Outline

Lattice Reduction and Factorization for Equalization

Robert F.H. Fischer Sebastian Stern

Institut für Nachrichtentechnik, Universität Ulm

\square ${ }^{\text {unn uniesisy }}$ Uuiustial 1 m

Introduction

Digital Communications:

- abstract high-level view of digital communications
- a point x drawn from some signal constellation \mathcal{A} is transmitted (a point can represent $\log _{2}|\mathcal{A}|$ bits of information)
- the channel adds (interference and) noise n
- the received symbols is $y=x+n$

- at the receiver, decisions have to be taken
- since we can use quadrature modulation (modulation of amplitude and phase), all signals are complex-valued

Channel Coding:

- for reducing the error rate, channel coding is employed
- in block codes (codelength η) not all \mathcal{A}^{η} combinations are used but only those which can be distinguished reliably
- a trade-off between transmission rate (bit rate) and error rate is possible
- Introduction
- Equalization

Structure of the Signals | Maximum-Likelihood Detection | Linear Equalization

- Lattice-Reduction-Aided Equalization LRA Scheme | IF Scheme
- Factorization Task Criteria | Constraints
- Lattices and Lattice Problems Shortest Independent Vector Problem | Lattice Basis Reduction
- Numerical Results
- LRA Decision-Feeback Equalization Structure | Sorting | Algorithm
- Numerical Results
- Summary

Introduction (II)

Situation: multipoint-to-point transmission, MIMO multiple-access channel

- K non-cooperating single-antenna users
- central base station with N_{R} receive antennas
\Rightarrow joint processing/decoding at the receiver side possible

Channel Encoding / Mapping:

- channel coding done over the finite field \mathbb{F}_{p} (q_{k} and c_{k} taken from \mathbb{F}_{p})
- mapping \mathcal{M} of finite-field symbols c_{k} to complex-valued points x_{k} taken from some signal constellation \mathcal{A}

Introduction (III)

Question: How to perform equalization / decoding?

Usual Approach:

- joint equalization / decoding typically much to complex \Rightarrow separate equalization / decoding
- channel decoding
- individual (per user)
- over a temporal block (code word)
- low-complexity equalization strategy (as for the uncoded case)
- over the users
- per time step

Fischer: Lattice Reduction and Factorization for Equalization

Signal Constellations and Codes

Signal Constellation: Construction

- signal point lattice

Λ_{a}

typically: $\boldsymbol{\Lambda}_{\mathrm{a}}=\mathbb{Z}$ or $\boldsymbol{\Lambda}_{\mathrm{a}}=\mathbb{G}=\mathbb{Z}+\mathrm{j} \mathbb{Z}$

- „shaping" lattice
Λ_{s}
and its Voronoi region $\mathcal{R}_{\mathrm{V}}\left(\boldsymbol{\Lambda}_{\mathrm{s}}\right)$ (typically a sublattice of $\Lambda_{\mathrm{a}}: \Lambda_{\mathrm{s}} \subset \Lambda_{\mathrm{a}}$)
- signal constellation

$$
\mathcal{A}=\boldsymbol{\Lambda}_{\mathrm{a}} \cap \mathcal{R}_{\mathrm{V}}\left(\boldsymbol{\Lambda}_{\mathrm{s}}\right)
$$

- lattice code do everything in N dimensions

$$
\mathcal{C}=\boldsymbol{\Lambda}_{\mathrm{a}} \cap \mathcal{R}_{\mathrm{V}}\left(\boldsymbol{\Lambda}_{\mathrm{s}}\right)
$$

Introduction (IV)

Equalization of MIMO Channel:

$$
\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{n}
$$

done symbol-by-symbol (independently over the time steps) in the uncoded case

Equalization Schemes:

- linear equalization
according to zero-forcing (ZF) or minimum mean-squared error (MMSE) criterion
- decision-feedback equalization (DFE)
aka successive interference cancellation, (V-)BLAST
- lattice-reduction-aided (LRA) / integer-forcing (IF) schemes low-complexity, high-performance schemes
- maximum-likelihood detection (MLD) / lattice decoding optimum procedure, highest complexity

Fischer: Lattice Reduction and Foctorization for Equalization

Decoding and Demapping

Channel Encoding and Decoding:

Enoding:

- encoding ENC over \mathbb{F}_{p}
- mapping \mathcal{M} to signal point in \mathbb{C}

Decoding:

- lattice decoding (in signal space) w.r.t. to $\boldsymbol{\Lambda}_{\mathrm{c}}$
- demapping \mathcal{M}^{-1} to $\hat{c} \in \mathbb{F}_{p}$
- encoder inverse ENC ${ }^{-1}$

Variant:

- demapping modulo Λ_{s}, i.e., $\bmod \mathcal{M}^{-1}$

Structure of the Signals

Visualization: (real-valued example $K=2, \boldsymbol{\Lambda}_{\mathrm{c}}=\mathbb{Z},|\mathcal{A}|=5$)
\boldsymbol{x}
$\boldsymbol{H x}$
$\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{n}$
. . . .
-••••
$\left.\begin{array}{ccc} & \boldsymbol{H x} & \boldsymbol{y}=\boldsymbol{H x}+\boldsymbol{n} \\ & \cdots \cdots & \cdots\end{array}\right]$

Fischer: Lattice Reduction and Factorization for Equalization

Maximum-Likelihood Detection

Optimum Detection Rule: $M L$ criterion $\quad f_{X}(x)$: probability density function

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{x} \in \mathcal{A}^{K}}{\operatorname{argmax}} \mathrm{f}_{\boldsymbol{Y}}(\boldsymbol{y} \mid \boldsymbol{x})=\underset{\boldsymbol{x} \in \mathcal{A}^{K}}{\operatorname{argmin}}\|\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}\|^{2}
$$

- lattice decoding - high complexity per time step efficient implementation via the Sphere Decoder
- for combination with channel decoding generation of soft output required

Structure of the Signals (II)

Lattice:

- K-dim. lattice spanned by basis vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{K}$ - basis matrix

$$
\boldsymbol{B}=\left[\begin{array}{llll}
\boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \cdots & \boldsymbol{b}_{K}
\end{array}\right]
$$

- real-valued lattice

$$
\boldsymbol{\Lambda}=\left\{\left.\boldsymbol{\lambda}=\sum_{k=1}^{K} z_{k} \boldsymbol{b}_{k}=\boldsymbol{B}\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{K}
\end{array}\right] \right\rvert\, z_{k} \in \mathbb{Z}\right\} \stackrel{\text { def }}{=} \boldsymbol{B} \mathbb{Z}^{K}
$$

Lattice Structure of the Signal:

- for $\boldsymbol{x} \subset \mathbb{G}^{K}=(\mathbb{Z}+\mathrm{j} \mathbb{Z})^{K}$ the noise-free receive vectors

$$
z=\boldsymbol{H} \boldsymbol{x}
$$

are taken from the complex-valued lattice $\boldsymbol{\Lambda}=\boldsymbol{H} \mathbb{G}^{K}$ spanned by the columns \boldsymbol{h}_{k} of the channel matrix

$$
\boldsymbol{H}=\left[\begin{array}{llll}
\boldsymbol{h}_{1} & \boldsymbol{h}_{2} & \cdots & \boldsymbol{h}_{K}
\end{array}\right]
$$

Fischer: Lattice Reduction and Factorization for Equalization

Linear Equalization

Linear Equalization: simple strategy - filtering followed by individual decision/decoding

- this equalization strategy / scheme can be optimized either according to the zero-forcing (ZF) or minimum mean-squared error (MMSE) criterion
- zero-forcing criterion: (I: identity matrix; ($\cdot)^{+}$: (left) pseudoinverse)

$$
\boldsymbol{F}_{\mathrm{LE}} \cdot \boldsymbol{H} \stackrel{!}{=} \boldsymbol{I} \quad \Rightarrow \quad \boldsymbol{F}_{\mathrm{LE}, \mathrm{ZF}}=\left(\boldsymbol{H}^{\mathrm{H}} \boldsymbol{H}\right)^{-1} \boldsymbol{H}^{\mathrm{H}} \stackrel{\text { def }}{=} \boldsymbol{H}^{+}
$$

- minimum mean-squared error criterion: $\left(\zeta \stackrel{\text { def }}{=} \sigma_{n}^{2} / \sigma_{x}^{2}\right)$ error signal $\boldsymbol{e}=\boldsymbol{F}_{\mathrm{LE}} \boldsymbol{y}-\boldsymbol{x}$; error covariance matrix $\boldsymbol{\Phi}_{e e}=\mathrm{E}\left\{\boldsymbol{e} \boldsymbol{e}^{\mathrm{H}}\right\}$

$$
\operatorname{trace}\left(\boldsymbol{\Phi}_{e e}\right) \xrightarrow{!} \min \quad \Rightarrow \quad \boldsymbol{F}_{\mathrm{LE}, \mathrm{MMSE}}=\left(\boldsymbol{H}^{\mathrm{H}} \boldsymbol{H}+\zeta \boldsymbol{I}\right)^{-1} \boldsymbol{H}^{\mathrm{H}}
$$

Linear Equalization (II)

Visualization:

Problem of equalizing the signal

- the noise is filtered, too \Rightarrow noise enhancement
- individual threshold decision per dimension not optimum

Fischer: Lattice Reduction and Factorization for Equalization

Lattice-Reduction-Aided Equalization

Visualization:

Linear Equalization (III)

Noise Enhancement:

- ZF solution $-\boldsymbol{F}_{\mathrm{LE}, \mathrm{ZF}}=\left(\boldsymbol{H}^{\mathrm{H}} \boldsymbol{H}\right)^{-1} \boldsymbol{H}^{\mathrm{H}}=\left[\begin{array}{c}f_{1} \\ \vdots \\ f_{K}\end{array}\right] ; \quad \boldsymbol{r}=\boldsymbol{F}_{\mathrm{LE}, \mathrm{ZF}} \boldsymbol{y}=\boldsymbol{x}+\boldsymbol{F}_{\mathrm{LE}, \mathrm{ZF}} \boldsymbol{n}$
- noise variance (\boldsymbol{n} i.i.d. components with variance σ_{n}^{2})

$$
\sigma_{n_{k}}^{2}=\sigma_{n}^{2} \cdot\left\|\boldsymbol{f}_{k}\right\|^{2}
$$

- noise enhancement

$$
E_{k}=\sigma_{n_{k}}^{2} / \sigma_{n}^{2}=\left\|\boldsymbol{f}_{k}\right\|^{2}
$$

- (biased) MMSE solution - $\boldsymbol{F}_{\text {LE,MMSE }}=\left(\boldsymbol{H}^{\boldsymbol{H}} \boldsymbol{H}+\zeta \boldsymbol{I}\right)^{-1} \boldsymbol{H}^{\mathrm{H}}$
or with $\mathcal{H}=\left[\begin{array}{c}H \\ \sqrt{\zeta} I\end{array}\right]$ we have $\mathcal{F}_{\text {LE,MMSE }}=\left(\mathcal{H}^{H} \mathcal{H}\right)^{-1} \mathcal{H}^{H}=\left[\begin{array}{c}f_{1} \\ \vdots \\ f_{K}\end{array}\right]$
- error covariance matrix

$$
\boldsymbol{\Phi}_{e e} / \sigma_{n}^{2}=\left(\boldsymbol{H}^{\mathrm{H}} \boldsymbol{H}+\zeta \boldsymbol{I}\right)^{-1}=\left(\mathcal{H}^{\mathrm{H}} \boldsymbol{\mathcal { H }}\right)^{-1}
$$

- noise enhancement $\left(\mathcal{F}_{\text {LE,MMSE }} \mathcal{F}_{\mathrm{LE}, \mathrm{MMSE}}^{\mathrm{H}}=\left(\mathcal{H}^{\mathrm{H}} \mathcal{H}\right)^{-1} \mathcal{H}^{\mathrm{H}} \mathcal{H}\left(\mathcal{H}^{\mathrm{H}} \mathcal{H}\right)^{-1}=\left(\mathcal{H}^{\mathrm{H}} \mathcal{H}\right)^{-1}\right)$

$$
E_{k}=\left[\boldsymbol{\Phi}_{e e} / \sigma_{n}^{2}\right]_{k, k}=\left\|\mathfrak{f}_{k}\right\|^{2}
$$

Lattice-Reduction-Aided Equalization

Visualization:

$$
\begin{array}{rlr}
\boldsymbol{H} & =\left[\boldsymbol{h}_{1} \boldsymbol{h}_{2}\right] \\
\boldsymbol{C} & =\left[\boldsymbol{c}_{1} \boldsymbol{c}_{2}\right] \\
& =\boldsymbol{H} \boldsymbol{Z}, \quad \underset{\boldsymbol{Z} \in \mathbb{Z}^{2 \times 2}}{|\operatorname{det}(\boldsymbol{Z})|=1}
\end{array}
$$

Lattice-Reduction-Aided Equalization

Visualization:

$$
\begin{aligned}
\boldsymbol{H} & =\left[\boldsymbol{h}_{1} \boldsymbol{h}_{2}\right] \\
\boldsymbol{C} & =\left[\boldsymbol{c}_{1} \boldsymbol{c}_{2}\right] \\
& =\boldsymbol{H} \boldsymbol{Z}, \quad \underset{\boldsymbol{Z} \in \mathbb{Z}^{2 \times 2}}{|\operatorname{det}(\boldsymbol{Z})|=1}
\end{aligned}
$$

Integer-Forcing Schemes

Compute-And-Forward Strategy in Relaying:

- the receiver decodes an integer linear combination of the codewords
- resolution of linear combinations at some central unit only finite-field symbols are communicated - processing over \mathbb{F}_{p}

Equalization Schemes

Lattice-Reduction-Aided Equalization: [YW'02], [WF'03]

Integer-Forcing Schemes

Compute-And-Forward Strategy in Relaying:

- the receiver decodes an integer linear combination of the codewords
- resolution of linear combinations at some central unit only finite-field symbols are communicated - processing over \mathbb{F}_{p}
- if a joint/central receiver is present, some preprocessing can be done prior to channel decoding - integer-forcing receiver

Integer-Forcing Schemes (II)

Integer-Forcing Equalization:
[ZNEG'14]

- the users have to use the same linear code (or subcodes thereof) any integer linear combination of valid codewords is a valid codeword over \mathbb{F}_{p}
- a linear mapping has to be applied
the arithmetics over \mathbb{F}_{p} has to match that over $\mathbb{R}($ or $\mathbb{C})$ modulo p
- this only works if the cardinality of the signal constellation is a prime number and equal to the field size p
- the integer matrix has only to be invertible over \mathbb{F}_{p} $\Rightarrow \boldsymbol{Z}_{\mathbb{F}}$ only has to have full rank

Equalization Schemes

Points to discuss:

- structure
- LRA vs. IF
- respective constraints on signal constellations and codes
- factorization task $\boldsymbol{H}=\boldsymbol{C Z}$
- optimization criterion
- performance measure
- suited algorithm
- constraints on Z
- unimodular matrix - $|\operatorname{det}(\boldsymbol{Z})|=1$ shortest basis problem
- full-rank matrix $-\operatorname{rank}(\boldsymbol{Z})=K$ shortest independent vector problem

Linear Equalization:

Lattice-Reduction-Aided Equalization: [YW'02], [WF'03]

Integer-Forcing Equalization:
[ZNEG'14]

Fischer: Laticice Reduction and Factorization for Equalization

Structure

Lattice-Reduction-Aided Equalization	Integer-Forcing Equalization
denomination	
channel-oriented	signal-oriented
suited for	
joint receiver	distributed antenna systems
treat integer interference over	
$\mathbb{G}=\mathbb{Z}+j \mathbb{Z}$	\mathbb{F}_{p}
constraint on signal constellation and mapping	
usually treated uncoded	incorporation of coding
signal points drawn from a lattice	match arithmetic in \mathbb{R} (or \mathbb{C}) and \mathbb{F}_{p}
linear codes over \mathbb{R} (or \mathbb{C})	

Fischer: Lattice Reduction and Factorization for Equalization

Factorization Task

Basic Idea of LRA Schemes:

- choose a "more suited" representation of the lattice, a reduced basis
- perform equalization with respect to this new basis; integer linear combinations of the data symbols are detected

Procedure:

- input/output relation

$$
y=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{n}=C \boldsymbol{Z} \boldsymbol{x}+\boldsymbol{n}
$$

- ZF linear equalization of \boldsymbol{C} - equalization matrix $\boldsymbol{F}_{\mathrm{LE}, C}=\left[\begin{array}{c}f_{1} \\ \vdots \\ f_{K}\end{array}\right]=\boldsymbol{C}^{+}$

$$
\begin{aligned}
\boldsymbol{r} & =\boldsymbol{F}_{\mathrm{LE}, C} \boldsymbol{y}=\boldsymbol{F}_{\mathrm{LE}, C}(\boldsymbol{C} \boldsymbol{Z} \boldsymbol{x}+\boldsymbol{n}) \\
& =\boldsymbol{Z} \boldsymbol{x}+\boldsymbol{F}_{\mathrm{LE}, C} \boldsymbol{n}
\end{aligned}
$$

- the noise power in branch k is given by (\boldsymbol{n} : i.i.d. components with variance σ_{n}^{2})

$$
\sigma_{n_{k}}^{2}=\sigma_{n}^{2} \cdot\left\|\boldsymbol{f}_{k}\right\|^{2}=\sigma_{n}^{2} \cdot E_{k}
$$

with noise enhancement $E_{k}=\left\|\boldsymbol{f}_{k}\right\|^{2}$

Factorization Task (II)

Problem: given \boldsymbol{H}, find \boldsymbol{C} and \boldsymbol{Z} such that

- factorization of \boldsymbol{H}

$$
H=C Z
$$

- \boldsymbol{Z} is an integer matrix

$$
\boldsymbol{Z} \in \mathbb{G}^{K \times K}, \quad \begin{array}{ll}
\operatorname{rank}(\boldsymbol{Z})=K \\
& \text { if applicable: }|\operatorname{det}(\boldsymbol{Z})|=1 \quad \text { (unimodular) }
\end{array}
$$

- C, the "reduced channel", or
$\boldsymbol{F}_{\mathrm{LE}, C}$, the "equalization matrix", have desired properties

Required: to solve this factorization problem, we need

- a meaningful criterion
- a practical algorithm

Factorization Criteria

Criterion I:

- lattice reduction may directly applied to the channel matrix \boldsymbol{H}

$$
\boldsymbol{H}=\boldsymbol{C}_{\mathrm{I}} \boldsymbol{Z}_{\mathrm{I}}
$$

- typically, the orthogonality defect of $\boldsymbol{C}_{\mathrm{I}}=\left[\boldsymbol{c}_{1} \cdots \boldsymbol{c}_{K}\right]$ is minimized

$$
\delta\left(\boldsymbol{C}_{\mathrm{I}}\right)=\frac{\prod_{k=1}^{K}\left\|\boldsymbol{c}_{k}\right\|}{\left|\operatorname{det}\left(\boldsymbol{C}_{\mathrm{I}}\right)\right|}
$$

- this means that the basis vectors \boldsymbol{c}_{k}, the column vectors of $\boldsymbol{C}_{\mathrm{I}}$ should be as short as possible (have small Euclidean norm)
\Rightarrow shortest basis/independent vector problem
- a substitute criterion is optimized, instead of system performance

Fischer: Lattice Reduction and Factorization for Equalization

Factorization Criteria (II)

Criterion II:
[TMK07]

- for square channel matrices, the ZF equalization matrix reads

$$
\boldsymbol{F}_{\mathrm{LE}}=\boldsymbol{C}^{-1}=\left(\boldsymbol{H} \boldsymbol{Z}^{-1}\right)^{-1}=\boldsymbol{Z} \boldsymbol{H}^{-1}
$$

- the squared row norms of $\boldsymbol{F}_{\text {LE }}$ give the noise enhancement
- factorization task

$$
\left(\boldsymbol{X}^{-\mathrm{H}}=\left(\boldsymbol{X}^{\mathrm{H}}\right)^{-1}=\left(\boldsymbol{X}^{-1}\right)^{\mathrm{H}}\right)
$$

$$
\boldsymbol{H}^{-\mathrm{H}}=\boldsymbol{F}_{\mathrm{II}}^{\mathrm{H}} \boldsymbol{Z}_{\mathrm{II}}^{-\mathrm{H}}
$$

- the column vectors of $\boldsymbol{F}_{\text {II }}^{\mathrm{H}}$ should be as short as possible
- if $Z_{\text {II }}$ is an unimodular integer matrix, $Z_{\text {II }}^{-H}$ has also this property
- for non-square channel matrices the left pseudoinverse is used

$$
\left(\boldsymbol{H}^{+}\right)^{\mathrm{H}}=\boldsymbol{F}_{\mathrm{II}}^{\mathrm{H}} \boldsymbol{Z}_{\mathrm{II}}^{-\mathrm{H}}
$$

$\left(\boldsymbol{H} \in \mathbb{C}^{N \times K}, N \geq K\right)$

Factorization Criteria (III)

Criterion III:

- the MMSE solution can be calculated as ZF solution for the augmented channel matrix
- factorization task ($\zeta=\sigma_{n}^{2} / \sigma_{x}^{2}$)

$$
\left[\begin{array}{c}
\boldsymbol{H} \\
\sqrt{\zeta} \boldsymbol{I}
\end{array}\right] \stackrel{\text { def }}{=} \boldsymbol{\mathcal { H }}=\boldsymbol{\mathcal { C }}_{\mathrm{III}} \boldsymbol{Z}_{\mathrm{III}}=\left[\begin{array}{c}
\boldsymbol{C}_{\mathrm{III}} \\
\sqrt{\zeta} \boldsymbol{Z}_{\mathrm{III}}^{-1}
\end{array}\right] \boldsymbol{Z}_{\mathrm{III}}
$$

- optimum MMSE equalization matrix

$$
\begin{aligned}
\boldsymbol{F}_{\mathrm{LE}, \mathrm{MMSE}, C} & =\left[\left(\mathcal{C}_{\mathrm{III}}^{\mathrm{H}} \mathcal{C}_{\mathrm{III}}\right)^{-1} \mathcal{C}_{\mathrm{III}}^{\mathrm{H}}\right]_{\text {left } K \text { columns }} \\
& =\left(\boldsymbol{C}_{\mathrm{III}}^{\mathrm{H}} \boldsymbol{C}_{\mathrm{III}}+\zeta \boldsymbol{Z}_{\mathrm{III}}^{-\mathrm{H}} \boldsymbol{Z}_{\mathrm{III}}^{-1}\right)^{-1} \boldsymbol{C}_{\mathrm{III}}^{\mathrm{H}} \\
& =\boldsymbol{Z}_{\mathrm{III}}\left(\boldsymbol{H}^{\mathrm{H}} \boldsymbol{H}+\zeta \boldsymbol{I}\right)^{-1} \boldsymbol{H}^{\mathrm{H}}=\boldsymbol{Z}_{\mathrm{III}} \boldsymbol{F}_{\text {LE,MMSE }, H}
\end{aligned}
$$

- the column vectors of $\mathcal{C}_{\mathrm{III}}$ should be as short as possible
- as in Criterion I, a substitute measure is optimized
- in almost all cases $\boldsymbol{Z}_{\mathrm{I}}=\boldsymbol{Z}_{\text {III }}$

Factorization Criteria (IV)

Criterion IV:
[FWSSSA'12], [ZNEG'14], [FCS'16]

- applying MMSE linear equalization, the noise enhancement is given by

$$
\begin{aligned}
& \qquad \begin{array}{l}
E_{k}=\left[\boldsymbol{\Phi}_{e e}\right]_{k, k} / \sigma_{n}^{2}=\left[\left(\boldsymbol{C}^{\mathrm{H}} \boldsymbol{C}+\zeta \boldsymbol{Z}^{-\mathrm{H}} \boldsymbol{Z}^{-1}\right)^{-1}\right]_{k, k} \\
=\left[\boldsymbol{Z}\left(\boldsymbol{H}^{\mathrm{H}} \boldsymbol{H}+\zeta \boldsymbol{I}\right)^{-1} \boldsymbol{Z}^{\mathrm{H}}\right]_{k, k}=\boldsymbol{z}_{k}^{\mathrm{H}}\left(\boldsymbol{H}^{\mathrm{H}} \boldsymbol{H}+\zeta \boldsymbol{I}\right)^{-1} \boldsymbol{z}_{k} \\
=\boldsymbol{z}_{k}^{\mathrm{H}} \boldsymbol{L} \boldsymbol{L}^{\mathrm{H}} \boldsymbol{z}_{k}=\left\|\boldsymbol{L}^{\mathrm{H}} \boldsymbol{z}_{k}\right\|^{2}
\end{array} \\
& \text { with } \boldsymbol{Z}^{\mathrm{H}}=\left[\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{K}\right] \\
& \bullet \boldsymbol{L} \text { is any square root of }\left(\boldsymbol{H}^{\mathrm{H}} \boldsymbol{H}+\zeta \boldsymbol{I}\right)^{-1}=\left(\mathcal{H}^{\mathrm{H}} \boldsymbol{\mathcal { H }}\right)^{-1} ; \text { we may choose } \\
& \boldsymbol{L}=\boldsymbol{\mathcal { H }}^{+}
\end{aligned}
$$

- factorization task (using $L^{\mathrm{H}} \boldsymbol{Z}^{\mathrm{H}}=\left(\mathcal{H}^{+}\right)^{\mathrm{H}} \boldsymbol{Z}^{\mathrm{H}} \stackrel{\text { def }}{=} \mathcal{F}^{\mathrm{H}}$)

$$
\left(\mathcal{H}^{+}\right)^{\mathrm{H}}=\mathcal{F}_{\mathrm{IV}}^{\mathrm{H}} \boldsymbol{Z}_{\mathrm{IV}}^{-\mathrm{H}}
$$

- the column vectors of $\mathcal{F}_{\text {IV }}^{H}$ should be as short as possible

Fischer: Lattice Reduction and Factorization for Equalization

Constraint on Z

Constraint on the Integer Matrix $Z \in \mathbb{G}^{K \times K}$:

- typically, in LRA equalization it has been forced

$$
|\operatorname{det}(\boldsymbol{Z})|=1 \quad \text { unimodular matrix }
$$

hence a change of basis is performed
= Lattice Basis Reduction

- in IF equalization, the constraint is relaxed to

$$
\operatorname{rank}(\boldsymbol{Z})=K \quad \text { full-rank matrix }
$$

(to be precise: $\operatorname{rank}\left(\boldsymbol{Z}_{\mathbb{F}}\right)=K$)
\Rightarrow Shortest Independent Vector Problem

Observation:
using the LRA equalization structure, unimodularity of Z is not required
\Rightarrow both, LRA and IF, can use the same factorization criterion and the same constraint on Z !

Factorization Criteria (V)

Summary: (in each case $Z \in \mathbb{G}^{K \times K}$)

- the criteria available in the literature can be classified as follows

based on	channel matrix \boldsymbol{H} ("ZF solution")	augmented matrix \mathcal{H} ("MMSE solution")
H	$H=C Z$ [YW'02], [WF'03]	$\mathcal{H}=\mathcal{C} Z$ [WBKK'04], [Fis'11]
$\left(\boldsymbol{H}^{+}\right)^{H}$	$\left(\boldsymbol{H}^{+}\right)^{\mathrm{H}}=\boldsymbol{F}^{\mathrm{H}} \boldsymbol{Z}^{-\mathrm{H}}$ [TMK'07]	$\left(\mathcal{H}^{+}\right)^{H}=\mathcal{F}^{H} \boldsymbol{Z}^{-H}$ [ZNEG'14], [FCS'16]

Involved lattices:
\boldsymbol{H} : Iattice spanned by channel matrix
$\left(\boldsymbol{H}^{+}\right)^{\mathrm{H}}$: dual lattice
[LMG'09]

Fischer: Lattice Reduction and Factorization for Equalization

Constraint on Z

Visualization: (real-valued example $K=2,|\mathcal{A}|=5$)

- vectors $\overline{\boldsymbol{x}}=\boldsymbol{Z} \boldsymbol{x}$, with $\boldsymbol{x} \in \mathcal{A}^{K}$
- example $\boldsymbol{Z}=\left[\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right], \quad \operatorname{det}(\boldsymbol{Z})=1$

Constraint on Z

Visualization: (real-valued example $K=2,|\mathcal{A}|=5$)

- vectors $\bar{x}=Z x$, with $x \in \mathcal{A}^{K}$
- example $\boldsymbol{Z}=\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right], \quad \operatorname{det}(\boldsymbol{Z})=2$

Fischer: Lattice Peduction and Factorization for Equalization

Lattices and Lattice Problems (II)

Gram-Schmidt (GS) Orthogonalization:
[Fis'10]

- any matrix $\boldsymbol{G} \in \mathbb{C}^{N \times K}$ can be decomposed into the form

$$
G=G^{\circ} R
$$

with $-\boldsymbol{G}^{\circ}=\left[\boldsymbol{g}_{1}^{\circ}, \ldots, \boldsymbol{g}_{K}^{\circ}\right]$: Gram-Schmidt orthogonalization of \boldsymbol{G}

$$
-\boldsymbol{R}=\left[r_{l, k}\right] \in \mathbb{C}^{K \times K}: \text { upper triangular with unit main diagonal }
$$

- successive procedure

$$
\begin{aligned}
& \text { for } k=1, \ldots, K \\
& \qquad \begin{aligned}
\boldsymbol{g}_{k}^{\circ} & =\boldsymbol{g}_{k}-\sum_{l=1}^{k-1} r_{l, k} \boldsymbol{g}_{l}^{\circ} \\
\text { with } \quad r_{l, k} & =\frac{\left(\boldsymbol{g}_{l}^{\circ}\right)^{H} \boldsymbol{g}_{k}^{\circ}}{\left\|\boldsymbol{g}_{l}^{\circ}\right\|_{2}^{2}}, \quad l=1, \ldots, k
\end{aligned}
\end{aligned}
$$

Lattices and Lattice Problems

Lattice:

- we deal with complex-valued lattices

$$
\boldsymbol{\Lambda}(\boldsymbol{G})=\left\{\left.\boldsymbol{\lambda}=\sum_{k=1}^{K} z_{k} \boldsymbol{g}_{k}=\boldsymbol{G}\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{K}
\end{array}\right] \right\rvert\, z_{k} \in \mathbb{G}\right\} \stackrel{\text { def }}{=} \boldsymbol{G} \mathbb{G}^{K}
$$

where

$$
\boldsymbol{G}=\left[\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{K}\right] \in \mathbb{C}^{N \times K}
$$

is its generator matrix (basis) consisting of
$K \in \mathbb{N}$ linearly independent basis vectors $\boldsymbol{g}_{k} \in \mathbb{C}^{N}, N \geq K, N \in \mathbb{N}$
(N-dimensional lattice of rank K)

Alternative Description:

- instead of dealing with the complex-valued generator matrix \boldsymbol{G}, one can use the real-valued equivalent

$$
\boldsymbol{G}_{\text {real }} \stackrel{\text { def }}{=}\left[\begin{array}{rr}
\operatorname{Re}\{\boldsymbol{G}\} & -\operatorname{Im}\{\boldsymbol{G}\} \\
\operatorname{Im}\{\boldsymbol{G}\} & \operatorname{Re}\{\boldsymbol{G}\}
\end{array}\right]
$$

of doubled dimension

Lattices and Lattice Problems (III)

Minkowski's Successive Minima:

- $k^{\text {th }}, k=1, \ldots, K$, successive minimum of $\boldsymbol{\Lambda}(\boldsymbol{G}) \quad$ [Cas'97], [LLS'90], [DKWZ'15]

$$
\rho_{k}(\boldsymbol{\Lambda}(\boldsymbol{G}))=\inf \left\{r_{k} \mid \operatorname{dim}\left(\operatorname{span}\left(\boldsymbol{\Lambda}(\boldsymbol{G}) \cap \boldsymbol{B}_{N}\left(r_{k}\right)\right)\right)=k\right\}
$$

with - $\boldsymbol{B}_{N}(r): N$-dimensional ball (over \mathbb{C}) with radius r centered at the origin

$$
\text { - span }(\cdot) \text { : linear span }
$$

- $\rho_{1}(\boldsymbol{\Lambda}(\boldsymbol{G}))$ is the norm of the shortest vector of the lattice $\boldsymbol{\Lambda}(\boldsymbol{G})$
- interpretation:
r_{k} has to be chosen as the smallest radius such that $\boldsymbol{B}_{N}\left(r_{k}\right)$ contains k linearly independent lattice vectors
- Visualization:

Lattices and Lattice Problems (IV)

Given: a complex-valued lattice $\boldsymbol{\Lambda}(\boldsymbol{G})$ of rank K
Shortest Independent Vector Problem (SIVP):

- find set $\mathcal{G}=\left\{\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{K}\right\}$ of K linearly independent vectors $\boldsymbol{\lambda}_{k} \in \boldsymbol{\Lambda}(\boldsymbol{G})$, such that

$$
\max _{k=1, \ldots, K}\left\|\boldsymbol{\lambda}_{k}\right\|=\rho_{K}(\boldsymbol{\Lambda}(\boldsymbol{G}))
$$

- the largest vector has to be as short as possible;
the norms of all shorter vectors do not matter

Successive Minima Problem (SMP):

- find set $\mathcal{G}=\left\{\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{K}\right\}$ of K linearly independent vectors $\boldsymbol{\lambda}_{k} \in \boldsymbol{\Lambda}(\boldsymbol{G})$, such that

$$
\left\|\boldsymbol{\lambda}_{k}\right\|=\rho_{k}(\boldsymbol{\Lambda}(\boldsymbol{G})), \quad k=1, \ldots, K
$$

- all lattice vectors in the set \mathcal{G} have to be as short as possible;
naturally, SMP is also a solution to SIVP
- efficient strategies for solving the (C)SMP are available [DKWZ'15], [FCS'16]

Lattices and Lattice Problems (VI)

Lattice Basis Reduction:

- find set $\mathcal{G}=\left\{\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{K}\right\}$ of K linearly independent vectors $\boldsymbol{\lambda}_{k} \in \boldsymbol{\Lambda}(\boldsymbol{G})$, such that

$$
\begin{aligned}
\boldsymbol{\Lambda}(\boldsymbol{G}) & =\boldsymbol{\Lambda}\left(\boldsymbol{G}_{\mathrm{r}}\right) \\
\boldsymbol{G}_{\mathrm{r}} & =\left[\boldsymbol{g}_{\mathrm{r}, 1}, \ldots, \boldsymbol{g}_{\mathrm{r}, K}\right]=\left[\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{K}\right]
\end{aligned}
$$

with
i.e., G_{r} is a "reduced" basis of the lattice Λ (the meaning of "reduced" depends on the criterion/algorithm)

- the generator matrices are related by

$$
\boldsymbol{G}_{\mathrm{r}}=\boldsymbol{G} \boldsymbol{U}
$$

or

$$
\boldsymbol{G}=\boldsymbol{G}_{\mathrm{r}} U^{-1}
$$

where $\boldsymbol{U} \in \mathbb{G}^{K \times K}$ is unimodular, i.e., $|\operatorname{det}(\boldsymbol{U})|=1$; hence $\boldsymbol{U}^{-1} \in \mathbb{G}^{K \times K}$

Lattices and Lattice Problems (V)

Set of Linearly Independent Vectors:

- the obtained vectors are lattice points $\boldsymbol{\lambda}_{k} \in \boldsymbol{\Lambda}(\boldsymbol{G})$, hence

$$
\boldsymbol{\lambda}_{k}=\boldsymbol{G} \boldsymbol{u}_{k}, \quad \text { with } \quad \boldsymbol{u}_{k} \in \mathbb{G}^{K}, \quad \forall k
$$

- the matrix $\boldsymbol{V} \stackrel{\text { def }}{=}\left[\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{K}\right]$ is related to \boldsymbol{G} via

$$
V=G U
$$

or

$$
\boldsymbol{G}=\boldsymbol{V} \boldsymbol{U}^{-1}
$$

with $\boldsymbol{U} \in \mathbb{G}^{K \times K}$ and $|\operatorname{det}(\boldsymbol{U})| \in \mathbb{G} \backslash\{0\}$

Lattices and Lattice Problems (VII)

Lenstra-Lenstra-Lovász (LLL) Reduction:

- a generator matrix $\boldsymbol{G}=\left[\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{K}\right] \in \mathbb{C}^{N \times K}$ with Gram-Schmidt orthogonal basis $\boldsymbol{G}^{\circ}=\left[\boldsymbol{g}_{1}^{\circ}, \ldots, \boldsymbol{g}_{K}^{\circ}\right]$ and upper triangular matrix \boldsymbol{R} is called (C)LLL-reduced, if
[GLM'09]

1. for $1 \leq l<k \leq K$, it is size-reduced according to

$$
\left|\operatorname{Re}\left\{r_{l, k}\right\}\right| \leq 0.5 \quad \text { and } \quad\left|\operatorname{Im}\left\{r_{l, k}\right\}\right| \leq 0.5
$$

2. for $k=2, \ldots, K$ and a parameter $0.5<\delta \leq 1$

$$
\left\|\boldsymbol{g}_{k}^{\circ}\right\|^{2} \geq\left(\delta-\left|r_{k-1, k}\right|^{2}\right)\left\|\boldsymbol{g}_{k-1}^{\circ}\right\|^{2}
$$

- the parameter δ controls the trade-off between "strength" of the LLL reduction and computational complexity - usually $\delta=0.75$; the case $\delta=1$ is denoted as optimal LLL reduction
- for $\delta<1$ the algorithm has polynomial complexity

Lattices and Lattice Problems (VIII)

Hermite-Korkine-Zolotareff (HKZ) Reduction:

- a generator matrix $\boldsymbol{G}=\left[\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{K}\right] \in \mathbb{C}^{N \times K}$ with Gram-Schmidt orthogonal basis $\boldsymbol{G}^{\circ}=\left[\boldsymbol{g}_{1}^{\circ}, \ldots, \boldsymbol{g}_{K}^{\circ}\right]$ and upper triangular matrix \boldsymbol{R} is called (C)HKZ-reduced, if
[LLS'90], [D'13]

1. for $1 \leq l<k \leq K$, it is size-reduced according to

$$
\left|\operatorname{Re}\left\{r_{l, k}\right\}\right| \leq 0.5 \quad \text { and } \quad\left|\operatorname{Im}\left\{r_{l, k}\right\}\right| \leq 0.5
$$

2. for $k=1, \ldots, K$, the columns of \boldsymbol{G}° fulfill

$$
\left\|\boldsymbol{g}_{k}^{\circ}\right\|=\rho_{1}\left(\boldsymbol{\Lambda}\left(\boldsymbol{G}^{(k)}\right)\right)
$$

(shortest (non-zero) vector in $\boldsymbol{\Lambda}\left(\boldsymbol{G}^{(k)}\right)$)

- $\boldsymbol{\Lambda}\left(\boldsymbol{G}^{(k)}\right)$: sublattice of rank $K-k+1$ and dimension N with generator matrix $\boldsymbol{G}^{(k)}=\left[0, \ldots, 0, \boldsymbol{g}_{k}^{\circ}, \ldots, \boldsymbol{g}_{K}^{\circ}\right] \boldsymbol{R}$
($\boldsymbol{\Lambda}\left(\boldsymbol{G}^{(k)}\right)$ is the orth. projection of $\boldsymbol{\Lambda}(\boldsymbol{G})$ onto the orth. complement of $\left\{\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{k-1}\right\}$)
- since shortest vectors have to be found, the problem is NP-hard; efficient (complex-valued) algorithms available

Lattices and Lattice Problems (IX)

Minkowski (MK) Reduction:

- a generator matrix $\boldsymbol{G}=\left[\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{K}\right] \in \mathbb{C}^{N \times K}$ is called (C)MK-reduced,
if
[Min'1891], [ZQW'12]

$$
\begin{aligned}
\left\|\boldsymbol{g}_{k}\right\| & \leq\left\|\boldsymbol{g}_{k}^{\prime}\right\|, \quad k=1, \ldots, K \\
\forall \boldsymbol{G}^{\prime} & =\left[\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{k-1}, \boldsymbol{g}_{k}^{\prime}, \ldots, \boldsymbol{g}_{K}^{\prime}\right] \\
\boldsymbol{\Lambda}\left(\boldsymbol{G}^{\prime}\right) & =\boldsymbol{\Lambda}(\boldsymbol{G})
\end{aligned}
$$

with
\boldsymbol{G} is Minkowski-reduced if for $k=1, \ldots, K$ the basis vector \boldsymbol{g}_{k} has minimum norm among all possible lattice points $\boldsymbol{g}_{k}^{\prime}$ for which the set $\left\{\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \ldots, \boldsymbol{g}_{k-1}, \boldsymbol{g}_{k}^{\prime}\right\}$ can be extended to a basis of $\boldsymbol{\Lambda}(\boldsymbol{G})$

- in contrast to the SMP where only the K shortest independent lattice vectors have to be found, here the K shortest vectors have to be obtained that form a basis of the lattice
- efficient (real-valued) algorithm available
[ZQW"12]
in the real-valued case, the calculation of a greatest common divisor (gcd) is required; in the complex-valued case the gcd for Gaussian integers has to be used (calculated via the Euclidean Algorithm)

Application to Equalization

Recall: Criterion IV

- MMSE linear equalization via $\mathcal{F}^{\mathrm{H}}=\boldsymbol{Z} \mathcal{H}^{+}=\left[\begin{array}{c}f_{1} \\ \vdots \\ f_{k}\end{array}\right]$
- noise enhancement

$$
E_{k}=\left\|\mathfrak{f}_{k}\right\|^{2}=\left\|\left(\boldsymbol{\mathcal { H }}^{+}\right)^{\mathrm{H}} \boldsymbol{z}_{k}\right\|^{2} \rightarrow \min
$$

with $\boldsymbol{Z}^{\mathrm{H}}=\left[\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{K}\right]$

- factorization task

$$
\left(\boldsymbol{\mathcal { H }}^{+}\right)^{\mathrm{H}}=\mathcal{F}^{\mathrm{H}} \boldsymbol{Z}^{-\mathrm{H}}
$$

- the column vectors of \mathcal{F}^{H} should be as short as possible
- usually the maximum of the noise enhancement dominates

Application to Equalization (II)

Factorization Problem: $\quad \boldsymbol{Z}^{\mathrm{H}}=\left[\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{K}\right]$

- $\left|\operatorname{det}\left(\boldsymbol{Z}^{\mathrm{H}}\right)\right|=1$ required

$$
\boldsymbol{Z}^{\mathrm{H}}=\underset{\substack{Z^{\mathrm{H}} \in \mathbb{G}^{K \times K} \\\left|\operatorname{det}\left(\boldsymbol{Z}^{\mathrm{H}}\right)\right|=1}}{\operatorname{argmin}} \max _{k=1, \ldots, K}\left\|\left(\boldsymbol{\mathcal { H }}^{+}\right)^{\mathrm{H}} \boldsymbol{z}_{k}\right\|^{2}
$$

=> shortest basis problem (SBP)

- the MK-reduced basis is directly defined by the length of its basis vectors - it consists of the K shortest lattice vectors that form a basis of the lattice (not only the maximum norm is minimized)
\Rightarrow Minkowski reduction gives the optimum integer matrix Z
- full-rank matrix \boldsymbol{Z} sufficient

$$
\boldsymbol{Z}^{\mathrm{H}}=\underset{\substack{\boldsymbol{Z}^{\mathrm{H}} \in \mathbb{G}^{K \times K} \\ \operatorname{rank}\left(\boldsymbol{Z}^{\mathrm{H}}\right)=K}}{\operatorname{argmin}} \max _{k=1, \ldots, K}\left\|\left(\boldsymbol{\mathcal { H }}^{+}\right)^{\mathrm{H}} \boldsymbol{z}_{k}\right\|^{2}
$$

\Rightarrow shortest independent vector problem (SIVP)

- this problem is optimally solved-in a stricter sense-if the K successive minima of $\boldsymbol{\Lambda}\left(\left(\mathcal{H}^{+}\right)^{\mathrm{H}}\right)$ are obtained
\Rightarrow Minkowski's successive minima give the optimum integer matrix Z

Numerical Results

- here: $\operatorname{det}\left(\boldsymbol{Z}_{\text {SMP }}\right)=1+\mathrm{j}$

Numerical Results (III)

Distribution of $|\operatorname{det}(\boldsymbol{Z})|$:

- \boldsymbol{H} : i.i.d. random zero-mean unit-variance complex Gaussian
- $K=N=6$
- criterion IV — SMP
[DKWZ'15], [FCS'16]

$\|\operatorname{det}(\boldsymbol{Z})\|=$	1	$\sqrt{2}$	2	$\sqrt{5}$
$\sigma_{x}^{2} / \sigma_{n}^{2} \hat{=} 0 \mathrm{~dB}$	99.6%	0.45%	0.0002%	-
$\sigma_{x}^{2} / \sigma_{n}^{2} \hat{=} 10 \mathrm{~dB}$	96.2%	3.83%	0.02%	0.002%
$\sigma_{x}^{2} / \sigma_{n}^{2} \hat{=} 20 \mathrm{~dB}$	95.4%	4.45%	0.03%	0.003%
$\sigma_{x}^{2} / \sigma_{n}^{2} \widehat{=} 30 \mathrm{~dB}$	95.5%	4.48%	0.03%	0.003%

Numerical Results (II)

Distribution of $|\operatorname{det}(\boldsymbol{Z})|$:

- \boldsymbol{H} : i.i.d. random zero-mean unit-variance complex Gaussian; $K=N$
- $\sigma_{x}^{2} / \sigma_{n}^{2} \widehat{=} 20 \mathrm{~dB}$
- criterion IV - SMP
[DKWZ'15], [FCS'16]

$\|\operatorname{det}(\boldsymbol{Z})\|=$	1	$\sqrt{2}$	2	$\sqrt{5}$
$K=2$	100%	-	-	-
$K=3$	99.8%	0.2%	-	-
$K=4$	99.0%	1.0%	-	-
$K=5$	97.5%	2.4%	0.005%	-
$K=6$	95.6%	4.5%	0.03%	0.003%
$K=7$	92.7%	7.1%	0.15%	0.02%
$K=8$	89.3%	10.2%	0.39%	0.06%

Numerical Results (IV)

Bit Error Rate: LRA structure; linear MMSE equalization - different criteria and constraints

- \boldsymbol{H} : i.i.d. random zero-mean unit-variance complex Gaussian; $K=N$
- uncoded transmission; 16QAM signaling; $E_{\mathrm{b}} / N_{0}=\sigma_{x}^{2} /\left(\sigma_{n}^{2} \log _{2}(16)\right)$

Numerical Results (V)

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms

- \boldsymbol{H} : i.i.d. random zero-mean unit-variance complex Gaussian; $K=N$
- uncoded transmission; 16QAM signaling; $E_{\mathrm{b}} / N_{0}=\sigma_{x}^{2} /\left(\sigma_{n}^{2} \log _{2}(16)\right)$

Fischer: Lattice Reduction and Factorization for Equalization

Numerical Results (VII)

Percentages "MK = SMP" and "MK = SIVP":

- \boldsymbol{H} : i.i.d. random zero-mean unit-variance complex Gaussian
- $K=N$; criterion IV
[DKWZ'15], [FCS'16]

SMP $\mid K=N=$	2	4	6	8	10
$\sigma_{x}^{2} / \sigma_{n}^{2} \widehat{=} 15 \mathrm{~dB}$	100%	99.0%	95.7%	90.3%	83.8%
$\sigma_{x}^{2} / \sigma_{n}^{2} \widehat{=} 20 \mathrm{~dB}$	100%	99.0%	95.6%	89.8%	82.3%
$\sigma_{x}^{2} / \sigma_{n}^{2} \rightarrow \infty$	100%	99.0%	95.5%	89.4%	81.5%

SIVP $\mid K=N=$	2	4	6	8	10
$\sigma_{x}^{2} / \sigma_{n}^{2} \widehat{=} 15 \mathrm{~dB}$	100%	99.2%	97.0%	94.0%	90.6%
$\sigma_{x}^{2} / \sigma_{n}^{2} \widehat{=} 20 \mathrm{~dB}$	100%	99.2%	97.0%	93.5%	89.3%
$\sigma_{x}^{2} / \sigma_{n}^{2} \rightarrow \infty$	100%	99.2%	96.9%	93.2%	88.5%

Numerical Results (VI)

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms - \boldsymbol{H} : i.i.d. random zero-mean unit-variance complex Gaussian; $K=N$

- uncoded transmission; 16QAM signaling

Fischer: Lattice Reduction and Factorization for Equalization

Numerical Results (VIII)

Distribution of Deviation from Optimum:

- \boldsymbol{H} : i.i.d. random zero-mean unit-variance complex Gaussian
- $K=N=8 ; \sigma_{x}^{2} / \sigma_{n}^{2} \widehat{=} 20 \mathrm{~dB}$
- criterion IV
[DKWZ'15], [FCS'16]

Decision-Feedback Equalization

Decision-Feedback Equalization: aka successive interference cancellation, V-BLAST

- QR decomposition of the channel matrix:
Q : orthogonal matrix; B : upper triangular, unit main diagonal

$$
H=Q B
$$

- signal after feedforward processing with $\boldsymbol{F}_{\mathrm{DFE}, H} \stackrel{\text { def }}{=}\left(\boldsymbol{Q}^{\mathrm{H}} \boldsymbol{Q}\right)^{-1} \boldsymbol{Q}^{\mathrm{H}}$

$$
\boldsymbol{r}=\boldsymbol{F}_{\mathrm{DFE}, H} \boldsymbol{y}=\boldsymbol{B} \boldsymbol{x}+\tilde{\boldsymbol{n}}
$$

- spatially causal signal transmission matrix B
- Gaussian noise vector $\tilde{\boldsymbol{n}}$ with correlation matrix $\sigma_{n}^{2}\left(\boldsymbol{Q}^{H} \boldsymbol{Q}\right)^{-1}$
i.e., with $\boldsymbol{Q}=\left[\boldsymbol{q}_{1} \cdots \boldsymbol{q}_{K}\right]$ noise variances $\sigma_{\tilde{n}_{k}}^{2}=\sigma_{n}^{2} /\left\|\boldsymbol{q}_{k}\right\|^{2}$
decisions are taken successively (order $K, \ldots, 1$)

Decision-Feedback Equalization (II)

Optimum Detection Order: V-BLAST ordering [WFGV'98]

- signal-to-noise ratio in component k is proportional to $\left\|\boldsymbol{q}_{k}\right\|^{2}$
\Rightarrow for $k=K, \ldots, 1$: the norm of the vector \boldsymbol{q}_{k} should be the largest among the remaining components $1, \ldots, k$
- BLAST ordering requires great effort

Simpler Strategy:
[WBKK'03], [Fis'10]

- instead of maximizing $\left\|\boldsymbol{q}_{k}\right\|^{2}$ in sequence $k=K, K-1, \ldots, 1$
it is minimized in sequence $k=1,2, \ldots, K$
\Rightarrow for $k=1, \ldots, K$: the norm of the vector \boldsymbol{q}_{k} should be the smallest among the remaining components k, \ldots, K
- Gram-Schmidt procedure with pivoting

Simple but Optimum Strategy:
[LMG'09]
■ do not apply Gram-Schmidt procedure with pivoting to \mathcal{H}, but to $\left(\mathcal{H}^{+}\right)^{\mathrm{H}}$
\Rightarrow use factorization

$$
\left(\mathcal{H}^{+}\right)^{\mathrm{H}} \boldsymbol{P}^{-\mathrm{H}}=\mathcal{F}^{\mathrm{H}} \boldsymbol{B}^{-\mathrm{H}}
$$

order within GS proc.: $k=K, \ldots$, ; i.e., $\boldsymbol{B}^{-\mathrm{H}}$ should be lower triangular

LRA Decision-Feedback Equalization (II)

Pseudocode of Factorization Approach:

```
[\boldsymbol{Q},\boldsymbol{R},\boldsymbol{T}]=\mathrm{ GramSchmidtSort_LRA (G)}
    Q=G,R=I,T=I
    k=1
    while }k\leqK
        \mp@subsup{\boldsymbol{q}}{\textrm{s}}{}=\mathrm{ shortest vector in }\boldsymbol{\Lambda}([\mp@subsup{\boldsymbol{q}}{k}{},\ldots,\mp@subsup{\boldsymbol{q}}{K}{}])
        if |\mp@subsup{\boldsymbol{q}}{\textrm{s}}{}\mp@subsup{|}{}{2}\not=||\mp@subsup{\boldsymbol{q}}{k}{}\mp@subsup{|}{}{2}{
            \mp@subsup{\boldsymbol{q}}{k}{}=\mp@subsup{\boldsymbol{q}}{\textrm{S}}{}
            update }\boldsymbol{Q},\boldsymbol{R},\boldsymbol{T}\mathrm{ such that }\boldsymbol{\Lambda}(\boldsymbol{QR})=\boldsymbol{\Lambda}(\boldsymbol{G}
        }
        for i=k+1,\ldots,K{
            rki}=\mp@subsup{\boldsymbol{q}}{k}{H}\mp@subsup{\boldsymbol{q}}{i}{}/||\mp@subsup{\boldsymbol{q}}{k}{}\mp@subsup{|}{}{2
            \mp@subsup{\boldsymbol{q}}{i}{}=\mp@subsup{\boldsymbol{q}}{i}{}-\mp@subsup{r}{ki}{}\mp@subsup{\boldsymbol{q}}{k}{}
        }
        k=k+1
    }
```


LRA Decision-Feedback Equalization (III)

Recall: Hermite-Korkine-Zolotareff (HKZ) Reduction

- a generator matrix $\boldsymbol{G}=\left[\boldsymbol{g}_{1}, \ldots, \boldsymbol{g}_{K}\right] \in \mathbb{C}^{N \times K}$ with Gram-Schmidt orthogonal basis $\boldsymbol{G}^{\circ}=\left[\boldsymbol{g}_{1}^{\circ}, \ldots, \boldsymbol{g}_{K}^{\circ}\right]$ and upper triangular matrix \boldsymbol{R} is called (C)HKZ-reduced, if

1. for $1 \leq l<k \leq K$, it is size-reduced according to

$$
\left|\operatorname{Re}\left\{r_{l, k}\right\}\right| \leq 0.5 \quad \text { and } \quad\left|\operatorname{Im}\left\{r_{l, k}\right\}\right| \leq 0.5
$$

2. for $k=1, \ldots, K$, the columns of G° fulfill

$$
\left\|\boldsymbol{g}_{k}^{\circ}\right\|=\rho_{1}\left(\boldsymbol{\Lambda}\left(\boldsymbol{G}^{(k)}\right)\right)
$$

(shortest (non-zero) vector in $\boldsymbol{\Lambda}\left(\boldsymbol{G}^{(k)}\right.$))
■ $\boldsymbol{\Lambda}\left(\boldsymbol{G}^{(k)}\right)$: sublattice with generator matrix $\boldsymbol{G}^{(k)}=\left[0, \ldots, 0, \boldsymbol{g}_{k}^{\circ}, \ldots, \boldsymbol{g}_{K}^{\circ}\right] \boldsymbol{R}$

LRA Decision-Feedback Equalization (IV)

Discussion:

- the size-reduction step of HKZ is not present
as it changes only \boldsymbol{R} it is of no relevance for performance of LRA DFE
\Rightarrow effective HKZ reduction
- for $\boldsymbol{G}=\left(\mathcal{H}^{+}\right)^{\mathrm{H}}$ the algorithms returns $\boldsymbol{Z}^{\mathrm{H}}=\boldsymbol{T}$ and $\mathcal{F}^{\mathrm{H}}=\boldsymbol{Q}$ with
- V-BLAST sorting
- the columns of \mathcal{F}^{H} have minimum norm
(optimal worst-link performance as in classical V-BLAST but for LRA equalization)
- this optimum is achieved with an unimodular \boldsymbol{Z};
a relaxation to $\operatorname{rank}(\boldsymbol{Z})=K$ is not required
\Rightarrow successive IF and LRA DFE both can be restricted to unimodular Z

LRA Decision-Feedback Equalization (V)

LRA Decision-Feedback Equalization:

- redraw to noise-prediction structure
- apply modulo reduction w.r.t. $\boldsymbol{\Lambda}_{\text {s }}$
- exchange \boldsymbol{Z}^{-1} and demapping/encoder inverse
- combine to demapping modulo $\Lambda_{\text {s }}$
\Rightarrow successive IF only works in noise-prediction structure

Numerical Results

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms

- \boldsymbol{H} : i.i.d. random zero-mean unit-variance complex Gaussian; $K=N$
- uncoded transmission; 16QAM signaling; $E_{\mathrm{b}} / N_{0}=\sigma_{x}^{2} /\left(\sigma_{n}^{2} \log _{2}(16)\right)$

Summary

Low-Complexity Equalization Schemes:

- tight relation between LRA and IF equalization
\Rightarrow structure how equalization and decoding are combined
- performance measure for defining the factorization task \Rightarrow optimization criterion
- constraints on the integer matrix - SBP vs. SIVP
\Rightarrow algorithms for performing the factorization

Optimum Integer Matrix Z:

- linear equalization
- $|\operatorname{det}(\boldsymbol{Z})|=1 \quad$ Minkowski reduction gives the optimum
- $\operatorname{rank}(\boldsymbol{Z})=K \quad$ Minkowski's successive minima give the optimum
- decision-feedback equalization
(effective) HKZ reduction gives the optimum (relaxation to $|\operatorname{det}(\boldsymbol{Z})|>1$ not required)

Dualization:

transmitter-side precoding for broadcast channel (LRA / IF precoding)

References

References
[AEVZ'02] E. Agrell, T. Eriksson, A. Vardy, K. Zeger. Closest Point Search in Lattices. IEEE Transactions on Information Theory, vol. 48, no. 8, pp. 2201-2214, Aug. 2002.
[A'03] A. Akhavi. The Optimal LLL Algorithm is Still Polynomial in Fixed Dimension. Theoretical Computer Science, vol. 297, pp. 3-23, Mar. 2003
[Cas'97] J.W.S. Cassels. An Introduction to the Geometry of Numbers. Springer Berlin/Heidelberg, Reprint of the 1971 Edition, 1997.
[DKWZ'15] L. Ding, K. Kansanen, Y. Wang, J. Zhang. Exact SMP Algorithms for Integer Forcing Linear MIMO Receivers. IEEE Transactions on Wireless Communications, vol. 14, no. 12, pp. 6955-6966, Dec. 2015.
[FSK'13] C. Feng. D. Silva, F.R. Kschischang. An Algebraic Approach to Physical-Layer Network Coding. IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7576-7596, Nov. 2013.
[Fis'02] R.F.H. Fischer. Precoding and Signal Shaping for Digital Transmission. John Wiley \& Sons, Inc., New York, 2002.
[Fis'10] R.F.H. Fischer. From Gram-Schmidt Orthogonalization via Sorting and Quantization to Lattice Reduction. In Joint Workshop on Coding and Communications, Santo Stefano Belbo, Italy, Oct. 2010.
[Fis'11] R.F.H. Fischer. Efficient Lattice-Reduction-Aided MMSE Decision-Feedback Equalization. In IEEE International Conference on Acoustics, Speech, and Signal Processing, Prag, Czech Republic, May 2011.
[FWSSSA'12] R.F.H. Fischer, C. Windpassinger, C. Stierstorfer, C. Siegl, A. Schenk, Ü. Abay. Lattice-Reduction-Aided MMSE Equalization and the Successive Estimation of Correlated Data. AEÜ-Int. Journal of Electronics and Communications, vol. 65, no. 8, pp 688-63, Aug 2011
[FCS'16] R.F.H. Fischer, M. Cyran, S. Stern. Factorization Approaches in Lattice-Reduction-Aided and IntegerForcing Equalization. In International Zurich Seminar on Communications, Zurich, Switzerland, March 2016.
[GLM'09] Y.H. Gan, C. Ling, W.H. Mow. Complex Lattice Reduction Algorithm for Low-Complexity Full-Diversity MIMO Detection. IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2701-2710, July 2009.

References

[Has'00] B. Hassibi. An Efficient Square-Root Algorithm for BLAST. In IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. II737-11740, 2000.
[HNS'14] W. He, B. Nazer, S. Shamai. Uplink-Downlink Duality for Integer-Forcing. In IEEE International Symposium on Information Theory, pp. 2544-2548, 2014.
[HC'13] S.-N. Hong, G. Caire. Compute-and-Forward Strategies for Cooperative Distributed Antenna Systems. IEEE Transactions on Information Theory, vol. 59, no. 9, pp. 5227-5243, Sept. 2013.
[JD'13] H. Jiang, S. Du. Complex Korkine-Zolotareff Reduction Algorithm for Full-Diversity MIMO Detection. IEEE Communications Letters, vol. 17, no. 2, pp. 381-384, Feb. 2013.
[LLS'90] J.C. Lagarias, H.W. Lenstra, C.P. Schnorr. Korkin-Zolotarev Bases and Successive Minima of a Lattice and its Reciprocal Lattice. Combinatorica, vol. 10, no. 4, pp. 333-348, 1990.
[LLL'82] A.K. Lenstra, H.W. Lenstra, L. Lovász. Factoring Polynomials with Rational Coefficients, Mathematische Annalen, vol. 261, no. 4, pp. 515-534, 1982.
[LMG'09] C. Ling, W.H. Mow, L. Gan. Dual-Lattice Ordering and Partial Lattice Reduction for SIC-Based MIMO Detec tion. IEEEJ. Sel. Topics Signal Process., vol. 3, no. 6, pp. 975-985, Dec. 2009.
[Min'1891] H. Minkowski. Über die positiven quadratischen Formen und über kettenbruchähnliche Algorithmen. Journal für die reine und angewandte Mathematik, vol. 107, pp. 278-297, 1891.
[NG'11] B. Nazer, M. Gastpar. Compute-and-Forward: Harnessing Interference Through Structured Codes. IEEE Transactions on Information Theory, vol. 57, no. 10, pp. 6463-6486, Oct. 2011.
OEN'13] O. Ordentlich, U. Erez, B. Nazer. Successive Integer-Forcing and its Sum-Rate Optimality. In Annual Allerton Conference, pp. 282-292, Oct. 2013
[SF'15] S. Stern, R. Fischer. Lattice-Reduction-Aided Preequalization over Algebraic Signal Constellations. In 9th International Conference on Signal Processing andCommunication Systems (ICSPCS), Cairns, Australia, Dec. 2015.
[SF'17] S. Stern, R.F.H. Fischer. V-BLAST in Lattice Reduction and Integer Forcing. In International Symposium on Information Theory, Aachen, Germany, June 2017

References

[TMK'07] M. Taherzadeh, A. Mobasher, A.K. Khandani. LLL Reduction Achieves the Receive Diversity in MIMO DeM. Tanerzadeh, A. Mobasher, A.K. Khandani. LLL Reduction Achieves the Receive Diversity
coding. IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4801-4805, Dec. 2007.
[WF'03] C. Windpassinger, R.F.H. Fischer. Low-Complexity Near-Maximum-Likelihood Detection and Precoding for MIMO Systems using Lattice Reduction. In Proceedings of IEEE Information Theory Workshop, pp. 345-348, Paris, France, March/April 2003.
[Win'04] C. Windpassinger. Detection and Precoding for Multiple Input Multiple Output Channels. Dissertation, Erlangen, June 2004.
[WFGV'98] P.W. Wolniansky, G.J. Foschini, G.D. Golden, R.A. Valenzuela. V-BLAST: An Architecture for Realizing Very High Data Rates over the Rich-Scattering Wireless Channel. In International Symposium on Signals, Systems, and Electronics, pp. 295-300, Sep. 1998
[WBKK'03] D. Wübben, R. Böhnke, V. Kühn, K.D. Kammeyer. MMSE Extension of V-BLAST Based on Sorted QR Decomposition. In IEEE Vehicular Technology Conference, pp. 508-512, Orlando, Florida, USA, Oct. 2003.
[WBKK'04] D. Wübben, R. Böhnke, V. Kühn, K.D. Kammeyer. Near-Maximum-Likelihood Detection of MIMO Systems using MMSE-Based Lattice Reduction. IEEE International Conference on Communications, pp. 798-802, Paris, France, June 2004.
[YW'02] H. Yao, G. Wornell. Lattice-Reduction-Aided Detectors for MIMO Communication Systems. In Proceedings of IEEE Global Telecommunications Conference, pp. 424-428, Taipei, Taiwan, Nov. 2002.
[ZNEG'14] J. Zhan, B. Nazer, U. Erez, M. Gastpar. Integer-Forcing Linear Receivers. IEEE Transactions on Information Theory, vol. 60, no. 12, pp. 7661-7685, Dec. 2014
[ZQW'12] W. Zhang, S. Qiao, Y. Wei. HKZ and Minkowski Reduction Algorithms for Lattice-Reduction-Aided mıMO Detection. IEEE Transactions on Signal Processessing, vol. 60, no. 11, pp. 5963-5976, Nov. 2012.

