Lattice Reduction and Factorization for Equalization

Robert F.H. Fischer

r Sebastian Stern

Institut für Nachrichtentechnik, Universität Ulm

 $\mathcal{A} = \{-1, +1\}$

Outline

- Introduction
- Equalization Structure of the Signals | Maximum-Likelihood Detection | Linear Equalization
- Lattice-Reduction-Aided Equalization LRA Scheme | IF Scheme
- Factorization Task
 Criteria | Constraints
- Lattices and Lattice Problems
 Shortest Independent Vector Problem | Lattice Basis Reduction
- Numerical Results
- LRA Decision-Feeback Equalization Structure | Sorting | Algorithm
- Numerical Results
- Summary

Introduction

Digital Communications:

- abstract high-level view of digital communications
 - a *point* x drawn from some *signal constellation* A is transmitted (a point can represent $\log_2 |A|$ bits of information)
 - the channel adds (interference and) noise n
- the received symbols is y = x + n
- at the receiver, *decisions* have to be taken
- since we can use quadrature modulation (modulation of amplitude and phase), all signals are complex-valued

Channel Coding:

- for reducing the error rate, channel coding is employed
- in block codes (codelength η) not all A^{η} combinations are used but only those which can be distinguished reliably
- a trade-off between transmission rate (bit rate) and error rate is possible

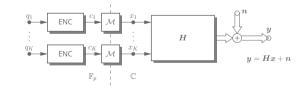
Fischer: Lattice Reduction and Factorization for Equalization

Introduction (II)

Situation: multipoint-to-point transmission, *MIMO multiple-access channel*

- K non-cooperating single-antenna users
- \blacksquare central base station with $N_{\rm R}$ receive antennas

⇒ joint processing/decoding at the receiver side possible

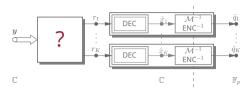


Channel Encoding / Mapping:

- channel coding done over the finite field \mathbb{F}_p (q_k and c_k taken from \mathbb{F}_p)
- mapping \mathcal{M} of finite-field symbols c_k to complex-valued points x_k taken from some signal constellation \mathcal{A}

Introduction (III)

Question: How to perform equalization / decoding?



Usual Approach:

joint equalization / decoding typically much to complex

separate equalization / decoding

- channel decoding
 - individual (per user)
 - over a temporal block (code word)
- Iow-complexity equalization strategy (as for the uncoded case)
 - over the users
 - per time step

Fischer: Lattice Reduction and Factorization for Equalization

Signal Constellations and Codes

Signal Constellation: Construction

signal point lattice

$\Lambda_{ m a}$

- typically: $\mathbf{\Lambda}_a = \mathbb{Z} \; \; \text{or} \; \mathbf{\Lambda}_a = \mathbb{G} = \mathbb{Z} + j \, \mathbb{Z}$
- "shaping" lattice

$\Lambda_{ m s}$

and its Voronoi region $\mathcal{R}_V(\Lambda_s)$ (typically a sublattice of Λ_a : $\Lambda_s \subset \Lambda_a$)

signal constellation

$$\mathcal{A} = \mathbf{\Lambda}_{\mathrm{a}} \cap \mathcal{R}_{\mathrm{V}}(\mathbf{\Lambda}_{\mathrm{s}})$$

Iattice code

do everything in N dimensions

 $\mathcal{C} = \mathbf{\Lambda}_{\mathrm{a}} \cap \mathcal{R}_{\mathrm{V}}(\mathbf{\Lambda}_{\mathrm{s}})$

•	•	•	•	• 1	٠	•	•	•	• 1	•	•	•	•	•
•	•	•	0	• į	•	•	•	•	•	•	•	•	•	•
•	•	•	•	• !	•	•	•	•	•]	•	•	• \	s	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
•	•	•	•	•	•	\mathcal{R}_{V}	-(Λ	.s)	• !	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
•	•	•	•	•	•	•	• ~	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	• !	•	•	•	•	•
•	•	•	•	• †	•	•	•	•	• †	•	•	•	•	
•	•	•	•	• 1	•	•	•	•	• 1	•	•	•	•	•
•	•	•	•	• 1		•	•	•	• 1	•	•	•	•	
•	•	•	•	• 1	•	•	•	•	• 1	•	•	•	•	
•	•	•	•	• 1		•	•	•	• 1	•	•	•	•	
•	•	•	•	• 1	•	•	•	•	• 1	•	•	•	•	

Introduction (IV)

Equalization of MIMO Channel:

y = Hx + n

done symbol-by-symbol (independently over the time steps) in the uncoded case

Equalization Schemes:

- linear equalization according to zero-forcing (ZF) or minimum mean-squared error (MMSE) criterion
- decision-feedback equalization (DFE) aka successive interference cancellation, (V-)BLAST
- lattice-reduction-aided (LRA) / integer-forcing (IF) schemes low-complexity, high-performance schemes
- maximum-likelihood detection (MLD) / lattice decoding optimum procedure, highest complexity

Fischer: Lattice Reduction and Factorization for Equalization

Decoding and Demapping

Channel Encoding and Decoding:

Enoding:

 \blacksquare encoding ENC over \mathbb{F}_p

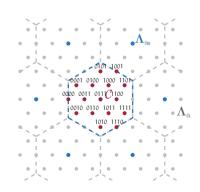
 \blacksquare mapping $\mathcal M$ to signal point in $\mathbb C$

Decoding:

- \blacksquare lattice decoding (in signal space) w.r.t. to Λ_c
- demapping \mathcal{M}^{-1} to $\hat{c} \in \mathbb{F}_p$
- encoder inverse ENC⁻¹

Variant:

• demapping modulo $\Lambda_{
m s}$, i.e., ${
m mod}\mathcal{M}^{-1}$



Structure of the Signals

Visualization: (real-valued example K = 2, $\Lambda_c = \mathbb{Z}$, $|\mathcal{A}| = 5$)

x	Hx	$oldsymbol{y} = oldsymbol{H}oldsymbol{x} + oldsymbol{n}$
		* * * * * * * *
· · • • • • • · · · ·		
		
· · • • • • • · · · ·		
· · • • • • • · · ·		
· · • • • • • · · · ·		
	• • • • • • • •	

Structure of the Signals (II)

Lattice:

• *K*-dim. lattice spanned by basis vectors $\boldsymbol{b}_1, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_K$ — basis matrix

$$\boldsymbol{B} = \left[\boldsymbol{b}_1 \, \boldsymbol{b}_2 \, \cdots \, \boldsymbol{b}_K \right]$$

real-valued lattice

$$\boldsymbol{\Lambda} = \left\{ \boldsymbol{\lambda} = \sum_{k=1}^{K} z_k \boldsymbol{b}_k = \boldsymbol{B} \begin{bmatrix} z_1 \\ \vdots \\ z_K \end{bmatrix} \mid z_k \in \mathbb{Z} \right\} \stackrel{\text{def}}{=} \boldsymbol{B} \mathbb{Z}^K$$

Lattice Structure of the Signal:

• for ${\boldsymbol x} \subset {\mathbb G}^K = ({\mathbb Z} + {\mathrm j} {\mathbb Z})^K$ the noise-free receive vectors

z = Hx

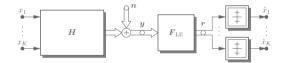
are taken from the complex-valued lattice $\Lambda = H \mathbb{G}^K$ spanned by the columns h_k of the channel matrix

$$\boldsymbol{H} = \left[\, \boldsymbol{h}_1 \, \boldsymbol{h}_2 \, \cdots \, \boldsymbol{h}_K \, \right]$$

Fischer: Lattice Reduction and Factorization for Equalization

Linear Equalization

Linear Equalization: simple strategy — filtering followed by individual decision/decoding



- this equalization *strategy / scheme* can be optimized either according to the *zero-forcing (ZF)* or *minimum mean-squared error (MMSE) criterion*
- **zero-forcing criterion:** (*I*: identity matrix; $(\cdot)^+$: (left) pseudoinverse)

$$\boldsymbol{F}_{\mathrm{LE}}\cdot\boldsymbol{H} \stackrel{!}{=} \boldsymbol{I} \qquad \Rightarrow \qquad \boldsymbol{F}_{\mathrm{LE,ZF}} = \left(\boldsymbol{H}^{\mathsf{H}}\boldsymbol{H}\right)^{-1}\!\boldsymbol{H}^{\mathsf{H}} \stackrel{\text{def}}{=} \boldsymbol{H}^{+}$$

• minimum mean-squared error criterion: $(\zeta \stackrel{\text{def}}{=} \sigma_n^2 / \sigma_x^2)$ error signal $e = F_{\text{LE}}y - x$; error covariance matrix $\Phi_{ee} = \mathbb{E}\{ee^{\mathsf{H}}\}$

trace
$$(\boldsymbol{\Phi}_{ee}) \xrightarrow{!} \min \qquad \Rightarrow \qquad \boldsymbol{F}_{\text{LE,MMSE}} = (\boldsymbol{H}^{\mathsf{H}}\boldsymbol{H} + \zeta \boldsymbol{I})^{-1}\boldsymbol{H}^{\mathsf{H}}$$

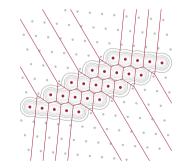
Fischer: Lattice Reduction and Factorization for Equalization

Maximum-Likelihood Detection

Optimum Detection Rule: *ML criterion*

 $f_X(x)$: probability density function

$$\hat{\boldsymbol{x}} = \operatorname*{argmax}_{\boldsymbol{x} \in \mathcal{A}^K} \mathsf{f}_{\boldsymbol{Y}}(\boldsymbol{y} \mid \boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{x} \in \mathcal{A}^K} \left\| \boldsymbol{y} - \boldsymbol{H} \boldsymbol{x} \right\|^2$$

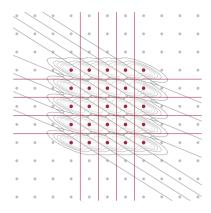


- Institute decoding high complexity per time step efficient implementation via the Sphere Decoder
- for combination with channel decoding generation of soft output required

[AEVZ'02]

Linear Equalization (II)

Visualization:



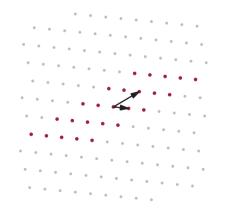
Problem of equalizing the signal

- the noise is filtered, too ⇒ *noise enhancement*
- individual threshold decision per dimension not optimum

Fischer: Lattice Reduction and Factorization for Equalization

Lattice-Reduction-Aided Equalization

Visualization:



 $oldsymbol{H} \,=\, igg[\,oldsymbol{h}_1\,oldsymbol{h}_2\,igg]$

Linear Equalization (III)

Noise Enhancement:

$$= \mathsf{ZF} \text{ solution} - \mathbf{F}_{\text{LE,ZF}} = (\mathbf{H}^{\mathsf{H}}\mathbf{H})^{-1}\mathbf{H}^{\mathsf{H}} = \begin{bmatrix} f_1 \\ \vdots \\ f_K \end{bmatrix}; \quad \mathbf{r} = \mathbf{F}_{\text{LE,ZF}}\mathbf{y} = \mathbf{x} + \mathbf{F}_{\text{LE,ZF}}\mathbf{n}$$

– noise variance (*n* i.i.d. components with variance σ_n^2)

$$\sigma_{n_k}^2 = \sigma_n^2 \cdot \|\boldsymbol{f}_k\|^2$$

- noise enhancement

$$E_k = \sigma_{n_k}^2 / \sigma_n^2 = \|\boldsymbol{f}_k\|^2$$

• (biased) MMSE solution —
$$\boldsymbol{F}_{\text{LE,MMSE}} = (\boldsymbol{H}^{\text{H}}\boldsymbol{H} + \zeta \boldsymbol{I})^{-1}\boldsymbol{H}^{\text{H}}$$

or with $\boldsymbol{\mathcal{H}} = \begin{bmatrix} \boldsymbol{H} \\ \sqrt{\zeta}\boldsymbol{I} \end{bmatrix}$ we have $\boldsymbol{\mathcal{F}}_{\text{LE,MMSE}} = (\boldsymbol{\mathcal{H}}^{\text{H}}\boldsymbol{\mathcal{H}})^{-1}\boldsymbol{\mathcal{H}}^{\text{H}} = \begin{bmatrix} \boldsymbol{\mathfrak{f}}_{1} \\ \vdots \\ \boldsymbol{\mathfrak{f}}_{\kappa} \end{bmatrix}$
- error covariance matrix

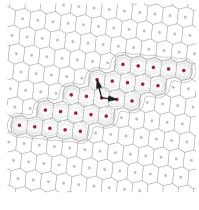
$$\mathbf{\Phi}_{ee}/\sigma_n^2 = \left(\boldsymbol{H}^{\mathsf{H}} \boldsymbol{H} + \zeta \boldsymbol{I}
ight)^{-1} = \left(\boldsymbol{\mathcal{H}}^{\mathsf{H}} \boldsymbol{\mathcal{H}}
ight)^{-1}$$

- noise enhancement (
$$\mathcal{F}_{\text{LE,MMSE}}\mathcal{F}_{\text{LE,MMSE}}^{\text{H}} = (\mathcal{H}^{\text{H}}\mathcal{H})^{-1}\mathcal{H}^{\text{H}}\mathcal{H}(\mathcal{H}^{\text{H}}\mathcal{H})^{-1} = (\mathcal{H}^{\text{H}}\mathcal{H})^{-1}$$
)
$$E_{k} = \left[\Phi_{ee}/\sigma_{n}^{2} \right]_{k,k} = \|\mathfrak{f}_{k}\|^{2}$$

ischer: Lattice Reduction and Factorization for Equalization

Lattice-Reduction-Aided Equalization

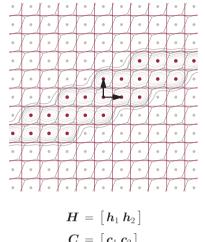
Visualization:



$$egin{aligned} m{H} &= egin{bmatrix} m{h}_1 \ m{h}_2 \end{bmatrix} \ m{C} &= egin{bmatrix} m{c}_1 \ m{c}_2 \end{bmatrix} \ &= m{H}m{Z} \ , \qquad egin{matrix} m{Z} \in \mathbb{Z}^{2 imes 2} \ &|\det(m{Z})| = 1 \ \end{bmatrix} \end{aligned}$$

Lattice-Reduction-Aided Equalization

Visualization:



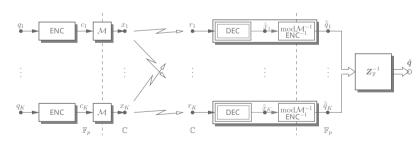
$$egin{array}{ll} &=& \left[egin{array}{c} h_1 \ h_2 \end{array}
ight] \ C &=& \left[egin{array}{c} c_1 \ c_2 \end{array}
ight] \ &=& egin{array}{c} HZ \ , & & egin{array}{c} Z \in \mathbb{Z}^{2 imes 2} \ |\det(Z)| = 1 \end{array} \end{array}$$

Fischer: Lattice Reduction and Factorization for Equalization

Integer-Forcing Schemes

Compute-And-Forward Strategy in Relaying:

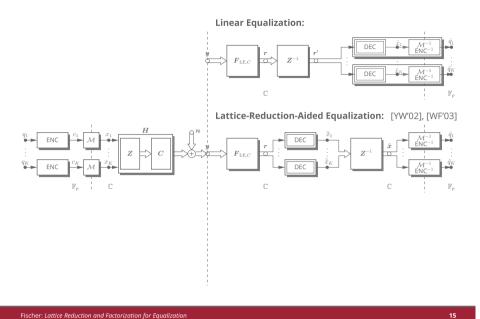
[NG'11]



• the receiver decodes an *integer linear combination* of the codewords

• resolution of linear combinations at some central unit only finite-field symbols are communicated — processing over \mathbb{F}_p

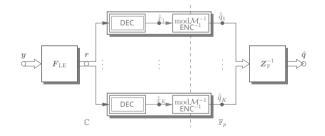
Equalization Schemes



Integer-Forcing Schemes

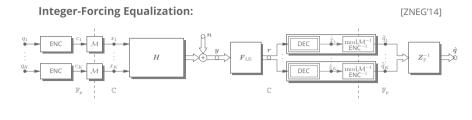
Compute-And-Forward Strategy in Relaying:

[NG'11]



- the receiver decodes an *integer linear combination* of the codewords
- resolution of linear combinations at some central unit only finite-field symbols are communicated processing over \mathbb{F}_p
- if a joint/central receiver is present, some preprocessing can be done prior to channel decoding — *integer-forcing receiver* [ZNEG'14]

Integer-Forcing Schemes (II)



- the users have to use the same linear code (or subcodes thereof) any integer linear combination of valid codewords is a valid codeword over F_p
- a *linear mapping* has to be applied the arithmetics over \mathbb{F}_p has to match that over \mathbb{R} (or \mathbb{C}) modulo p
- this only works if the cardinality of the signal constellation is a prime number and equal to the field size p
- the integer matrix has only to be invertible over \mathbb{F}_p
 - $\Rightarrow Z_{\mathbb{F}}$ only has to have full rank

Fischer: Lattice Reduction and Factorization for Equalization

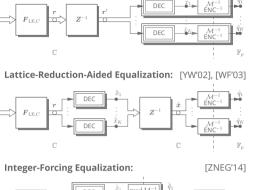
Equalization Schemes

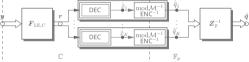
Points to discuss:

- structure
- LRA vs. IF
- respective constraints on signal constellations and codes

In factorization task $oldsymbol{H}=oldsymbol{C}oldsymbol{Z}$

- optimization criterion
- performance measure
- suited algorithm
- \blacksquare constraints on Z
- unimodular matrix $|\det(Z)| = 1$ shortest basis problem
- full-rank matrix rank(Z) = K shortest independent vector problem





Fischer: Lattice Reduction and Factorization for Equalization

Factorization Task

Basic Idea of LRA Schemes:

[YW'02], [WF'03]

choose a "more suited" representation of the lattice, a reduced basis

Linear Equalization:

perform equalization with respect to this new basis; integer linear combinations of the data symbols are detected

Procedure:

input/output relation

$$y = Hx + n = CZx + n$$

ZF linear equalization of
$$C$$
 — equalization matrix $F_{\text{LE},C} = \begin{bmatrix} f_1 \\ \vdots \\ f_{\kappa} \end{bmatrix} = C^+$
 $r = F_{\text{LE},C}y = F_{\text{LE},C}(CZx + n)$
 $= Zx + F_{\text{LE},C}n$

• the noise power in branch k is given by (*n*: i.i.d. components with variance σ_n^2)

$$\sigma_{n_k}^2 = \sigma_n^2 \cdot \|\boldsymbol{f}_k\|^2 = \sigma_n^2 \cdot E_k$$

with noise enhancement $E_k = \|\boldsymbol{f}_k\|^2$

Structure Lattice-Reduction-Aided Equalization **Integer-Forcing Equalization** denomination channel-oriented signal-oriented suited for joint receiver distributed antenna systems treat integer interference over $\mathbb{G} = \mathbb{Z} + \mathrm{i}\mathbb{Z}$ \mathbb{F}_{p} constraint on signal constellation and mapping usually treated uncoded incorporation of coding match arithmetic in \mathbb{R} (or \mathbb{C}) and \mathbb{F}_{n} signal points drawn from a lattice linear codes over \mathbb{R} (or \mathbb{C}) one-dim. p-ary constellation, p a prime

Fischer: Lattice Reduction and Factorization for Equalization

19

[FSK'13]

Factorization Task (II)

Problem: given H, find C and Z such that

 \blacksquare factorization of H

H = CZ

Z is an integer matrix

$$\boldsymbol{Z} \in \mathbb{G}^{K imes K}$$
,

 $\operatorname{rank}(\boldsymbol{Z}) = K$

if applicable: $|\det(\boldsymbol{Z})| = 1$ (unimodular)

- *C*, the *"reduced channel"*, or
- $m{F}_{ ext{LE},C}$, the "equalization matrix", have desired properties
- Required: to solve this factorization problem, we need
 - a meaningful criterion
 - a practical algorithm

Fischer: Lattice Reduction and Factorization for Equalization

Factorization Criteria

Criterion I:

lacksquare lattice reduction may directly applied to the channel matrix H

$$H = C_{\mathrm{I}} Z_{\mathrm{I}}$$

• typically, the *orthogonality defect* of $m{C}_{\mathrm{I}} = ig[m{c}_1 \ \cdots \ m{c}_K ig]$ is minimized

$$\delta(\boldsymbol{C}_{\mathrm{I}}) = \frac{\prod_{k=1}^{K} \|\boldsymbol{c}_{k}\|}{|\det(\boldsymbol{C}_{\mathrm{I}})|}$$

• this means that the basis vectors c_k , the column vectors of C_1 should be as short as possible (have small Euclidean norm)

shortest basis/independent vector problem

a substitute criterion is optimized, instead of system performance

Fischer: Lattice Reduction and Factorization for Equalization

Factorization Criteria (II)

Criterion II:

[TMK'07]

• for square channel matrices, the ZF equalization matrix reads

$$m{F}_{ ext{LE}} \;=\; m{C}^{-1} = m{(HZ^{-1})}^{-1} = m{ZH}^{-1}$$

- the squared *row norms* of $m{F}_{
 m LE}$ give the noise enhancement
- factorization task

$$(X^{-H} = (X^{H})^{-1} = (X^{-1})^{H})$$

 $H^{-H} = F_{TT}^{H} Z_{TT}^{-H}$

- the *column vectors* of F_{II}^{H} should be as short as possible
- if $m{Z}_{\mathrm{II}}$ is an unimodular integer matrix, $m{Z}_{\mathrm{II}}^{-\mathrm{H}}$ has also this property
- for non-square channel matrices the left pseudoinverse is used

$$ig(oldsymbol{H}^+ig)^{\mathsf{H}} \;=\; oldsymbol{F}_{\mathrm{II}}^{\mathsf{H}}oldsymbol{Z}_{\mathrm{II}}^{-\mathsf{H}}$$

($\boldsymbol{H} \in \mathbb{C}^{N \times K}$, $N \ge K$)

Factorization Criteria (III)

Criterion III:

[WBKK'04]

[YW'02], [WF'03]

the MMSE solution can be calculated as ZF solution for the augmented channel matrix

[Has'00]

• factorization task ($\zeta = \sigma_n^2 / \sigma_x^2$)

$$\begin{bmatrix} oldsymbol{H} \\ \sqrt{\zeta} oldsymbol{I} \end{bmatrix} \stackrel{ ext{def}}{=} oldsymbol{\mathcal{H}} = oldsymbol{\mathcal{C}}_{ ext{III}} oldsymbol{Z}_{ ext{III}} = egin{bmatrix} oldsymbol{C}_{ ext{III}} \\ \sqrt{\zeta} oldsymbol{Z}_{ ext{III}}^{-1} \end{bmatrix} oldsymbol{Z}_{ ext{III}}$$

optimum MMSE equalization matrix

$$\begin{aligned} \boldsymbol{F}_{\mathrm{LE,MMSE},C} &= \left[\left(\boldsymbol{\mathcal{C}}_{\mathrm{III}}^{\mathsf{H}} \boldsymbol{\mathcal{C}}_{\mathrm{III}} \right)^{-1} \boldsymbol{\mathcal{C}}_{\mathrm{III}}^{\mathsf{H}} \right]_{\mathsf{left K columns}} \\ &= \left(\boldsymbol{C}_{\mathrm{III}}^{\mathsf{H}} \boldsymbol{C}_{\mathrm{III}} + \zeta \boldsymbol{Z}_{\mathrm{III}}^{-\mathsf{H}} \boldsymbol{Z}_{\mathrm{III}}^{-1} \right)^{-1} \boldsymbol{C}_{\mathrm{III}}^{\mathsf{H}} \\ &= \boldsymbol{Z}_{\mathrm{III}} \left(\boldsymbol{H}^{\mathsf{H}} \boldsymbol{H} + \zeta \boldsymbol{I} \right)^{-1} \boldsymbol{H}^{\mathsf{H}} = \boldsymbol{Z}_{\mathrm{III}} \boldsymbol{F}_{\mathrm{LE,MMSE},H} \end{aligned}$$

- \blacksquare the *column vectors* of ${\cal C}_{
 m III}$ should be as short as possible
- as in Criterion I, a substitute measure is optimized
- in almost all cases $oldsymbol{Z}_{\mathrm{I}}=oldsymbol{Z}_{\mathrm{III}}$ [Fis'11]

Factorization Criteria (IV)

Criterion IV:

[FWSSSA'12], [ZNEG'14], [FCS'16]

applying MMSE linear equalization, the noise enhancement is given by

$$E_{k} = \left[\boldsymbol{\Phi}_{ee} \right]_{k,k} / \sigma_{n}^{2} = \left[\left(\boldsymbol{C}^{\mathsf{H}} \boldsymbol{C} + \zeta \boldsymbol{Z}^{-\mathsf{H}} \boldsymbol{Z}^{-1} \right)^{-1} \right]_{k,k}$$
$$= \left[\boldsymbol{Z} \left(\boldsymbol{H}^{\mathsf{H}} \boldsymbol{H} + \zeta \boldsymbol{I} \right)^{-1} \boldsymbol{Z}^{\mathsf{H}} \right]_{k,k} = \boldsymbol{z}_{k}^{\mathsf{H}} \left(\boldsymbol{H}^{\mathsf{H}} \boldsymbol{H} + \zeta \boldsymbol{I} \right)^{-1} \boldsymbol{z}_{k}$$
$$= \boldsymbol{z}_{k}^{\mathsf{H}} \boldsymbol{L} \boldsymbol{L}^{\mathsf{H}} \boldsymbol{z}_{k} = \| \boldsymbol{L}^{\mathsf{H}} \boldsymbol{z}_{k} \|^{2}$$

with $\boldsymbol{Z}^{\mathsf{H}} = [\boldsymbol{z}_1, \dots, \boldsymbol{z}_K]$

- L is any square root of $(H^{H}H + \zeta I)^{-1} = (\mathcal{H}^{H}\mathcal{H})^{-1}$; we may choose $L = \mathcal{H}^{+}$
- factorization task (using $L^{H}Z^{H} = (\mathcal{H}^{+})^{H}Z^{H} \stackrel{\text{def}}{=} \mathcal{F}^{H}$)

$$(\mathcal{H}^+)^{ ext{ iny II}} = \, \mathcal{F}_{ ext{ iny IV}}^{ ext{ iny IV}} Z_{ ext{ iny IV}}^{ ext{ ext{ iny IV}}}$$

 \blacksquare the *column vectors* of ${\cal F}_{
m IV}^{
m H}$ should be as short as possible

Fischer: Lattice Reduction and Factorization for Equalization

25

Constraint on Z

Constraint on the Integer Matrix $\boldsymbol{Z} \in \mathbb{G}^{K imes K}$:

typically, in LRA equalization it has been forced

 $|\det(\boldsymbol{Z})| = 1$ unimodular matrix

hence a *change of basis* is performed

- Lattice Basis Reduction
- in IF equalization, the constraint is relaxed to

 $\operatorname{rank}(\boldsymbol{Z}) = K$ full-rank matrix

(to be precise: $\mathrm{rank}(\boldsymbol{Z}_{\mathbb{F}}) = K$)

Shortest Independent Vector Problem

Observation:

[FCS'16]

using the LRA equalization structure, unimodularity of $oldsymbol{Z}$ is not required

 \Rightarrow both, LRA and IF, can use the same factorization criterion and the same constraint on Z!

Factorization Criteria (V)

Summary: (in each case $Z \in \mathbb{G}^{K \times K}$)

• the criteria available in the literature can be classified as follows

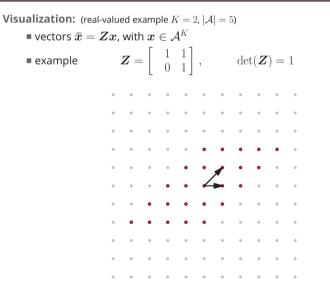
based on	channel matrix $oldsymbol{H}$ ("ZF solution")	augmented matrix ${\cal H}$ ("MMSE solution")
Н	$oldsymbol{H}=oldsymbol{C}oldsymbol{Z}$ [YW'02], [WF'03]	<i>H</i> = <i>C Z</i> [₩BKK'04], [Fis'11]
$(\boldsymbol{H}^+)^{H}$	$(H^+)^{H} = F^{H} Z^{-H}$	$(\boldsymbol{\mathcal{H}}^+)^{H} = \boldsymbol{\mathcal{F}}^{H} \boldsymbol{Z}^{-H}$ [ZNEG'14], [FCS'16]

Involved lattices:

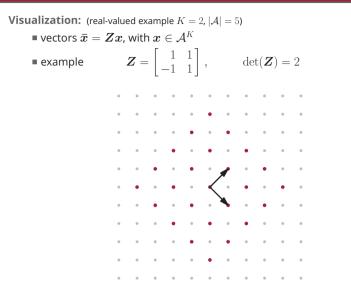
 $\pmb{H}:$ lattice spanned by channel matrix $(\pmb{H}^+)^{\sf H}:$ dual lattice [LMG'09]

Fischer: Lattice Reduction and Factorization for Equalization

Constraint on Z



Constraint on Z



Fischer: Lattice Reduction and Factorization for Equalization

Lattices and Lattice Problems (II)

Gram-Schmidt (GS) Orthogonalization:

lacksquare any matrix $oldsymbol{G} \in \mathbb{C}^{N imes K}$ can be decomposed into the form

 $G = G^{\circ}R$

with - $G^{\circ} = [g_{1}^{\circ}, \dots, g_{K}^{\circ}]$: Gram-Schmidt orthogonalization of Gwith orthogonal columns $g_{1}^{\circ}, \dots, g_{K}^{\circ}$ - $R = [r_{l,k}] \in \mathbb{C}^{K \times K}$: upper triangular with unit main diagonal

successive procedure

for
$$k = 1, \dots, K$$

 $\boldsymbol{g}_{k}^{\circ} = \boldsymbol{g}_{k} - \sum_{l=1}^{k-1} r_{l,k} \boldsymbol{g}_{l}^{\circ}$
with $r_{l,k} = \frac{(\boldsymbol{g}_{l}^{\circ})^{\mathsf{H}} \boldsymbol{g}_{k}^{\circ}}{\|\boldsymbol{g}_{l}^{\circ}\|_{2}^{2}}, \quad l = 1, \dots, k$

Lattices and Lattice Problems

Lattice:

we deal with complex-valued lattices

$$\boldsymbol{\Lambda}(\boldsymbol{G}) = \left\{ \boldsymbol{\lambda} = \sum_{k=1}^{K} z_k \boldsymbol{g}_k = \boldsymbol{G} \begin{bmatrix} z_1 \\ \vdots \\ z_K \end{bmatrix} \mid z_k \in \mathbb{G} \right\} \stackrel{\text{def}}{=} \boldsymbol{G} \mathbb{G}^K$$

where

$$\boldsymbol{G} = [\boldsymbol{g}_1, \dots, \boldsymbol{g}_K] \in \mathbb{C}^{N imes K}$$

is its generator matrix (basis) consisting of $K \in \mathbb{N}$ linearly independent basis vectors $\boldsymbol{g}_k \in \mathbb{C}^N$, $N \geq K$, $N \in \mathbb{N}$ (*N*-dimensional lattice of rank *K*)

Alternative Description:

 instead of dealing with the complex-valued generator matrix G, one can use the real-valued equivalent

$$oldsymbol{G}_{ ext{real}} \stackrel{ ext{def}}{=} \begin{bmatrix} \operatorname{Re} \{ oldsymbol{G} \} & -\operatorname{Im} \{ oldsymbol{G} \} \\ \operatorname{Im} \{ oldsymbol{G} \} & \operatorname{Re} \{ oldsymbol{G} \} \end{bmatrix}$$

of doubled dimension

Fischer: Lattice Reduction and Factorization for Equalization

[Win'04]

Lattices and Lattice Problems (III)

Minkowski's Successive Minima:

• $k^{ ext{th}}, k=1,\ldots,K$, successive minimum of $oldsymbol{\Lambda}(G)$ [Cas'97], [LLS'90], [DKWZ'15]

 $\rho_k(\boldsymbol{\Lambda}(\boldsymbol{G})) = \inf \{ r_k \mid \dim (\operatorname{span} (\boldsymbol{\Lambda}(\boldsymbol{G}) \cap \boldsymbol{B}_N(r_k))) = k \}$

- with $B_N(r)$: *N*-dimensional ball (over \mathbb{C}) with radius r centered at the origin span(·): linear span
- $ho_1(\Lambda({m G}))$ is the norm of the shortest vector of the lattice $\Lambda({m G})$
- interpretation:
- r_k has to be chosen as the smallest radius such that ${\bm B}_N(r_k)$ contains k linearly independent lattice vectors
- Visualization:



28

[Fis'10]

Lattices and Lattice Problems (IV)

Given: a complex-valued lattice $\Lambda(G)$ of rank *K*

Shortest Independent Vector Problem (SIVP):

• find set $\mathcal{G} = \{\lambda_1, \dots, \lambda_K\}$ of K linearly independent vectors $\lambda_k \in \Lambda(G)$, such that

$$\max_{k=1,\ldots,K} \|\boldsymbol{\lambda}_k\| = \rho_K(\boldsymbol{\Lambda}(\boldsymbol{G}))$$

the largest vector has to be as short as possible; the norms of all shorter vectors do not matter

Successive Minima Problem (SMP):

• find set $\mathcal{G} = \{ \lambda_1, \dots, \lambda_K \}$ of K linearly independent vectors $\lambda_k \in \Lambda(G)$, such that

$$\|\boldsymbol{\lambda}_k\| = \rho_k(\boldsymbol{\Lambda}(\boldsymbol{G})), \quad k = 1, \dots, K$$

- all lattice vectors in the set *G* have to be as short as possible; naturally, SMP is also a solution to SIVP
- efficient strategies for solving the (C)SMP are available [DKWZ'15], [FCS'16]

Fischer: Lattice Reduction and Factorization for Equalization

Lattices and Lattice Problems (VI)

Lattice Basis Reduction:

• find set $\mathcal{G} = \{\lambda_1, \dots, \lambda_K\}$ of K linearly independent vectors $\lambda_k \in \Lambda(G)$, such that

 $\boldsymbol{\Lambda}(\boldsymbol{G}) = \boldsymbol{\Lambda}(\boldsymbol{G}_{\mathrm{r}})$

with

$$m{G}_{\mathrm{r}} = [m{g}_{\mathrm{r},1},\ldots,m{g}_{\mathrm{r},K}] = [m{\lambda}_1,\ldots,m{\lambda}_K]$$

i.e., $G_{\rm r}$ is a "reduced" basis of the lattice Λ (the meaning of "reduced" depends on the criterion/algorithm)

• the generator matrices are related by

$$G_{\rm r} = GU$$

or

 $oldsymbol{G} = oldsymbol{G}_{
m r}oldsymbol{U}^{-1}$

where $U \in \mathbb{G}^{K \times K}$ is unimodular, i.e., $|\det(U)| = 1$; hence $U^{-1} \in \mathbb{G}^{K \times K}$

Lattices and Lattice Problems (V)

Set of Linearly Independent Vectors:

$$lacksquare$$
 the obtained vectors are lattice points $oldsymbol{\lambda}_k \in \Lambda(G)$, hence

$$oldsymbol{\lambda}_k = oldsymbol{G}oldsymbol{u}_k \ , \qquad ext{with} \quad oldsymbol{u}_k \in \mathbb{G}^n, \quad orall k$$

• the matrix
$$m{V} \stackrel{ ext{def}}{=} m[m{\lambda}_1, \dots, m{\lambda}_Km]$$
 is related to $m{G}$ via $m{V} = m{G}m{U}$

or
$$m{G} = m{V}m{U}^{-1}$$
with $m{U} \in \mathbb{G}^{K imes K}$ and $|\det(m{U})| \in \mathbb{G} \setminus \{0\}$

(cf. factorization task $(\boldsymbol{H}^+)^{\mathsf{H}} = \boldsymbol{F}^{\mathsf{H}} \boldsymbol{Z}^{-\mathsf{H}}$)

Lattices and Lattice Problems (VII)

Lenstra-Lenstra-Lovász (LLL) Reduction:

Fischer: Lattice Reduction and Factorization for Equalization

[LLL'82]

• a generator matrix $G = [g_1, \dots, g_K] \in \mathbb{C}^{N \times K}$ with Gram–Schmidt orthogonal basis $G^\circ = [g_1^\circ, \dots, g_K^\circ]$ and upper triangular matrix Ris called (C)LLL-reduced, if [GLM'09]

1. for $1 \le l < k \le K$, it is *size-reduced* according to

 $|\text{Re}\{r_{l,k}\}| \le 0.5$ and $|\text{Im}\{r_{l,k}\}| \le 0.5$

2. for
$$k = 2, ..., K$$
 and a parameter $0.5 < \delta \le 1$
 $\|\boldsymbol{g}_{k}^{\circ}\|^{2} \ge (\delta - |r_{k-1,k}|^{2})\|\boldsymbol{g}_{k-1}^{\circ}\|$

• the parameter δ controls the trade-off between "strength" of the LLL reduction and computational complexity — usually $\delta = 0.75$; the case $\delta = 1$ is denoted as *optimal LLL reduction* [A'03] • for $\delta < 1$ the algorithm has polynomial complexity [A'03]

(cf. factorization task H = CZ)

Lattices and Lattice Problems (VIII)

Hermite-Korkine-Zolotareff (HKZ) Reduction:

- a generator matrix $G = [g_1, \dots, g_K] \in \mathbb{C}^{N \times K}$ with Gram–Schmidt orthogonal basis $G^\circ = [g_1^\circ, \dots, g_K^\circ]$ and upper triangular matrix Ris called (C)HKZ-reduced, if [LLS'90], [JD'13]
 - 1. for $1 \le l < k \le K$, it is *size-reduced* according to

 $|\text{Re}\{r_{l,k}\}| \le 0.5$ and $|\text{Im}\{r_{l,k}\}| \le 0.5$

2. for $k = 1, \ldots, K$, the columns of G° fulfill

 $\|\boldsymbol{g}_k^{\circ}\| =
ho_1(\boldsymbol{\Lambda}(\boldsymbol{G}^{(k)}))$

(shortest (non-zero) vector in $oldsymbol{\Lambda}(oldsymbol{G}^{(k)})$)

• $\Lambda(\mathbf{G}^{(k)})$: sublattice of rank K - k + 1 and dimension N with generator matrix $\mathbf{G}^{(k)} = [0, \dots, 0, \mathbf{g}_k^\circ, \dots, \mathbf{g}_K^\circ]\mathbf{R}$ ($\Lambda(\mathbf{G}^{(k)})$ is the orth. projection of $\Lambda(\mathbf{G})$ onto the orth. complement of $\{\mathbf{g}_1, \dots, \mathbf{g}_{k-1}\}$)

since shortest vectors have to be found, the problem is NP-hard;

efficient (complex-valued) algorithms available []D'13], [ZQW'12]

Fischer: Lattice Reduction and Factorization for Equalization

Application to Equalization

Recall: Criterion IV

- MMSE linear equalization via $\mathcal{F}^{\mathsf{H}} = Z\mathcal{H}^{+} = \begin{bmatrix} h \\ \vdots \\ h_{\mathsf{L}} \end{bmatrix}$
- noise enhancement

$$E_k = \|\mathbf{\mathfrak{f}}_k\|^2 = \|(\boldsymbol{\mathcal{H}}^+)^{\mathsf{H}} \boldsymbol{z}_k\|^2 \to \min$$

with $oldsymbol{Z}^{\mathsf{H}} = [oldsymbol{z}_1, \dots, oldsymbol{z}_K]$

factorization task

$$ig({oldsymbol{\mathcal{H}}}^+ ig)^{\mathsf{H}} \ = \ {oldsymbol{\mathcal{F}}}^{\mathsf{H}} \, {oldsymbol{Z}}^{-\mathsf{H}}$$

• the *column vectors* of \mathcal{F}^{H} should be as short as possible

usually the maximum of the noise enhancement dominates

Lattices and Lattice Problems (IX)

Minkowski (MK) Reduction:

• a generator matrix
$$G = [g_1, \dots, g_K] \in \mathbb{C}^{N \times K}$$
 is called (C)MK-reduced,
if [Min'1891], [ZQW'12]
 $\|g_k\| \leq \|g'_k\|, \quad k = 1, \dots, K$
 $\forall G' = [g_1, \dots, g_{k-1}, g'_k, \dots, g'_K]$
with $\Lambda(G') = \Lambda(G)$
G is Minkowski-reduced if for $k = 1$. *K* the basis vector g_k has minimum norm

G is Minkowski-reduced if for $k = 1, \ldots, K$ the basis vector g_k has minimum norm among all possible lattice points g'_k for which the set $\{g_1, g_2, \ldots, g_{k-1}, g'_k\}$ can be extended to a basis of $\Lambda(G)$

- in contrast to the SMP where only the K shortest independent lattice vectors have to be found, here the K shortest vectors have to be obtained that form a basis of the lattice
- efficient (real-valued) algorithm available

[ZQW'12]

in the real-valued case, the calculation of a greatest common divisor (gcd) is required; in the complex-valued case the gcd for Gaussian integers has to be used (calculated via the Euclidean Algorithm)

Fischer: Lattice Reduction and Factorization for Equalization

Application to Equalization (II)

- Factorization Problem: $Z^{H} = [z_1, \dots, z_K]$
 - $|\det(\boldsymbol{Z}^{\mathsf{H}})| = 1$ required

$$\boldsymbol{Z}^{\mathsf{H}} = \operatorname*{argmin}_{\substack{\boldsymbol{Z}^{\mathsf{H}} \in \mathbb{G}^{K \times K} \\ |\det(\boldsymbol{Z}^{\mathsf{H}})|=1}} \max_{k=1,...,K} \left\| (\boldsymbol{\mathcal{H}}^{+})^{\mathsf{H}} \boldsymbol{z}_{k} \right\|^{2}$$

- ⇒ shortest basis problem (SBP)
- the MK-reduced basis is directly defined by the length of its basis vectors

 it consists of the K shortest lattice vectors that form a basis of the lattice
 (not only the maximum norm is minimized)
- \Rightarrow Minkowski reduction gives the optimum integer matrix Z
- full-rank matrix Z sufficient

$$\boldsymbol{Z}^{\mathsf{H}} = \operatorname*{argmin}_{\substack{\boldsymbol{Z}^{\mathsf{H}} \in \mathbb{G}^{K \times K} \\ \operatorname{rank}(\boldsymbol{Z}^{\mathsf{H}}) = K}} \max_{k=1,...,K} \left\| (\boldsymbol{\mathcal{H}}^{+})^{\mathsf{H}} \boldsymbol{z}_{k} \right\|^{2}$$

- ⇒ shortest independent vector problem (SIVP)
- this problem is optimally solved—in a stricter sense—if the K successive minima of $\Lambda((\mathcal{H}^+)^{\rm H})$ are obtained

 \Rightarrow Minkowski's successive minima give the optimum integer matrix Z

Numerical Results

Obtained Vectors $oldsymbol{z}_k$:	E 0.8 1 0.53	08 01;	0.1 0.6;	0.7 1.0;]
• factorization of $G =$	-0.5 + 0.4j 0.3 - 0.5j	-0.1 - 0.2j 1 1 \pm 2 1j	-1.1 + 0.8j 0.8 - 0.3j	-0.3 - 1.0j $0.4 \pm 1.4j$
	-0.3 - 0.2j	-1.0 + 0.0j	0.6 - 0.4j	0.2 + 1.1j

$oldsymbol{u}_i$	$\begin{bmatrix} 3 + 0j \\ 0 + 1j \\ -2 - 1j \\ 1 - 2j \end{bmatrix}$	$\begin{bmatrix} 2 + 0j \\ 0 + 1j \\ -2 - 1j \\ 1 - 2j \end{bmatrix}$	$ \begin{bmatrix} 1 + 0j \\ 0 + 0j \\ -1 - 1j \\ 1 - 1j \end{bmatrix} $	$\begin{bmatrix} 1 + 1j \\ 0 + 0j \\ 0 - 1j \\ 1 + 0j \end{bmatrix}$	$\begin{bmatrix} 1 + 0j \\ 0 + 0j \\ -1 + 0j \\ 0 - 1j \end{bmatrix}$	$\begin{bmatrix} 3 + 0j \\ 0 + 1j \\ -3 - 1j \\ 1 - 3j \end{bmatrix}$	$\begin{bmatrix} 4 - 1j \\ 0 + 1j \\ -5 - 1j \\ 1 - 4j \end{bmatrix}$	$\begin{bmatrix} 4 + 0j \\ 0 + 1j \\ -4 - 1j \\ 1 - 3j \end{bmatrix}$	$\begin{bmatrix} 3 + 0j \\ 0 + 1j \\ -4 - 1j \\ 1 - 3j \end{bmatrix}$	$\begin{bmatrix} 1 + 0j \\ 0 + 0j \\ 0 - 1j \\ 1 + 0j \end{bmatrix}$	$\begin{bmatrix} 0 + 0j \\ 0 + 0j \\ 0 - 1j \\ 1 + 0j \end{bmatrix}$	$\begin{bmatrix} 1 + 0j \\ 0 + 0j \\ 0 + 0j \\ 0 + 0j \end{bmatrix}$
$oldsymbol{\lambda}_i$	-0.6 + 0.2j 0.1 - 0.0j	$\begin{bmatrix} -0.2 - 0.9j \\ -0.1 - 0.2j \\ -0.2 + 0.5j \\ 0.2 - 0.5j \end{bmatrix}$	$\begin{bmatrix} 0.0 - 0.5j \\ 0.1 + 0.0j \\ 1.0 - 0.0j \\ 0.0 + 0.5j \end{bmatrix}$	-0.4 + 0.0j 0.9 + 0.4j	-0.4 - 0.1j 0.9 - 0.6j	-0.5 - 0.3j 0.7 - 0.1j	$\begin{bmatrix} 0.2 - 0.3j \\ 0.6 - 0.7j \\ 0.3 - 0.7j \\ -0.2 + 0.2j \end{bmatrix}$	$\begin{bmatrix} 0.6 + 0.6j \\ 0.1 - 0.7j \\ 0.2 - 0.3j \\ -0.5 - 0.3j \end{bmatrix}$	0.6 - 1.1j -0.1 + 0.2j	$\begin{bmatrix} 0.9 - 0.4j \\ 0.0 + 0.5j \\ 0.4 + 0.1j \\ -0.5 + 0.3j \end{bmatrix}$	$\begin{bmatrix} 0.1 - 0.9j \\ 0.5 + 0.1j \\ 0.1 + 0.6j \\ -0.2 + 0.5j \end{bmatrix}$	0.3 - 0.5j
$\ oldsymbol{\lambda}_i\ ^2$	1.43	1.48	1.51	1.54	1.55	1.59	1.64	1.69	1.72	1.73	1.74	1.77
rank	1	2	3	3	3	3	4	4	4	4	4	4
LLL $\delta = .75$	Х			Х				Х				Х
LLL $\delta = 1$			Х	Х		Х	Х					
HKZ	Х	Х						Х		Х		
MK	Х	Х		Х			Х					
SMP	х	х	Х				Х					

• here: $det(\boldsymbol{Z}_{SMP}) = 1 + j$

Fischer: Lattice Reduction and Factorization for Equalization

Numerical Results (III)

Distribution of $|\det(Z)|$:

• *H*: i.i.d. random zero-mean unit-variance complex Gaussian

 $\blacksquare K = N = 6$

■ criterion IV — SMP

[DKWZ'15], [FCS'16]

$ \det(\boldsymbol{Z}) =$	1	$\sqrt{2}$	2	$\sqrt{5}$
$\sigma_x^2/\sigma_n^2 \cong 0 \text{ dB}$	99.6~%	0.45~%	0.0002~%	_
$\sigma_x^2/\sigma_n^2 \cong 10 \text{ dB}$	96.2~%	3.83~%	0.02~%	0.002~%
$\sigma_x^2/\sigma_n^2 \cong 20 \text{ dB}$	95.4~%	4.45~%	0.03~%	0.003~%
$\sigma_x^2/\sigma_n^2 \cong 30 \text{ dB}$	95.5~%	4.48~%	0.03~%	0.003~%

Numerical Results (II)

Distribution of $|\det(Z)|$:

- **H**: i.i.d. random zero-mean unit-variance complex Gaussian; K = N
- $\bullet \sigma_x^2/\sigma_n^2 \widehat{=} 20 \text{ dB}$

■ criterion IV — SMP

[DKWZ'15], [FCS'16]

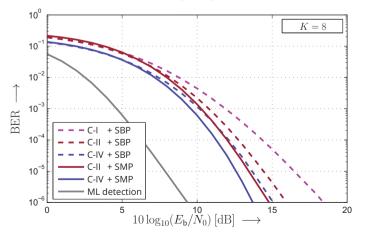
$ \det(\boldsymbol{Z}) =$	1	$\sqrt{2}$	2	$\sqrt{5}$
K = 2	100~%	_	_	_
K = 3	99.8~%	0.2~%	_	_
K = 4	99.0~%	1.0~%	-	_
K = 5	97.5~%	2.4~%	0.005~%	-
K = 6	95.6~%	4.5~%	0.03~%	0.003~%
K = 7	92.7~%	7.1~%	0.15~%	0.02~%
K = 8	89.3%	10.2~%	0.39~%	0.06~%

scher: Lattice Reduction and Factorization for Equalization

Numerical Results (IV)

Bit Error Rate: LRA structure; linear MMSE equalization — different criteria and constraints

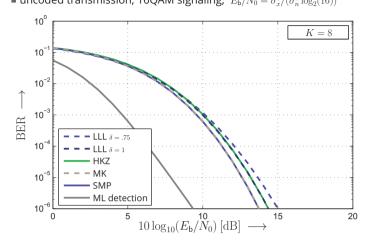
• *H*: i.i.d. random zero-mean unit-variance complex Gaussian; K = N• uncoded transmission; 16QAM signaling; $E_b/N_0 = \sigma_x^2/(\sigma_n^2 \log_2(16))$



Numerical Results (V)

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms

H: i.i.d. random zero-mean unit-variance complex Gaussian; K = Nuncoded transmission; 16QAM signaling; $E_{\rm b}/N_0 = \sigma_x^2/(\sigma_{\rm a}^2 \log_2(16))$



Fischer: Lattice Reduction and Factorization for Equalization

44

46

Numerical Results (VII)

Percentages "MK = SMP" and "MK = SIVP":

• *H*: i.i.d. random zero-mean unit-variance complex Gaussian

• K = N; criterion IV

[DKWZ'15], [FCS'16]

$SMP \mid K = N =$	2	4	6	8	10
$\sigma_x^2/\sigma_n^2 \cong 15 \mathrm{dB}$	100~%	99.0~%	95.7%	90.3%	83.8 %
$\sigma_x^2/\sigma_n^2 \cong 20 \text{ dB}$	100~%	99.0~%	95.6~%	89.8%	82.3%
$\sigma_x^2/\sigma_n^2 \to \infty$	100~%	99.0~%	95.5%	89.4~%	81.5~%

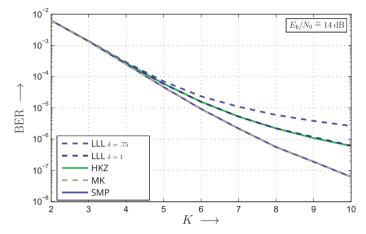
$SIVP \mid K = N =$	2	4	6	8	10
$\sigma_x^2/\sigma_n^2 \cong 15 \text{ dB}$	100~%	99.2~%	97.0~%	94.0~%	90.6~%
$\sigma_x^2/\sigma_n^2 \cong 20 \text{ dB}$	100~%	99.2~%	97.0~%	93.5~%	89.3%
$\sigma_x^2/\sigma_n^2 ightarrow \infty$	100~%	99.2~%	96.9%	93.2~%	88.5~%

for the complex case and K=N=2, an MK-reduced basis is always a solution to the SMP

Numerical Results (VI)

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms

- H: i.i.d. random zero-mean unit-variance complex Gaussian; K = N
- uncoded transmission; 16QAM signaling



Fischer: Lattice Reduction and Factorization for Equalization

45

Numerical Results (VIII)

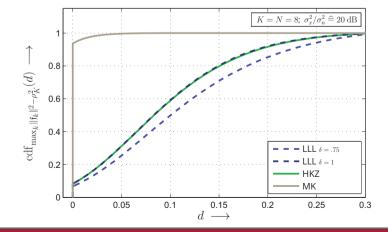
Distribution of Deviation from Optimum:

• *H*: i.i.d. random zero-mean unit-variance complex Gaussian

•
$$K = N = 8$$
; $\sigma_r^2 / \sigma_n^2 \cong 20 \,\mathrm{dH}$

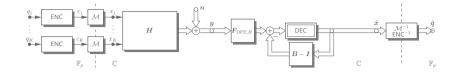
criterion IV

[DKWZ'15], [FCS'16]



Decision-Feedback Equalization

Decision-Feedback Equalization: aka successive interference cancellation, V-BLAST



QR decomposition of the channel matrix: Q: orthogonal matrix; B: upper triangular, unit main diagonal

H = QB

lacksquare signal after feedforward processing with $m{F}_{ ext{DFE},H} \stackrel{ ext{def}}{=} (m{Q}^{ ext{H}}m{Q})^{-1}m{Q}^{ ext{H}}$

$$\boldsymbol{r} = \boldsymbol{F}_{\mathrm{DFE},H}\boldsymbol{y} = \boldsymbol{B}\boldsymbol{x} + \tilde{\boldsymbol{n}}$$

- spatially causal signal transmission matrix ${oldsymbol B}$
- Gaussian noise vector $\tilde{\boldsymbol{n}}$ with correlation matrix $\sigma_n^2 (\boldsymbol{Q}^H \boldsymbol{Q})^{-1}$ i.e., with $\boldsymbol{Q} = [\boldsymbol{q}_1 \cdots \boldsymbol{q}_K]$ noise variances $\sigma_{\tilde{n}_L}^2 = \sigma_n^2 / ||\boldsymbol{q}_k||^2$
- decisions are taken successively (order $K, \ldots, 1$)

Fischer: Lattice Reduction and Factorization for Equalization

Decision-Feedback Equalization (II)

Optimum Detection Order: V-BLAST ordering

```
[WFGV'98]
```

48

- signal-to-noise ratio in component k is proportional to $\|\boldsymbol{q}_k\|^2$
- ⇒ for k = K, ..., 1: the norm of the vector q_k should be the largest among the remaining components 1, ..., k
- BLAST ordering requires great effort

Simpler Strategy:

[WBKK'03], [Fis'10]

- instead of *maximizing* $\|\boldsymbol{q}_k\|^2$ in sequence k = K, K 1, ..., 1 it is *minimized* in sequence k = 1, 2, ..., K
- ⇒ for k = 1, ..., K: the norm of the vector q_k should be the smallest among the remaining components k, ..., K
- Gram–Schmidt procedure with pivoting

Simple but Optimum Strategy:

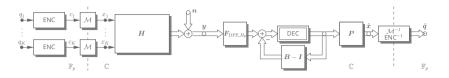
- [LMG'09]
- do not apply Gram–Schmidt procedure with pivoting to \mathcal{H} , but to $(\mathcal{H}^+)^H$
- ⇒ use factorization

$$(\mathcal{H}^+)^{\mathsf{H}} P^{-\mathsf{H}} = \mathcal{F}^{\mathsf{H}} B^{-\mathsf{H}}$$

order within GS proc.: $k = K, \dots, 1$; i.e., B^{-H} should be lower triangular

Decision-Feedback Equalization

Decision-Feedback Equalization: aka successive interference cancellation, V-BLAST



sorted QR decomposition of the channel matrix: Q: orthogonal matrix; B: upper triangular, unit main diagonal; P: permutation matrix

$$HP \stackrel{\text{\tiny def}}{=} H_{\mathsf{P}} = QB$$

⇒ criterion for sorting required

MMSE version of DFE:

ZF version for $K = N$:	$HP = F^{-1}B$
MMSE version of DFE:	$\mathcal{H}P~=~\mathcal{F}^+B$
with $\mathcal{H} = \begin{bmatrix} H \\ \sqrt{\zeta}I \end{bmatrix}$	

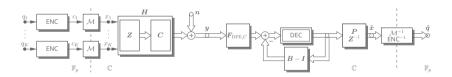
Fischer: Lattice Reduction and Factorization for Equalization

LRA Decision-Feedback Equalization

LRA Decision-Feedback Equalization:

[YW'02], [WF'03]

48



Strategies:

obvious	[YW'02], [WF'03]
perform i) factorization $oldsymbol{H}=oldsymbol{C}oldsymbol{Z}$;	
ii) sorted QR decomposition $oldsymbol{CP}=oldsymbol{QB}$	

- more efficient [WBKK'04], [Fis'11] reuse Q and R anyway calculated within LLL or HKZ
- optimum [LMG'09], [Fis'10], [SF'17] do sorting, Gram–Schmidt procedure, and size reduction jointly

LRA Decision-Feedback Equalization (II)

Pseudocode of Factorization Approach:

```
[SF'17]
```

 $[m{Q},m{R},m{T}]= ext{GramSchmidtSort_LRA}(m{G})$ $Q = G_{I}R = I_{I}T = I$ k = 12 while $k \leq K$ { 3 $oldsymbol{q}_{ ext{s}} = ext{shortest vector in } oldsymbol{\Lambda}([oldsymbol{q}_k,\ldots,oldsymbol{q}_K])$ 4 if $\|\boldsymbol{q}_{s}\|^{2} \neq \|\boldsymbol{q}_{k}\|^{2}$ { 5 6 $\boldsymbol{q}_k = \boldsymbol{q}_s$ update $oldsymbol{Q}, oldsymbol{R}, oldsymbol{T}$ such that $\Lambda(oldsymbol{Q}oldsymbol{R}) = \Lambda(oldsymbol{G})$ 7 8 for i = k + 1, ..., K { 9 $r_{ki} = \boldsymbol{q}_k^{\mathsf{H}} \boldsymbol{q}_i / \|\boldsymbol{q}_k\|^2$ 10 $\boldsymbol{q}_i = \boldsymbol{q}_i - r_{ki} \boldsymbol{q}_k$ 11 12 13 k = k + 114

LRA Decision-Feedback Equalization (III)

Recall: Hermite-Korkine-Zolotareff (HKZ) Reduction

• a generator matrix $\boldsymbol{G} = [\boldsymbol{g}_1, \dots, \boldsymbol{g}_K] \in \mathbb{C}^{N \times K}$ with Gram–Schmidt orthogonal basis $G^{\circ} = [g_1^{\circ}, \dots, g_K^{\circ}]$ and upper triangular matrix Ris called (C)HKZ-reduced, if [LLS'90], [JD'13]

1. for $1 \le l \le k \le K$, it is *size-reduced* according to

 $|\text{Re}\{r_{l\,k}\}| < 0.5$ and $|\text{Im}\{r_{l\,k}\}| < 0.5$

2. for $k = 1, \ldots, K$, the columns of G° fulfill

 $\|\boldsymbol{q}_{k}^{\circ}\| = \rho_{1}(\boldsymbol{\Lambda}(\boldsymbol{G}^{(k)}))$

(shortest (non-zero) vector in $\Lambda({m G}^{(k)})$)

• $\Lambda(\mathbf{G}^{(k)})$: sublattice with generator matrix $\mathbf{G}^{(k)} = [0, \dots, 0, \mathbf{q}_{k}^{\circ}, \dots, \mathbf{q}_{K}^{\circ}]\mathbf{R}$

Fischer: Lattice Reduction and Factorization for Equalization

LRA Decision-Feedback Equalization (IV)

Discussion:

the size-reduction step of HKZ is not present; as it changes only R it is of no relevance for performance of LRA DFE

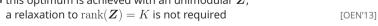
⇒ effective HKZ reduction

• for
$$m{G}=(m{\mathcal{H}}^+)^{\mathsf{H}}$$
 the algorithms returns $m{Z}^{\mathsf{H}}=m{T}$ and $m{\mathcal{F}}^{\mathsf{H}}=m{Q}$ with

- V-BLAST sorting

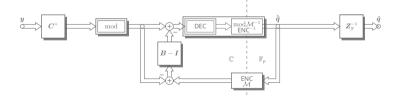
Fischer: Lattice Reduction and Factorization for Equalization

- the columns of \mathcal{F}^{H} have minimum norm (optimal worst-link performance as in classical V-BLAST but for LRA equalization)
- this optimum is achieved with an unimodular Z; a relaxation to $rank(\mathbf{Z}) = K$ is not required



LRA Decision-Feedback Equalization (V)

LRA Decision-Feedback Equalization:



redraw to noise-prediction structure

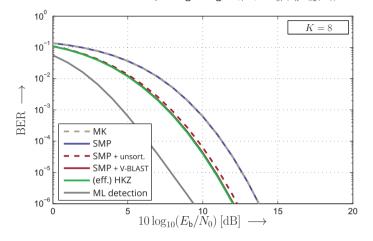
[Fis'02]

- \blacksquare apply modulo reduction w.r.t. Λ_s
- exchange Z^{-1} and demapping/encoder inverse
- combine to demapping modulo $\Lambda_{
 m s}$
- *successive IF only works in noise-prediction structure*

Numerical Results

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms

I H: i.i.d. random zero-mean unit-variance complex Gaussian; K = N**uncoded transmission; 16QAM signaling;** $E_{\rm h}/N_0 = \sigma_x^2/(\sigma_x^2 \log_2(16))$



Fischer: Lattice Reduction and Factorization for Equalization

55

References

References

- [AEVZ'02] E. Agrell, T. Eriksson, A. Vardy, K. Zeger. Closest Point Search in Lattices. *IEEE Transactions on Information Theory*, vol. 48, no. 8, pp. 2201–2214, Aug. 2002.
- [A'03] A. Akhavi. The Optimal LLL Algorithm is Still Polynomial in Fixed Dimension. Theoretical Computer Science, vol. 297, pp. 3–23, Mar. 2003.
- [Cas'97] J.W.S. Cassels. An Introduction to the Geometry of Numbers. Springer Berlin/Heidelberg, Reprint of the 1971 Edition, 1997.
- [DKWZ'15] L. Ding, K. Kansanen, Y. Wang, J. Zhang. Exact SMP Algorithms for Integer Forcing Linear MIMO Receivers. IEEE Transactions on Wireless Communications, vol. 14, no. 12, pp. 6955–6966, Dec. 2015.
- [FSK'13] C. Feng. D. Silva, F.R. Kschischang. An Algebraic Approach to Physical-Layer Network Coding. IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7576–7596, Nov. 2013.
- [Fis'02] R.F.H. Fischer. Precoding and Signal Shaping for Digital Transmission. John Wiley & Sons, Inc., New York, 2002.
- [Fis'10] R.F.H. Fischer. From Gram–Schmidt Orthogonalization via Sorting and Quantization to Lattice Reduction. In *Joint Workshop on Coding and Communications*, Santo Stefano Belbo, Italy, Oct. 2010.
- [Fis'11] R.F.H. Fischer. Efficient Lattice-Reduction-Aided MMSE Decision-Feedback Equalization. In IEEE International Conference on Acoustics, Speech, and Signal Processing, Prag, Czech Republic, May 2011.
- [FWSSSA'12] R.F.H. Fischer, C. Windpassinger, C. Stierstorfer, C. Siegl, A. Schenk, Ü. Abay. Lattice-Reduction-Aided MMSE Equalization and the Successive Estimation of Correlated Data. AEÜ—Int. Journal of Electronics and Communications, vol. 65, no. 8, pp. 688–693, Aug. 2011.
 - [FCS'16] R.F.H. Fischer, M. Cyran, S. Stern. Factorization Approaches in Lattice-Reduction-Aided and Integer-Forcing Equalization. In International Zurich Seminar on Communications, Zurich, Switzerland, March 2016.
- [GLM'09]
 Y.H. Gan, C. Ling, W.H. Mow. Complex Lattice Reduction Algorithm for Low-Complexity Full-Diversity MIMO

 Detection.
 IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2701–2710, July 2009.

57

Summary

Low-Complexity Equalization Schemes:

- tight relation between LRA and IF equalization
- ⇒ structure how equalization and decoding are combined
- performance measure for defining the factorization task
 optimization criterion
- constraints on the integer matrix SBP vs. SIVP
 - ⇒ algorithms for performing the factorization

Optimum Integer Matrix Z:

- linear equalization
 - $|\det(\mathbf{Z})| = 1$ Minkowski reduction gives the optimum
 - $rank(\mathbf{Z}) = K$ Minkowski's successive minima give the optimum
- decision-feedback equalization

(effective) HKZ reduction gives the optimum

(relaxation to $|\det(\mathbf{Z})| > 1$ not required)

Dualization:

 transmitter-side precoding for broadcast channel (LRA / IF precoding)

[HC'13], [HNS'14], [SF'15]

56

Fischer: Lattice Reduction and Factorization for Equalization

References

- [Has'00] B. Hassibi. An Efficient Square-Root Algorithm for BLAST. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. II737–II740, 2000.
- [HNS'14] W. He, B. Nazer, S. Shamai. Uplink-Downlink Duality for Integer-Forcing. In IEEE International Symposium on Information Theory, pp. 2544–2548, 2014.
- [HC'13] S.-N. Hong, G. Caire. Compute-and-Forward Strategies for Cooperative Distributed Antenna Systems. IEEE Transactions on Information Theory, vol. 59, no. 9, pp. 5227–5243, Sept. 2013.
- [JD'13] H. Jiang, S. Du. Complex Korkine-Zolotareff Reduction Algorithm for Full-Diversity MIMO Detection. IEEE Communications Letters, vol. 17, no. 2, pp. 381–384, Feb. 2013.
- [LLS'90] J.C. Lagarias, H.W. Lenstra, C.P. Schnorr. Korkin-Zolotarev Bases and Successive Minima of a Lattice and its Reciprocal Lattice. *Combinatorica*, vol. 10, no. 4, pp. 333–348, 1990.
- [LLl'82] A.K. Lenstra, H.W. Lenstra, L. Lovász. Factoring Polynomials with Rational Coefficients, Mathematische Annalen, vol. 261, no. 4, pp. 515–534, 1982.
- [LMG'09] C. Ling, W.H. Mow, L. Gan. Dual-Lattice Ordering and Partial Lattice Reduction for SIC-Based MIMO Detection. IEEE J. Sel. Topics Signal Process., vol. 3, no. 6, pp. 975–985, Dec. 2009.
- [Min'1891] H. Minkowski. Über die positiven quadratischen Formen und über kettenbruchähnliche Algorithmen. Journal für die reine und angewandte Mathematik, vol. 107, pp. 278–297, 1891.
- [NG'11] B. Nazer, M. Gastpar. Compute-and-Forward: Harnessing Interference Through Structured Codes. IEEE Transactions on Information Theory, vol. 57, no. 10, pp. 6463–6486, Oct. 2011.
- [OEN'13] O. Ordentlich, U. Erez, B. Nazer. Successive Integer-Forcing and its Sum-Rate Optimality. In Annual Allerton Conference, pp. 282–292, Oct. 2013.
- [SF15] S. Stern, R. Fischer. Lattice-Reduction-Aided Preequalization over Algebraic Signal Constellations. In 9th International Conference on Signal Processing andCommunication Systems (ICSPCS), Cairns, Australia, Dec. 2015.
- [SF'17] S. Stern, R.F.H. Fischer. V-BLAST in Lattice Reduction and Integer Forcing. In International Symposium on Information Theory, Aachen, Germany, June 2017.

References

- [TMK'07] M. Taherzadeh, A. Mobasher, A.K. Khandani. LLL Reduction Achieves the Receive Diversity in MIMO Decoding. IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4801–4805, Dec. 2007.
- [WF'03] C. Windpassinger, R.F.H. Fischer. Low-Complexity Near-Maximum-Likelihood Detection and Precoding for MIMO Systems using Lattice Reduction. In Proceedings of IEEE Information Theory Workshop, pp. 345–348, Paris, France, March/April 2003.
- [Win'04] C. Windpassinger. Detection and Precoding for Multiple Input Multiple Output Channels. Dissertation, Erlangen, June 2004.
- [WFGV'98] P.W. Wolniansky, G.J. Foschini, G.D. Golden, R.A. Valenzuela. V-BLAST: An Architecture for Realizing Very High Data Rates over the Rich-Scattering Wireless Channel. In International Symposium on Signals, Systems, and Electronics, pp. 295–300, Sep. 1998.
- [WBKK'03] D. Wübben, R. Böhnke, V. Kühn, K.D. Kammeyer. MMSE Extension of V-BLAST Based on Sorted QR Decomposition. In *IEEE Vehicular Technology Conference*, pp. 508–512, Orlando, Florida, USA, Oct. 2003.
- [WBKK'04] D. Wübben, R. Böhnke, V. Kühn, K.D. Kammeyer. Near-Maximum-Likelihood Detection of MIMO Systems using MMSE-Based Lattice Reduction. *IEEE International Conference on Communications*, pp. 798–802, Paris, France, June 2004.
- [YW'02] H. Yao, G. Wornell. Lattice-Reduction-Aided Detectors for MIMO Communication Systems. In Proceedings of IEEE Global Telecommunications Conference, pp. 424–428, Taipei, Taiwan, Nov. 2002.
- [ZNEG'14] J. Zhan, B. Nazer, U. Erez, M. Gastpar. Integer-Forcing Linear Receivers. IEEE Transactions on Information Theory, vol. 60, no. 12, pp. 7661–7685, Dec. 2014.
- [ZQW'12] W. Zhang, S. Qiao, Y. Wei. HKZ and Minkowski Reduction Algorithms for Lattice-Reduction-Aided MIMO Detection. IEEE Transactions on Signal Processessing, vol. 60, no. 11, pp. 5963–5976, Nov. 2012.

Fischer: Lattice Reduction and Factorization for Equalization