatticeReductionandFactorizationforEqualization

\[
\begin{array}{c|cccccccc}
\lambda_k & |\lambda_k|^2 & 1.43 & 1.48 & 1.51 & 1.54 & 1.55 & 1.59 & 1.64 & 1.69 & 1.72 & 1.73 & 1.74 & 1.77 \\
\hline
\text{rank} & 1 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 4 & 4 \\
LLL = 25 & X & X & X & X & X & X & X & X & X & X & X & X & X \\
LLL = 1 & X & X & X & X & X & X & X & X & X & X & X & X & X \\
HKZ & X & X & X & X & X & X & X & X & X & X & X & X & X \\
MK & X & X & X & X & X & X & X & X & X & X & X & X & X \\
SMP & X & X & X & X & X & X & X & X & X & X & X & X & X \\
\end{array}
\]

- det(Z_{SMP}) = 1 + j

Numerical Results (II)

Distribution of $|\det(Z)|$:
- H: i.i.d. random zero-mean unit-variance complex Gaussian; $K = N$
- $\sigma_i^2/\sigma_n^2 \in [20\text{ dB}]$
- criterion IV — SMP

| $|\det(Z)|$ | 1 | $\sqrt{2}$ | 2 | $\sqrt{5}$ |
|---|---|---|---|---|
| $\sigma_i^2/\sigma_n^2 = 0 \text{ dB}$ | 99.6 % | 0.45 % | 0.0002 % | — |
| $\sigma_i^2/\sigma_n^2 = 10 \text{ dB}$ | 96.2 % | 3.83 % | 0.02 % | 0.002 % |
| $\sigma_i^2/\sigma_n^2 = 20 \text{ dB}$ | 95.4 % | 4.45 % | 0.03 % | 0.003 % |
| $\sigma_i^2/\sigma_n^2 = 30 \text{ dB}$ | 95.5 % | 4.48 % | 0.03 % | 0.002 % |

Numerical Results (III)

Distribution of $|\det(Z)|$:
- H: i.i.d. random zero-mean unit-variance complex Gaussian
- $K = N = 6$
- criterion IV — SMP

Numerical Results (IV)

Bit Error Rate:
- LRA structure; linear MMSE equalization — different criteria and constraints
- H: i.i.d. random zero-mean unit-variance complex Gaussian; $K = N$
- uncoded transmission; 16QAM signaling:

\[
E_b/N_0 = \sigma_i^2/(\sigma_n^2 \log_2(16))
\]

\[
\begin{array}{c}
\text{BER} \\
\hline
\text{C-I + SBP} & \text{C-II + SBP} & \text{C-IV + SBP} & \text{C-I + V} & \text{C-II + V} & \text{C-IV + V} \\
\end{array}
\]

$K = 8$
Numerical Results (V)

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms
- H: i.i.d. random zero-mean unit-variance complex Gaussian; $K = N$
- uncoded transmission; 16QAM signaling; $E_b/N_0 = \sigma_x^2 / (\sigma_n^2 \text{log}_2(16))$

<table>
<thead>
<tr>
<th>SMP</th>
<th>$K = N =$</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_x^2 / \sigma_n^2 \leq 15$ dB</td>
<td>100 %</td>
<td>99.0 %</td>
<td>95.7 %</td>
<td>90.3 %</td>
<td>83.8 %</td>
<td></td>
</tr>
<tr>
<td>$\sigma_x^2 / \sigma_n^2 \leq 20$ dB</td>
<td>100 %</td>
<td>99.0 %</td>
<td>95.6 %</td>
<td>89.8 %</td>
<td>82.3 %</td>
<td></td>
</tr>
<tr>
<td>$\sigma_x^2 / \sigma_n^2 \rightarrow \infty$</td>
<td>100 %</td>
<td>99.0 %</td>
<td>95.5 %</td>
<td>89.4 %</td>
<td>81.5 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SIVP</th>
<th>$K = N =$</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_x^2 / \sigma_n^2 \leq 15$ dB</td>
<td>100 %</td>
<td>99.2 %</td>
<td>97.0 %</td>
<td>94.0 %</td>
<td>90.6 %</td>
<td></td>
</tr>
<tr>
<td>$\sigma_x^2 / \sigma_n^2 \leq 20$ dB</td>
<td>100 %</td>
<td>99.2 %</td>
<td>97.0 %</td>
<td>93.5 %</td>
<td>89.3 %</td>
<td></td>
</tr>
<tr>
<td>$\sigma_x^2 / \sigma_n^2 \rightarrow \infty$</td>
<td>100 %</td>
<td>99.2 %</td>
<td>96.9 %</td>
<td>93.2 %</td>
<td>88.5 %</td>
<td></td>
</tr>
</tbody>
</table>

per the complex case and $K = N = 2$, an MK-reduced basis is always a solution to the SMP

Numerical Results (VI)

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms
- H: i.i.d. random zero-mean unit-variance complex Gaussian; $K = N$
- uncoded transmission; 16QAM signaling

Numerical Results (VII)

Percentages “MK = SMP” and “MK = SIVP”:
- H: i.i.d. random zero-mean unit-variance complex Gaussian
- $K = N$; criterion IV

Numerical Results (VIII)

Distribution of Deviation from Optimum:
- H: i.i.d. random zero-mean unit-variance complex Gaussian
- $K = N = 8$; $\sigma_x^2 / \sigma_n^2 \geq 20$ dB
- criterion IV
Lattice Reduction and Factorization for Equalization

Decision-Feedback Equalization: aka successive interference cancellation, V-BLAST

- QR decomposition of the channel matrix:
 - Q: orthogonal matrix; B: upper triangular, unit main diagonal
 - $H = QB$
- signal after feedforward processing with $F_{\text{DFE},H} \equiv (Q^H Q)^{-1} Q^H$ $r = F_{\text{DFE},H} y = B x + \tilde{n}$
 - spatially causal signal transmission matrix B
 - Gaussian noise vector \tilde{n} with correlation matrix $\sigma^2_{\tilde{n}} Q^H Q$^{-1}
 - i.e., with $Q = \begin{bmatrix} q_1 & \cdots & q_K \end{bmatrix}$ noise variances $\sigma^2 = \sigma^2_{\tilde{n}} |q_k|^2$
 - decisions are taken successively (order $K, \ldots, 1$)

Optimum Detection Order: V-BLAST ordering

- for $k = K, \ldots, 1$: the norm of the vector q_k should be the largest among the remaining components $1, \ldots, k$
- BLAST ordering requires great effort

Simpler Strategy:

- instead of maximizing $\|q_k\|^2$ in sequence $k = K, K-1, \ldots, 1$
 - it is minimized in sequence $k = 1, 2, \ldots, K$
- for $k = 1, \ldots, K$: the norm of the vector q_k should be the smallest among the remaining components k, \ldots, K

Gram–Schmidt procedure with pivoting

Simple but Optimum Strategy:

- do not apply Gram–Schmidt procedure with pivoting to H, but to $(H^H)^H$
- use factorization $(H^H)^H P^{-H} = F^H B^{-H}$
- order within GS proc.: $k = K, \ldots, 1$; i.e., B^{-H} should be lower triangular

MMSE version of DFE:

- ZF version for $K = N$:
 - $HP = F^{-1} B$
- MMSE version of DFE:
 - with $H = \begin{bmatrix} q_1 \\ \vdots \\ q_K \end{bmatrix}$

LRA Decision-Feedback Equalization:

Strategies:

- obvious
 - perform i) factorization $H = CZ$;
 - ii) sorted QR decomposition $CP = QB$
- more efficient
 - reuse Q and R anyway calculated within LLL or HKZ
- optimum
 - do sorting, Gram–Schmidt procedure, and size reduction jointly
LRA Decision-Feedback Equalization (II)

Pseudocode of Factorization Approach: [SF17]

\[
\begin{align*}
&[Q, R, T] = \text{GramSchmidtSort}_{\text{LRA}}(G) \\
&Q = G, R = I, T = I \\
&k = 1 \\
&\text{while } k \leq K
\{ \\
&\quad q_k = \text{shortest vector in } \Lambda([q_k, \ldots, q_K]) \\
&\quad \text{if } \|q_k\|^2 \neq \|q_i\|^2
\{ \\
&\quad \quad q_k = q_k \\
&\quad \quad \text{update } Q, R, T \text{ such that } \Lambda(QR) = \Lambda(G) \\
&\quad \} \\
&\quad \text{for } i = k + 1, \ldots, K
\{ \\
&\quad r_{ik} = q_i^T q_k / \|q_k\|^2 \\
&\quad q_i = q_i - r_{ik} q_k \\
&\quad \} \\
&\quad k = k + 1 \\
&\}
\end{align*}
\]

Fischer: Lattice Reduction and Factorization for Equalization

51

LRA Decision-Feedback Equalization (III)

Recall: Hermite-Korkine-Zolotareff (HKZ) Reduction

- a generator matrix \(G = [g_1, \ldots, g_K] \in \mathbb{C}^{N \times K} \) with Gram-Schmidt orthogonal basis \(G' = [g'_1, \ldots, g'_K] \) and upper triangular matrix \(R \)

is called (C)HKZ-reduced, if

1. for \(1 \leq l < k \leq K \), it is size-reduced according to

\[
|\Re\{r_{l,k}\}| \leq 0.5 \quad \text{and} \quad |\Im\{r_{l,k}\}| \leq 0.5
\]

2. for \(k = 1, \ldots, K \), the columns of \(G' \) fulfill

\[
\|g'_k\| = \rho_1(\Lambda(G^{(k)}))
\]

\((\text{shortest (non-zero) vector in } \Lambda(G^{(k)})) \)

- \(\Lambda(G^{(k)}); \) sublattice with generator matrix \(G^{(k)} = [0, \ldots, 0, g'_k, \ldots, g'_K]R \)

Fischer: Lattice Reduction and Factorization for Equalization

52

LRA Decision-Feedback Equalization (IV)

Discussion:

- the size-reduction step of HKZ is not present; as it changes only \(R \) it is of no relevance for performance of LRA DFE
 \(\Rightarrow \) effective HKZ reduction

- for \(G = (H^*)^H \) the algorithms returns \(Z^H = T \) and \(F^H = Q \) with
 - V-CAST sorting
 - the columns of \(F^H \) have minimum norm (optimal worst-link performance as in classical V-CAST but for LRA equalization)

- this optimum is achieved with an unimodular \(Z \); a relaxation to \(\text{rank}(Z) = K \) is not required
 \(\Rightarrow \) successive IF and LRA DFE both can be restricted to unimodular \(Z \)

\[\text{[OEN13]}\]

Fischer: Lattice Reduction and Factorization for Equalization

53

LRA Decision-Feedback Equalization (V)

LRA Decision-Feedback Equalization:

- redraw to noise-prediction structure
- apply modulo reduction w.r.t. \(\Lambda_s \)
- exchange \(Z^{-1} \) and demapping/encoder inverse
- combine to demapping modulo \(\Lambda_s \)

\(\Rightarrow \) successive IF only works in noise-prediction structure

\[\text{[Fis02]}\]

Fischer: Lattice Reduction and Factorization for Equalization

54
Numerical Results

Table: BER vs. \(10 \log_{10}\left(\frac{E_b}{N_0}\right) \) [dB]

<table>
<thead>
<tr>
<th>BER</th>
<th>(10 \log_{10}\left(\frac{E_b}{N_0}\right)) [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-1</td>
<td>0</td>
</tr>
<tr>
<td>10^-2</td>
<td>1</td>
</tr>
<tr>
<td>10^-3</td>
<td>2</td>
</tr>
<tr>
<td>10^-4</td>
<td>3</td>
</tr>
</tbody>
</table>

Summary

Low-Complexity Equalization Schemes:
- tight relation between LRA and IF equalization
- structure how equalization and decoding are combined
- performance measure for defining the factorization task
- optimization criterion
- constraints on the integer matrix — SBP vs. SIVP
- algorithms for performing the factorization

Optimum Integer Matrix \(Z \):
- linear equalization
 - \(|\text{det}(Z)| = 1 \) Minkowski reduction gives the optimum
 - \(\text{rank}(Z) = K \) Minkowski’s successive minima give the optimum
- decision-feedback equalization
 - (effective) HKZ reduction gives the optimum
 - (relaxation to \(|\text{det}(Z)| > 1 \) not required)

Dualization:
- transmitter-side precoding for broadcast channel
 - LRA / IF precoding

References

References

