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abstract high-level view of digital communications

– a point x drawn from some signal constellationA is transmitted
(a point can represent log2 |A| bits of information)

– the channel adds (interference and) noise n

– the received symbols is y = x + n

– at the receiver, decisions have to be taken

y x̂

n

x

A = {−1, +1}

since we can use quadrature modulation (modulation of amplitude and phase),

all signals are complex-valued

for reducing the error rate, channel coding is employed

in block codes (codelength η) not all Aη combinations are used but only

those which can be distinguished reliably

a trade-off between transmission rate (bit rate) and error rate is possible
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multipoint-to-point transmission,MIMO multiple-access channel

K non-cooperating single-antenna users

central base station withNR receive antennas

=> joint processing/decoding at the receiver side possible

CFp

q1

qK

ENC

ENC

c1 M
x1

cK M
xK

H

n

y

y = Hx+ n

channel coding done over the finite field Fp

(qk and ck taken from Fp)

mappingM of finite-field symbols ck to complex-valued points xk

taken from some signal constellationA
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How to perform equalization / decoding?

FpC C

q̂1

q̂K

DEC
x̂1

x̂K
?

ENC−1DEC
M−1

M−1

ENC−1

r1

y

rK

joint equalization / decoding typically much to complex

=> separate equalization / decoding

channel decoding

– individual (per user)

– over a temporal block (code word)

low-complexity equalization strategy (as for the uncoded case)

– over the users

– per time step
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y = Hx + n

done symbol-by-symbol (independently over the time steps) in the uncoded case

linear equalization
according to zero-forcing (ZF) or minimummean-squared error (MMSE) criterion

decision-feedback equalization (DFE)
aka successive interference cancellation, (V-)BLAST

lattice-reduction-aided (LRA) / integer-forcing (IF) schemes
low-complexity, high-performance schemes

maximum-likelihood detection (MLD) / lattice decoding
optimum procedure, highest complexity
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Construction

signal point lattice

Λa

typically: Λa = Z orΛa = G = Z + jZ

„shaping“ lattice

Λs

and its Voronoi regionRV(Λs)
(typically a sublattice ofΛa:Λs ⊂ Λa)

signal constellation

A = Λa ∩RV(Λs)

lattice code

do everything inN dimensions

C = Λa ∩RV(Λs)

A

RV(Λs)RV(Λs)

ΛsΛsΛs
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encoding ENC over Fp

mappingM to signal point in C

lattice decoding (in signal space)

w.r.t. toΛc

demappingM−1 to ĉ ∈ Fp

encoder inverse ENC−1

demapping moduloΛs, i.e.,modM−1
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(real-valued exampleK = 2, Λc = Z, |A| = 5)

x Hx y = Hx + n
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K-dim. lattice spanned by basis vectors b1, b2, . . ., bK — basis matrix

B =
[
b1 b2 · · · bK

]

real-valued lattice

Λ =
{
λ =

∑K

k=1
zkbk = B

[
z1
...
zK

]
| zk ∈ Z

}
def
= BZ

K

for x ⊂ GK = (Z + jZ)K the noise-free receive vectors

z = Hx

are taken from the complex-valued latticeΛ = HG
K spanned by the

columns hk of the channel matrix

H =
[
h1 h2 · · · hK

]

Fischer: Lattice Reduction and Factorization for Equalization 9

ML criterion fX(x): probability density function

x̂ = argmax
x∈AK

fY (y | x) = argmin
x∈AK

∥∥y −Hx
∥∥2

lattice decoding— high complexity per time step

efficient implementation via the Sphere Decoder [AEVZ’02]

for combination with channel decoding generation of soft output required
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simple strategy — filtering followed by individual decision/decoding

xK

n

y r

x̂K

x1

H F LE

x̂1

this equalization strategy / scheme can be optimized either according to the

zero-forcing (ZF) orminimum mean-squared error (MMSE) criterion

zero-forcing criterion: (I : identity matrix; (·)+: (left) pseudoinverse)

F LE ·H !
= I => F LE,ZF =

(
HHH

)−1
HH def

= H+

minimum mean-squared error criterion: (ζ
def
= σ2

n/σ
2
x)

error signal e = F LEy − x; error covariance matrixΦee = E{eeH}

trace
(
Φee

) !→ min => F LE,MMSE =
(
HHH + ζI

)−1
HH
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of equalizing the signal

the noise is filtered, too => noise enhancement

individual threshold decision per dimension not optimum
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ZF solution— F LE,ZF =
(
HHH

)−1
HH =

[
f1

...

fK

]
; r = F LE,ZFy = x + F LE,ZFn

– noise variance (n i.i.d. components with variance σ2
n)

σ2
nk

= σ2
n · ‖f k‖2

– noise enhancement

Ek = σ2
nk
/σ2

n = ‖f k‖2

(biased) MMSE solution— F LE,MMSE =
(
HHH + ζI

)−1
HH

or withH =
[

H√
ζI

]
we have FLE,MMSE =

(
H

H
H)−1HH =

[
f1
...

fK

]

– error covariance matrix

Φee/σ
2
n =

(
HHH + ζI

)−1
=

(
H

H
H

)−1

– noise enhancement (FLE,MMSEF
H

LE,MMSE =
(
H

H
H)−1HH

H
(
H

H
H)−1 =

(
H

H
H)−1)

Ek =
[
Φee/σ

2
n

]
k,k

= ‖ fk ‖2
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H =
[
h1 h2

]
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H =
[
h1 h2

]

C =
[
c1 c2

]

= HZ , Z∈Z2×2
| det(Z)|=1
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H =
[
h1 h2

]

C =
[
c1 c2

]

= HZ , Z∈Z2×2
| det(Z)|=1
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[YW’02], [WF’03]
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[NG’11]

FpFp C C

Z−1

F

q̂

ˆ̄qK
DEC

DEC
ˆ̄q1r1

rK

x1M
c1

ENC
q1

qK
ENC

cK M
xK

ENC−1

ENC−1

ˆ̄x1 modM−1

ˆ̄xK modM−1

the receiver decodes an integer linear combination of the codewords

resolution of linear combinations at some central unit

only finite-field symbols are communicated— processing over Fp

Fischer: Lattice Reduction and Factorization for Equalization 16

[NG’11]

FpC

y

F LE

r q̂

Z−1

F

ˆ̄q1ˆ̄x1DEC

DEC

ENC−1

ENC−1

modM−1

ˆ̄qKˆ̄xK modM−1

the receiver decodes an integer linear combination of the codewords

resolution of linear combinations at some central unit

only finite-field symbols are communicated— processing over Fp

if a joint/central receiver is present, some preprocessing can be done prior

to channel decoding— integer-forcing receiver [ZNEG’14]
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[ZNEG’14]

Fp C C Fp

q1

qK

ENC

ENC

c1 M
x1

cK M
xK

H

n

y

F LE

r
DEC

DEC
ˆ̄xK

ˆ̄qK

Z−1

F

q̂ENC−1

ENC−1

ˆ̄q1ˆ̄x1 modM−1

modM−1

the users have to use the same linear code (or subcodes thereof)

any integer linear combination of valid codewords is a valid codeword over Fp

a linear mapping has to be applied
the arithmetics over Fp has to match that over R (or C) modulo p [FSK’13]

this only works if the cardinality of the signal constellation is a

prime number and equal to the field size p

the integer matrix has only to be invertible over Fp

=>ZF only has to have full rank
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[YW’02], [WF’03]

[ZNEG’14]

ˆ̄x1

ˆ̄xK

DEC

DEC

DEC

DEC

F LE,C Z−1

r′ ENC−1
M−1

M−1

ENC−1

x̂K

x̂1

q̂1

q̂K

M−1

ENC−1

M−1

ENC−1

x̂

Z−1

ˆ̄x1

F LE,C

ry

modM−1

modM−1

structure

– LRA vs. IF

– respective constraints on

signal constellations and codes

factorization taskH = CZ

– optimization criterion

– performance measure

– suited algorithm

constraints onZ

– unimodular matrix — | det(Z)| = 1
shortest basis problem

– full-rank matrix — rank(Z) = K
shortest independent vector problem
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Lattice-Reduction-Aided Equalization Integer-Forcing Equalization

C Fp

y
F LE

r
DEC

DEC

ˆ̄x1

ˆ̄xK

Z−1
x̂

q̂K

ENC−1

ENC−1

q̂1
M

−1

M
−1

C Fp

y
F LE

r
DEC

DEC
ˆ̄xK

ˆ̄x1
ˆ̄q
1

ˆ̄qK

Z−1

F

q̂ENC−1

ENC−1

M
−1

M
−1

denomination

channel-oriented signal-oriented

suited for

joint receiver distributed antenna systems

treat integer interference over

G = Z + jZ Fp

constraint on signal constellation and mapping

usually treated uncoded incorporation of coding

signal points drawn from a lattice match arithmetic in R (or C) and Fp

linear codes over R (or C) one-dim. p-ary constellation, p a prime
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[YW’02], [WF’03]

choose a “more suited” representation of the lattice, a reduced basis

perform equalization with respect to this new basis;

integer linear combinations of the data symbols are detected

input/output relation

y = Hx + n = CZx + n

ZF linear equalization ofC — equalization matrix F LE,C =

[
f1

...

fK

]
= C+

r = F LE,Cy = F LE,C

(
CZx + n

)

= Zx + F LE,Cn

the noise power in branch k is given by (n: i.i.d. components with variance σ2
n)

σ2
nk

= σ2
n · ‖f k‖2 = σ2

n · Ek

with noise enhancement Ek = ‖f k‖2
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givenH , findC andZ such that

factorization ofH

H = CZ

Z is an integer matrix

Z ∈ G
K×K ,

rank(Z) = K

if applicable: | det(Z)| = 1 (unimodular)

C , the “reduced channel”, or

F LE,C , the “equalization matrix”, have desired properties

to solve this factorization problem, we need

a meaningful criterion

a practical algorithm
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[YW’02], [WF’03]

lattice reduction may directly applied to the channel matrixH

H = CIZI

typically, the orthogonality defect ofCI =
[
c1 · · · cK

]
is minimized

δ(CI) =

∏K
k=1 ‖ck‖
| det(CI)|

this means that the basis vectors ck, the column vectors ofCI

should be as short as possible (have small Euclidean norm)

=> shortest basis/independent vector problem

a substitute criterion is optimized, instead of system performance
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[TMK’07]

for square channel matrices, the ZF equalization matrix reads

F LE = C−1 =
(
HZ−1)−1 = ZH−1

the squared row norms of F LE give the noise enhancement

factorization task (X−H = (XH)−1 = (X−1)H)

H−H = F H

IIZ
−H
II

the column vectors of F H

II should be as short as possible

ifZII is an unimodular integer matrix,Z−H
II has also this property

for non-square channel matrices the left pseudoinverse is used
(
H+

)H
= F H

IIZ
−H
II

(H ∈ CN×K ,N ≥ K)
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[WBKK’04]

the MMSE solution can be calculated as ZF solution for the

augmented channel matrix [Has’00]

factorization task (ζ = σ2
n/σ

2
x)[

H√
ζI

]
def
= H = CIIIZIII =

[
CIII√
ζZ−1

III

]
ZIII

optimum MMSE equalization matrix

F LE,MMSE,C =
[(
C
H

IIICIII

)−1
C
H

III

]
leftK columns

=
(
CH

IIICIII + ζZ−H
III Z

−1
III

)−1
CH

III

= ZIII

(
HHH + ζI

)−1
HH = ZIIIF LE,MMSE,H

the column vectors of CIII should be as short as possible

as in Criterion I, a substitute measure is optimized

in almost all casesZI = ZIII [Fis’11]
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[FWSSSA’12], [ZNEG’14], [FCS’16]

applying MMSE linear equalization, the noise enhancement is given by

Ek =
[
Φee

]
k,k
/σ2

n =
[ (

CHC + ζZ−HZ−1)−1 ]
k,k

=
[
Z
(
HHH + ζI

)−1
ZH

]
k,k

= zH

k

(
HHH + ζI

)−1
zk

= zH

k LLHzk = ‖LHzk‖2

withZH = [z1, . . . , zK ]

L is any square root of
(
HHH + ζI

)−1
=

(
H

H
H

)−1
; we may choose

L = H
+

factorization task (using LHZH =
(
H

+
)H
ZH def

= F
H)

(
H

+
)H

= F
H

IVZ
−H
IV

the column vectors ofFH

IV should be as short as possible
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(in each caseZ ∈ GK×K )

the criteria available in the literature can be classified as follows

based on

channel matrixH

(“ZF solution”)

augmented matrixH

(“MMSE solution”)

H H = C Z

[YW’02], [WF’03]

H = CZ

[WBKK’04], [Fis’11]

(H+)H (H+)H = F HZ−H

[TMK’07]

(H+)H = F
HZ−H

[ZNEG’14], [FCS’16]

H : lattice spanned by channel matrix

(H+)H: dual lattice [LMG’09]
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typically, in LRA equalization it has been forced

| det(Z)| = 1 unimodular matrix

hence a change of basis is performed

=> Lattice Basis Reduction

in IF equalization, the constraint is relaxed to

rank(Z) = K full-rank matrix

(to be precise: rank(ZF) = K)

=> Shortest Independent Vector Problem

[FCS’16]

using the LRA equalization structure, unimodularity ofZ is not required

=> both, LRA and IF, can use the same factorization criterion

and the same constraint onZ !

Fischer: Lattice Reduction and Factorization for Equalization 27

(real-valued exampleK = 2, |A| = 5)

vectors x̄ = Zx, with x ∈ AK

example Z =

[
1 1
0 1

]
, det(Z) = 1
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(real-valued exampleK = 2, |A| = 5)

vectors x̄ = Zx, with x ∈ AK

example Z =

[
1 1

−1 1

]
, det(Z) = 2
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we deal with complex-valued lattices

Λ(G) =
{
λ =

∑K

k=1
zkgk = G

[
z1
...
zK

]
| zk ∈ G

}
def
= GG

K

where

G =
[
g1, . . . , gK

]
∈ C

N×K

is its generator matrix (basis) consisting of

K ∈ N linearly independent basis vectors gk ∈ CN ,N ≥ K ,N ∈ N

(N -dimensional lattice of rankK)

instead of dealing with the complex-valued generator matrixG,

one can use the real-valued equivalent [Win’04]

Greal
def
=

[
Re{G} −Im{G}
Im{G} Re{G}

]

of doubled dimension
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[Fis’10]

any matrixG ∈ CN×K can be decomposed into the form

G = G◦R

with – G◦ = [g◦1, . . . , g
◦
K ]: Gram–Schmidt orthogonalization ofG

with orthogonal columns g◦1, . . . , g
◦
K

– R =
[
rl,k

]
∈ CK×K : upper triangular with unit main diagonal

successive procedure

for k = 1, . . . , K

g◦k = gk −
k−1∑

l=1

rl,k g
◦
l

with rl,k =
(g◦l )

Hg◦k
‖g◦l ‖22

, l = 1, . . . , k

Fischer: Lattice Reduction and Factorization for Equalization 30

kth, k = 1, . . . , K , successive minimum ofΛ(G) [Cas’97], [LLS’90], [DKWZ’15]

ρk(Λ(G)) = inf
{
rk | dim (span (Λ(G) ∩BN(rk))) = k

}

with – BN(r): N -dimensional ball (over C) with radius r centered at the origin

– span(·): linear span

ρ1(Λ(G)) is the norm of the shortest vector of the latticeΛ(G)

interpretation:

rk has to be chosen as the smallest radius such thatBN(rk) contains
k linearly independent lattice vectors

Visualization:

ρ1

ρ2

g1

g2

Λ(G)
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a complex-valued latticeΛ(G) of rankK

find set G = {λ1, . . . ,λK} ofK linearly independent vectors λk ∈ Λ(G),
such that

max
k=1,...,K

∥∥λk

∥∥ = ρK(Λ(G))

the largest vector has to be as short as possible;

the norms of all shorter vectors do not matter

find set G = {λ1, . . . ,λK} ofK linearly independent vectors λk ∈ Λ(G),
such that ∥∥λk

∥∥ = ρk(Λ(G)) , k = 1, . . . , K

all lattice vectors in the set G have to be as short as possible;

naturally, SMP is also a solution to SIVP

efficient strategies for solving the (C)SMP are available [DKWZ’15], [FCS’16]
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the obtained vectors are lattice points λk ∈ Λ(G), hence

λk = Guk , with uk ∈ G
K, ∀k

the matrix V
def
=

[
λ1, . . . ,λK

]
is related toG via

V = GU

or

G = V U−1

withU ∈ GK×K and | det(U )| ∈ G \ {0}

(cf. factorization task (H+)H = F HZ−H)
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find set G = {λ1, . . . ,λK} ofK linearly independent vectors λk ∈ Λ(G),
such that

Λ(G) = Λ(Gr)

Gr = [gr,1, . . . , gr,K ] = [λ1, . . . ,λK]with

i.e.,Gr is a “reduced” basis of the latticeΛ

(the meaning of “reduced” depends on the criterion/algorithm)

the generator matrices are related by

Gr = GU

or

G = GrU
−1

whereU ∈ GK×K is unimodular, i.e., | det(U )| = 1;
henceU−1 ∈ GK×K

(cf. factorization taskH = CZ)
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[LLL’82]

a generator matrixG = [g1, . . . , gK] ∈ CN×K with Gram–Schmidt

orthogonal basisG◦ = [g◦1, . . . , g
◦
K] and upper triangular matrixR

is called (C)LLL-reduced, if [GLM’09]

1. for 1 ≤ l < k ≤ K , it is size-reduced according to

|Re{rl,k}| ≤ 0.5 and |Im{rl,k}| ≤ 0.5

2. for k = 2, . . . , K and a parameter 0.5 < δ ≤ 1

‖g◦k‖2 ≥ (δ − |rk−1,k|2)‖g◦k−1‖2

the parameter δ controls the trade-off between “strength” of the

LLL reduction and computational complexity— usually δ = 0.75;
the case δ = 1 is denoted as optimal LLL reduction [A’03]

for δ < 1 the algorithm has polynomial complexity [A’03]
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a generator matrixG = [g1, . . . , gK] ∈ CN×K with Gram–Schmidt

orthogonal basisG◦ = [g◦1, . . . , g
◦
K] and upper triangular matrixR

is called (C)HKZ-reduced, if [LLS’90], [JD’13]

1. for 1 ≤ l < k ≤ K , it is size-reduced according to

|Re{rl,k}| ≤ 0.5 and |Im{rl,k}| ≤ 0.5

2. for k = 1, . . . , K , the columns ofG◦ fulfill

‖g◦k‖ = ρ1(Λ(G(k)))

(shortest (non-zero) vector inΛ(G(k)))

Λ(G(k)): sublattice of rank K − k + 1 and dimension N with generator

matrixG(k) = [0, . . . , 0, g◦k, . . . , g
◦
K]R

(Λ(G(k)) is the orth. projection ofΛ(G) onto the orth. complement of {g1, . . . , gk−1})

since shortest vectors have to be found, the problem is NP-hard;

efficient (complex-valued) algorithms available [JD’13], [ZQW’12]
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a generator matrixG = [g1, . . . , gK] ∈ CN×K is called (C)MK-reduced,

if [Min’1891], [ZQW’12]

‖gk‖ ≤ ‖g′k‖ , k = 1, . . . , K

∀G′ = [g1, . . . , gk−1, g
′
k, . . . , g

′
K]

Λ(G′) = Λ(G)with

G is Minkowski-reduced if for k = 1, . . . ,K the basis vector gk has minimum norm
among all possible lattice points g′k for which the set {g1, g2, . . . , gk−1, g

′
k} can be

extended to a basis ofΛ(G)

in contrast to the SMP where only the K shortest independent lattice vec-

tors have to be found, here the K shortest vectors have to be obtained

that form a basis of the lattice

efficient (real-valued) algorithm available [ZQW’12]

in the real-valued case, the calculation of a greatest common divisor (gcd) is required;
in the complex-valued case the gcd for Gaussian integers has to be used
(calculated via the Euclidean Algorithm)
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MMSE linear equalization viaFH = ZH
+ =

[
f1
...

fK

]

noise enhancement

Ek = ‖ fk ‖2 = ‖
(
H

+
)H
zk‖2 → min

withZH = [z1, . . . , zK ]

factorization task (
H

+
)H

= F
HZ−H

the column vectors ofFH should be as short as possible

usually the maximum of the noise enhancement dominates
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ZH = [z1, . . . , zK ]

| det(ZH)| = 1 required

ZH = argmin
ZH∈GK×K
| det(ZH)|=1

max
k=1,...,K

∥∥(H+)Hzk

∥∥2

=> shortest basis problem (SBP)

the MK-reduced basis is directly defined by the length of its basis vectors
— it consists of theK shortest lattice vectors that form a basis of the lattice
(not only the maximum norm is minimized)

=>Minkowski reduction gives the optimum integer matrixZ

full-rank matrixZ sufficient

ZH = argmin
ZH∈GK×K
rank(ZH)=K

max
k=1,...,K

∥∥(H+)Hzk

∥∥2

=> shortest independent vector problem (SIVP)

this problem is optimally solved—in a stricter sense—if theK successive minima of
Λ((H+)H) are obtained

=>Minkowski’s successive minima give the optimum integer matrixZ
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factorization ofG =




0.8 + 0.5j −0.8 + 0.1j −0.1− 0.6j 0.7− 1.0j
−0.5 + 0.4j −0.1 − 0.2j −1.1 + 0.8j −0.3− 1.0j
0.3− 0.5j 1.1 + 2.1j 0.8− 0.3j 0.4 + 1.4j

−0.3 − 0.2j −1.0 + 0.0j 0.6− 0.4j 0.2 + 1.1j




ui




3 + 0j

0 + 1j

−2− 1j

1− 2j







2 + 0j

0 + 1j

−2− 1j

1− 2j







1 + 0j

0 + 0j

−1− 1j

1− 1j







1 + 1j

0 + 0j

0− 1j

1 + 0j







1 + 0j

0 + 0j

−1 + 0j

0− 1j







3 + 0j

0 + 1j

−3− 1j

1− 3j







4− 1j

0 + 1j

−5− 1j

1− 4j







4 + 0j

0 + 1j

−4− 1j

1− 3j







3 + 0j

0 + 1j

−4− 1j

1− 3j







1 + 0j

0 + 0j

0− 1j

1 + 0j







0 + 0j

0 + 0j

0− 1j

1 + 0j







1 + 0j

0 + 0j

0 + 0j

0 + 0j




λi




0.6− 0.4j

−0.6 + 0.2j

0.1− 0.0j

−0.1− 0.7j







−0.2− 0.9j

−0.1− 0.2j

−0.2 + 0.5j

0.2− 0.5j







0.0− 0.5j

0.1 + 0.0j

1.0− 0.0j

0.0 + 0.5j







0.4 + 0.4j

−0.4 + 0.0j

0.9 + 0.4j

−0.3 + 0.0j







−0.1 + 0.4j

−0.4− 0.1j

0.9− 0.6j

0.2 + 0.0j







−0.3− 0.5j

−0.5− 0.3j

0.7− 0.1j

0.4− 0.5j







0.2− 0.3j

0.6− 0.7j

0.3− 0.7j

−0.2 + 0.2j







0.6 + 0.6j

0.1− 0.7j

0.2− 0.3j

−0.5− 0.3j







−0.2 + 0.1j

0.6− 1.1j

−0.1 + 0.2j

−0.2− 0.1j







0.9− 0.4j

0.0 + 0.5j

0.4 + 0.1j

−0.5 + 0.3j







0.1− 0.9j

0.5 + 0.1j

0.1 + 0.6j

−0.2 + 0.5j







0.8 + 0.5j

−0.5 + 0.4j

0.3− 0.5j

−0.3− 0.2j




‖λi‖2 1.43 1.48 1.51 1.54 1.55 1.59 1.64 1.69 1.72 1.73 1.74 1.77

rank 1 2 3 3 3 3 4 4 4 4 4 4

LLL δ = .75 X X X X

LLL δ = 1 X X X X

HKZ X X X X

MK X X X X

SMP X X X X

here: det(ZSMP) = 1 + j
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H : i.i.d. random zero-mean unit-variance complex Gaussian;K = N

σ2
x/σ

2
n =̂ 20 dB

criterion IV— SMP [DKWZ’15], [FCS’16]

| det(Z)| = 1
√
2 2

√
5

K = 2 100 % — — —

K = 3 99.8 % 0.2 % — —

K = 4 99.0 % 1.0 % — —

K = 5 97.5 % 2.4 % 0.005 % —

K = 6 95.6 % 4.5 % 0.03 % 0.003 %

K = 7 92.7 % 7.1 % 0.15 % 0.02 %

K = 8 89.3 % 10.2 % 0.39 % 0.06 %
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H : i.i.d. random zero-mean unit-variance complex Gaussian

K = N = 6

criterion IV— SMP [DKWZ’15], [FCS’16]

| det(Z)| = 1
√
2 2

√
5

σ2
x/σ

2
n =̂ 0 dB 99.6 % 0.45 % 0.0002 % —

σ2
x/σ

2
n =̂ 10 dB 96.2 % 3.83 % 0.02 % 0.002 %

σ2
x/σ

2
n =̂ 20 dB 95.4 % 4.45 % 0.03 % 0.003 %

σ2
x/σ

2
n =̂ 30 dB 95.5 % 4.48 % 0.03 % 0.003 %
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LRA structure; linear MMSE equalization— different criteria and constraints

H : i.i.d. random zero-mean unit-variance complex Gaussian;K = N

uncoded transmission; 16QAM signaling; Eb/N0 = σ2
x/(σ

2
n log2(16))

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10 log10(Eb/N0) [dB] −→

B
E
R
−→

K = 8

C-I + SBP
C-II + SBP
C-IV + SBP
C-II + SMP
C-IV + SMP
ML detection
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LRA structure; linear MMSE equalization; criterion C-IV— different algorithms

H : i.i.d. random zero-mean unit-variance complex Gaussian;K = N

uncoded transmission; 16QAM signaling; Eb/N0 = σ2
x/(σ

2
n log2(16))

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10 log10(Eb/N0) [dB] −→

B
E
R
−→

K = 8

LLL δ = .75

LLL δ = 1

HKZ
MK
SMP
ML detection
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LRA structure; linear MMSE equalization; criterion C-IV— different algorithms

H : i.i.d. random zero-mean unit-variance complex Gaussian;K = N

uncoded transmission; 16QAM signaling

2 3 4 5 6 7 8 9 10
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

K −→

B
E
R
−→

Eb/N0 =̂ 14 dB

LLL δ = .75

LLL δ = 1

HKZ
MK
SMP
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H : i.i.d. random zero-mean unit-variance complex Gaussian

K = N ; criterion IV [DKWZ’15], [FCS’16]

SMP |K = N = 2 4 6 8 10

σ2
x/σ

2
n =̂ 15 dB 100 % 99.0 % 95.7 % 90.3 % 83.8 %

σ2
x/σ

2
n =̂ 20 dB 100 % 99.0 % 95.6 % 89.8 % 82.3 %

σ2
x/σ

2
n →∞ 100 % 99.0 % 95.5 % 89.4 % 81.5 %

SIVP |K = N = 2 4 6 8 10

σ2
x/σ

2
n =̂ 15 dB 100 % 99.2 % 97.0 % 94.0 % 90.6 %

σ2
x/σ

2
n =̂ 20 dB 100 % 99.2 % 97.0 % 93.5 % 89.3 %

σ2
x/σ

2
n →∞ 100 % 99.2 % 96.9 % 93.2 % 88.5 %

for the complex case andK = N = 2, an MK-reduced basis is always a solution to the SMP
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H : i.i.d. random zero-mean unit-variance complex Gaussian

K = N = 8; σ2
x/σ

2
n =̂ 20 dB

criterion IV [DKWZ’15], [FCS’16]

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

d −→

cd
f m

ax
k
‖f
k
‖2
−
ρ
2 K
(d
)
−→

K = N = 8; σ2
x/σ

2
n
=̂ 20 dB

LLL δ = .75

LLL δ = 1

HKZ
MK
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aka successive interference cancellation, V-BLAST

Fp C FpC

DECH

n

y

x1

xK

q1
ENC

qK
ENC

c1

cK

M

M
ENC−1
M−1

q̂x̂

FDFE,H

B − I

QR decomposition of the channel matrix:
Q: orthogonal matrix;B: upper triangular, unit main diagonal

H = QB

signal after feedforward processing with F DFE,H
def
= (QHQ)−1QH

r = F DFE,Hy = Bx + ñ

– spatially causal signal transmission matrixB

– Gaussian noise vector ñ with correlation matrix σ2
n(Q

HQ)−1

i.e., withQ =
[
q1 · · · qK

]
noise variances σ2

ñk
= σ2

n/‖qk‖2
– decisions are taken successively (orderK, . . . , 1)
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aka successive interference cancellation, V-BLAST

Fp C FpC

DECH

n

y

x1

xK

q1
ENC

qK
ENC

c1

cK

M

M
ENC−1
M−1

q̂x̂

PFDFE,HP

B − I

sorted QR decomposition of the channel matrix:
Q: orthogonal matrix;B: upper triangular, unit main diagonal; P : permutation matrix

HP
def
= HP = QB

=> criterion for sorting required

ZF version forK = N : HP = F −1B

MMSE version of DFE: HP = F
+B

withH =
[

H√
ζI

]
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V-BLAST ordering [WFGV’98]

signal-to-noise ratio in component k is proportional to ‖qk‖2
=> for k = K, . . . , 1: the norm of the vector qk should be the largest

among the remaining components 1, . . . , k

BLAST ordering requires great effort

[WBKK’03], [Fis’10]

instead ofmaximizing ‖qk‖2 in sequence k = K, K − 1, . . . , 1
it isminimized in sequence k = 1, 2, . . . , K

=> for k = 1, . . . , K : the norm of the vector qk should be the smallest
among the remaining components k, . . . , K

Gram–Schmidt procedure with pivoting

[LMG’09]

do not apply Gram–Schmidt procedure with pivoting toH, but to (H+)H

=> use factorization
(H+)HP −H = F

HB−H

order within GS proc.: k = K, . . . , 1; i.e.,B−H should be lower triangular
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[YW’02], [WF’03]

Fp C FpC

DEC

n

y

x1

xK

q1
ENC

qK
ENC

c1

cK

M

M
ENC−1
M−1

q̂x̂

H

P

Z−1FDFE,C

B − I

Z C

obvious [YW’02], [WF’03]

perform i) factorizationH = CZ ;
ii) sorted QR decompositionCP = QB

more efficient [WBKK’04], [Fis’11]

reuseQ andR anyway calculated within LLL or HKZ

optimum [LMG’09], [Fis’10], [SF’17]

do sorting, Gram–Schmidt procedure, and size reduction jointly
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[SF’17]

[Q,R,T ] = GramSchmidtSort_LRA(G)
1 Q = G,R = I , T = I

2 k = 1

3 while k ≤ K {
4 qs = shortest vector in Λ([qk, . . . , qK])
5 if ‖qs‖2 6= ‖qk‖2 {
6 qk = qs

7 update Q,R,T such that Λ(QR) = Λ(G)
8 }
9 for i = k + 1, . . . , K {
10 rki = qH

kqi/‖qk‖2
11 qi = qi − rkiqk

12 }
13 k = k + 1
14 }
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a generator matrixG = [g1, . . . , gK] ∈ CN×K with Gram–Schmidt
orthogonal basisG◦ = [g◦1, . . . , g

◦
K] and upper triangular matrixR

is called (C)HKZ-reduced, if [LLS’90], [JD’13]

1. for 1 ≤ l < k ≤ K , it is size-reduced according to

|Re{rl,k}| ≤ 0.5 and |Im{rl,k}| ≤ 0.5

2. for k = 1, . . . , K , the columns ofG◦ fulfill

‖g◦k‖ = ρ1(Λ(G(k)))

(shortest (non-zero) vector inΛ(G(k)))

Λ(G(k)): sublattice with generator matrixG(k) = [0, . . . , 0, g◦k, . . . , g
◦
K]R
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the size-reduction step of HKZ is not present;
as it changes onlyR it is of no relevance for performance of LRA DFE

=> effective HKZ reduction

forG = (H+)H the algorithms returnsZH = T andFH = Q with

– V-BLAST sorting

– the columns ofFH have minimum norm
(optimal worst-link performance as in classical V-BLAST but for LRA equalization)

this optimum is achieved with an unimodularZ;
a relaxation to rank(Z) = K is not required [OEN’13]

=> successive IF and LRA DFE both can be restricted to unimodularZ
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C Fp

y

B − I

q̂

Z−1

F
DECmod

M
ENC

ENC−1
modM−1

ˆ̄q

C+

redraw to noise-prediction structure [Fis’02]

apply modulo reduction w.r.t.Λs

exchangeZ−1 and demapping/encoder inverse

combine to demapping moduloΛs

=> successive IF only works in noise-prediction structure
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LRA structure; linear MMSE equalization; criterion C-IV— different algorithms

H : i.i.d. random zero-mean unit-variance complex Gaussian;K = N

uncoded transmission; 16QAM signaling; Eb/N0 = σ2
x/(σ

2
n log2(16))

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10 log10(Eb/N0) [dB] −→

B
E
R
−→

K = 8

MK
SMP
SMP + unsort.

SMP + V-BLAST

(eff.) HKZ

ML detection
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tight relation between LRA and IF equalization
=> structure how equalization and decoding are combined

performance measure for defining the factorization task
=> optimization criterion

constraints on the integer matrix— SBP vs. SIVP
=> algorithms for performing the factorization

linear equalization
– | det(Z)| = 1 Minkowski reduction gives the optimum

– rank(Z) = K Minkowski’s successive minima give the optimum

decision-feedback equalization
(effective) HKZ reduction gives the optimum

(relaxation to | det(Z)| > 1 not required)

transmitter-side precoding for broadcast channel
(LRA / IF precoding) [HC’13], [HNS’14], [SF’15]

Fischer: Lattice Reduction and Factorization for Equalization 56

[AEVZ’02] E. Agrell, T. Eriksson, A. Vardy, K. Zeger. Closest Point Search in Lattices. IEEE Transactions on Information
Theory, vol. 48, no. 8, pp. 2201–2214, Aug. 2002.

[A’03] A. Akhavi. The Optimal LLL Algorithm is Still Polynomial in Fixed Dimension. Theoretical Computer Science,
vol. 297, pp. 3–23, Mar. 2003.

[Cas’97] J.W.S. Cassels. An Introduction to the Geometry of Numbers. Springer Berlin/Heidelberg, Reprint of the 1971
Edition, 1997.

[DKWZ’15] L. Ding, K. Kansanen, Y. Wang, J. Zhang. Exact SMP Algorithms for Integer Forcing Linear MIMO Receivers.

IEEE Transactions on Wireless Communications, vol. 14, no. 12, pp. 6955–6966, Dec. 2015.

[FSK’13] C. Feng. D. Silva, F.R. Kschischang. An Algebraic Approach to Physical-Layer Network Coding. IEEE Tran-
sactions on Information Theory, vol. 59, no. 11, pp. 7576–7596, Nov. 2013.

[Fis’02] R.F.H. Fischer. Precoding and Signal Shaping for Digital Transmission. John Wiley & Sons, Inc., New York,

2002.

[Fis’10] R.F.H. Fischer. From Gram–Schmidt Orthogonalization via Sorting and Quantization to Lattice Reduction.
In Joint Workshop on Coding and Communications, Santo Stefano Belbo, Italy, Oct. 2010.

[Fis’11] R.F.H. Fischer. Efficient Lattice-Reduction-Aided MMSE Decision-Feedback Equalization. In IEEE Internatio-
nal Conference on Acoustics, Speech, and Signal Processing, Prag, Czech Republic, May 2011.

[FWSSSA’12] R.F.H. Fischer, C. Windpassinger, C. Stierstorfer, C. Siegl, A. Schenk, Ü. Abay. Lattice-Reduction-Aided
MMSE Equalization and the Successive Estimation of Correlated Data. AEÜ—Int. Journal of Electronics and
Communications, vol. 65, no. 8, pp. 688–693, Aug. 2011.

[FCS’16] R.F.H. Fischer, M. Cyran, S. Stern. Factorization Approaches in Lattice-Reduction-Aided and Integer-
Forcing Equalization. In International Zurich Seminar on Communications, Zurich, Switzerland, March 2016.

[GLM’09] Y.H. Gan, C. Ling, W.H.Mow. Complex Lattice Reduction Algorithm for Low-Complexity Full-DiversityMIMO
Detection. IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2701–2710, July 2009.

Fischer: Lattice Reduction and Factorization for Equalization 57

[Has’00] B. Hassibi. An Efficient Square-Root Algorithm for BLAST. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. II737–II740, 2000.

[HNS’14] W. He, B. Nazer, S. Shamai. Uplink-Downlink Duality for Integer-Forcing. In IEEE International Symposium
on Information Theory, pp. 2544–2548, 2014.

[HC’13] S.-N. Hong, G. Caire. Compute-and-Forward Strategies for Cooperative Distributed Antenna Systems. IEEE
Transactions on Information Theory, vol. 59, no. 9, pp. 5227–5243, Sept. 2013.

[JD’13] H. Jiang, S. Du. Complex Korkine-Zolotareff Reduction Algorithm for Full-Diversity MIMO Detection. IEEE
Communications Letters, vol. 17, no. 2, pp. 381–384, Feb. 2013.

[LLS’90] J.C. Lagarias, H.W. Lenstra, C.P. Schnorr. Korkin-Zolotarev Bases and Successive Minima of a Lattice and
its Reciprocal Lattice. Combinatorica, vol. 10, no. 4, pp. 333–348, 1990.

[LLL’82] A.K. Lenstra, H.W. Lenstra, L. Lovász. Factoring Polynomials with Rational Coefficients, Mathematische
Annalen, vol. 261, no. 4, pp. 515–534, 1982.

[LMG’09] C. Ling, W.H. Mow, L. Gan. Dual-Lattice Ordering and Partial Lattice Reduction for SIC-Based MIMO Detec-
tion. IEEE J. Sel. Topics Signal Process., vol. 3, no. 6, pp. 975–985, Dec. 2009.

[Min’1891] H. Minkowski. Über die positiven quadratischen Formen und über kettenbruchähnliche Algorithmen.
Journal für die reine und angewandte Mathematik, vol. 107, pp. 278–297, 1891.

[NG’11] B. Nazer, M. Gastpar. Compute-and-Forward: Harnessing Interference Through Structured Codes. IEEE
Transactions on Information Theory, vol. 57, no. 10, pp. 6463–6486, Oct. 2011.

[OEN’13] O. Ordentlich, U. Erez, B. Nazer. Successive Integer-Forcing and its Sum-Rate Optimality. In Annual Allerton
Conference, pp. 282–292, Oct. 2013.

[SF’15] S. Stern, R. Fischer. Lattice-Reduction-Aided Preequalization over Algebraic Signal Constellations. In 9th
International Conference on Signal Processing andCommunication Systems (ICSPCS), Cairns, Australia, Dec.
2015.

[SF’17] S. Stern, R.F.H. Fischer. V-BLAST in Lattice Reduction and Integer Forcing. In International Symposium on

Information Theory, Aachen, Germany, June 2017.

Fischer: Lattice Reduction and Factorization for Equalization 58



[TMK’07] M. Taherzadeh, A. Mobasher, A.K. Khandani. LLL Reduction Achieves the Receive Diversity in MIMO De-
coding. IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4801–4805, Dec. 2007.

[WF’03] C. Windpassinger, R.F.H. Fischer. Low-Complexity Near-Maximum-Likelihood Detection and Precoding for
MIMO Systems using Lattice Reduction. In Proceedings of IEEE Information Theory Workshop, pp. 345–348,
Paris, France, March/April 2003.

[Win’04] C. Windpassinger. Detection and Precoding for Multiple Input Multiple Output Channels. Dissertation, Erlan-
gen, June 2004.

[WFGV’98] P.W. Wolniansky, G.J. Foschini, G.D. Golden, R.A. Valenzuela. V-BLAST: An Architecture for Realizing Very
High Data Rates over the Rich-Scattering Wireless Channel. In International Symposium on Signals, Systems,

and Electronics, pp. 295–300, Sep. 1998.

[WBKK’03] D. Wübben, R. Böhnke, V. Kühn, K.D. Kammeyer. MMSE Extension of V-BLAST Based on Sorted QR De-
composition. In IEEE Vehicular Technology Conference, pp. 508–512, Orlando, Florida, USA, Oct. 2003.

[WBKK’04] D. Wübben, R. Böhnke, V. Kühn, K.D. Kammeyer. Near-Maximum-Likelihood Detection of MIMO Systems
usingMMSE-Based Lattice Reduction. IEEE International Conference on Communications, pp. 798–802, Paris,
France, June 2004.

[YW’02] H. Yao, G. Wornell. Lattice-Reduction-Aided Detectors for MIMO Communication Systems. In Proceedings
of IEEE Global Telecommunications Conference, pp. 424–428, Taipei, Taiwan, Nov. 2002.

[ZNEG’14] J. Zhan, B. Nazer, U. Erez, M. Gastpar. Integer-Forcing Linear Receivers. IEEE Transactions on Information
Theory, vol. 60, no. 12, pp. 7661–7685, Dec. 2014.

[ZQW’12] W. Zhang, S. Qiao, Y. Wei. HKZ and Minkowski Reduction Algorithms for Lattice-Reduction-Aided MIMO
Detection. IEEE Transactions on Signal Processessing, vol. 60, no. 11, pp. 5963–5976, Nov. 2012.

Fischer: Lattice Reduction and Factorization for Equalization 59


