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Introduction Introduction (1l)

Digital Communications: Situation: multipoint-to-point transmission, MIMO multiple-access channel
m abstract high-level view of digital communications = ' non-cooperating single-antenna users

- apoint x drawn from some signal constellation A is transmitted = central base station with Ny receive antennas

(a point can represent log, |4 bits of information) = joint processing/decoding at the receiver side possible
- the channel adds (interference and) noise n ;" , ‘

x Y x n
. . > B r

- the received symbolsisy =z +n A= {111 ® u ene LS ! ; ,
- atthe receiver, decisions have to be taken : ! : H —®

. . ) ) qK ENC CK T
m since we can use quadrature modulation (modulation of amplitude and phase), y=Hz+n

all signals are complex-valued F, + C
Channel Coding: Channel Encoding / Mapping:
= for reducing the error rate, channel coding is employed = channel coding done over the finite field IF,

. S . and ¢, taken fi F
= in block codes (codelength 1) not all A" combinations are used but only (@ and c taken from ;)

those which can be distinguished reliably = mapping M of finite-field symbols ¢, to complex-valued points z;,

. . ) ) taken from some signal constellation A
= a3 trade-off between transmission rate (bit rate) and error rate is possible &
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Introduction (lll) Introduction (1V)

Question: How to perform equalization / decoding? Equalization of MIMO Channel:

. - \4‘ [ . y = Hx+n

g:> 2 H_-H\MM EN‘C : + : done symbol-by-symbol (independently over the time steps) in the uncoded case
_ D e )

c c 1 ¥,

Equalization Schemes:
Usual Approach: . ——
= linear equalization

= joint equalization / decoding typically much to complex according to zero-forcing (ZF) or minimum mean-squared error (MMSE) criterion

= separate equalization / decoding = decision-feedback equalization (DFE)

= channel decoding aka successive interference cancellation, (V-)BLAST
- individual (per user) = |attice-reduction-aided (LRA) / integer-forcing (IF) schemes
— over a temporal block (code word) low-complexity, high-performance schemes

= low-complexity equalization strategy (as for the uncoded case) = maximum-likelihood detection (MLD)/ lattice decoding

— over the users optimum procedure, highest complexity

— per time step
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Signal Constellations and Codes Decoding and Demapping

Signal Constellation: Construction Channel Encoding and Decoding:
= signal point lattice , - . . \/1' ;
Aa AS ENC o—>|l—0—>| ENF 1 I—N

F,

;
C C !

typically: A, =Z or A, =G =Z+jZ i B -
. . RV(AS)
= ,shaping” lattice :—:—.——:—:—:.I Enoding:
A, e o " E = encoding ENC over I, . Al
] . . . .
and its Voronoi region Ry(As) ¢ ! ¢t ° = mapping M to signal pointin C i
(typically a sublattice of A,: Ay C Ay) T L2 e “l%?]\
le o o o i Decoding: {501 000 1900 n.m:
m signal constellation = lattice decoding (in signal space) o oo og! o i i .
0010 0110 1011 1111
A=A.N R\/(Ag) w.r.t.to A, Lo e o o A,
‘ ~ 1010 1110+
° ° ° = demapping M 'to¢ € F, IR
= /attice code = encoder inverse ENC ™! o .
do everything in NV dimensions
C = A, NRy(Ay) Variant:

= demapping modulo A, i.e., mod M !
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Structure of the Signals Structure of the Signals (11)

Visualization: (real-valued example K =2, A. =Z, |A| =5) Lattice:
= -dim. lattice spanned by basis vectors by, bs, . . ., by — basis matrix

B = [biby - by]

= real-valued lattice

A= {)\ = Zf:lzkbk =B Ej | 2 € Z} ® pok

Lattice Structure of the Signal:
s forx C G = (Z +jZ)X the noise-free receive vectors

z = Hx

are taken from the complex-valued lattice A = HG' spanned by the
columns hy, of the channel matrix

H=[hi h, - hg]
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Maximum-Likelihood Detection Linear Equalization

Optimum Detection Rule: ML criterion fx(z): probability density function Linear Equalization: simple strategy — filtering followed by individual decision/decoding
. . 2 ,
& = argmaxfy(y | @) = argmin ||y — He|| 7 "
ze AKX zeAK . y
: H o Fue
TK

= this equalization strategy / scheme can be optimized either according to the
zero-forcing (ZF) or minimum mean-squared error (MMSE) criterion

m zero-forcing criterion: (I:identity matrix; (-)*: (left) pseudoinverse)

Fig-H = I = Fipzr = (HHH)leH e gt

= minimum mean-squared error criterion: (¢ & 2/0?)

n. &
= [attice decoding — high complexity per time step error signal e = Frpy — x; error covariance matrix &, = E{eeM}
icient i ion vi . - -1
efficient implementation via the Sphere Decoder [AEVZ'02] trace (®,.) —» min = Frgase = (HHH +(T) "

= for combination with channel decoding generation of soft output required
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Linear Equalization (I1) Linear Equalization (1)

Visualization: Noise Enhancement: ;
m ZF solution — Fypzr = (HHH)’IHH = { ;y}; r=Fipmpy=x+ Frgzn

- noise variance (n i.i.d. components with variance o2)

AN ° ° ° DN O';Zlk' = 0-727’. H‘fk||2
S o fefe oo - noise enhancement
e B = ot = Ifi?

u (biased) MMSE solution — Fi sk = (H'H +¢I) " H"

fi
or with H = [\ZI] we have Frpase = (HH)H" = [ : }
f[\'

- error covariance matrix

Problem of equalizing the signal

= the noise is filtered, too => noise enhancement - noise enhancement (Fy; ynseFreamss = (VM) HAH(HIH) ' = (R H) )
individual threshold decisi di i t opti
® [ndividua resno ecision per dimension not optimum Ek- _ [‘I’ee/@%h . _ || fk HQ
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Lattice-Reduction-Aided Equalization Lattice-Reduction-Aided Equalization
Visualization: Visualization:

H = [hy hy)
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Lattice-Reduction-Aided Equalization Equalization Schemes

Visualization: . .
Linear Equalization:
Fipc
L] L] L] (]
7’ ° ° ° L[]
Lattice-Reduction-Aided Equalization: [YW'02], [WF03]
L] L] L]
q
L] L] L] L] L] L
Fipce
L] L] L] L] qx
>
C C | F,
H = [hy hy]
C = [Cl CQ]
- Ze72x2
=HZ, |det(Z)|=1
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Integer-Forcing Schemes Integer-Forcing Schemes
Compute-And-Forward Strategy in Relaying: [NG'11] Compute-And-Forward Strategy in Relaying: [NG'11]
( —_— = = L——H‘I } g {méyy(\ll,c’\/l] ’} 4 ) {mé»,«\‘l.c'\/ll ‘} a
: I I
I I N I N
) . . . | . . q Yy ! . q
i : : : | Lo Zs o > Fue | = Zz — o
| | |
ax K vic ric ; Ix ; x
= e e T o
F, 1 C c ! Fy 1 o
= the receiver decodes an integer linear combination of the codewords = the receiver decodes an integer linear combination of the codewords
= resolution of linear combinations at some central unit = resolution of linear combinations at some central unit
only finite-field symbols are communicated — processing over IF,, only finite-field symbols are communicated — processing over IF,,

= if a joint/central receiver is present, some preprocessing can be done prior
to channel decoding — integer-forcing receiver [ZNEG'14]
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Integer-Forcing Schemes (1)

Integer-Forcing Equalization:

[ZNEG'14]

q c T "
(o)) f
y
} H ——mpy

qK CK TK

T orc 1Iétatmoar )4

| | TLenc ] P

Fi fo z;' o
[ | [modar 1}
1 DEC e ]

i i Linear Equalization:
Points to discuss:

m structure ” .
- LRAVvs. IF &= Fuse o Z

- respective constraints on
signal constellations and codes

Equalization Schemes

= factorizationtask H = CZ
- optimization criterion
- performance measure

|
|
|
|
|
|
|
|
|
|
|
|
|
!

y

Q:(> Fipc

m the users have to use the same linear code (or subcodes thereof)
any integer linear combination of valid codewords is a valid codeword over I,

= a linear mapping has to be applied
the arithmetics over I}, has to match that over R (or C) modulo p

= this only works if the cardinality of the signal constellation is a
prime number and equal to the field size p
= the integer matrix has only to be invertible over I,
= Zp only has to have full rank

[FSK'13]

- suited algorithm

m constraints on Z
- unimodular matrix — | det(Z)| = 1

shortest basis problem ,_n:]
- full-rank matrix — rank(Z) = K 2| Fuee

]

shortest independent vector problem 3

Fischer: Lattice Reduction and Factorization for Equalization 17
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Factorization Task

Lattice-Reduction-Aided Equalization

Integer-Forcing Equalization

denomination

channel-oriented

signal-oriented

suited for

joint receiver

distributed antenna systems

treat integer interference over

G=Z+iZ

F,

constraint on signal constellation and mapping

usually treated uncoded
signal points drawn from a lattice

linear codes over R (or C)

Fischer: Lattice Reduction and Factorization for Equalization

incorporation of coding
match arithmeticin R (or C)and F,,

one-dim. p-ary constellation, p a prime

Basic Idea of LRA Schemes:
= choose a “more suited” representation of the lattice, a reduced basis

= perform equalization with respect to this new basis;
integer linear combinations of the data symbols are detected

Procedure:
= input/output relation

y=Hx+n = CZzx+n

[YW'02], [WF03]

£
® ZF linear equalization of C' — equalization matrix F'ip ¢ = [ : } =C*

f[\'
r = Fipcy = Figo(CZx +n)
= Zm+FLE,Cn

= the noise power in branch k is given by (n:i.i.d. components with variance o2)

o, = on Ifll? = on - Ex

with noise enhancement £}, = || ||
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Factorization Task (Il) Factorization Criteria

Problem: given H, find C and Z such that Criterion I: [YW'02], [WF03]

u factorization of H u |attice reduction may directly applied to the channel matrix H

H =CZ H-C 2
m Z is an integer matrix

- rank(Z) = K = typically, the orthogonality defect of C| = [01 cee CK} is minimized
) if applicable: | det(Z)| =1 (unimodular) 5(C ) Hﬁil ”CkH
U= T 000

u C, the “reduced channel”, or | det(C)|

F , the “equalization matrix”, have desired properties ) .
LE,C q prop = this means that the basis vectors ¢y, the column vectors of C,

should be as short as possible (have small Euclidean norm)
Required: to solve this factorization problem, we need = shortest basis/independent vector problem

= a meaningful criterion = 3 substitute criterion is optimized, instead of system performance

= a practical algorithm
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Factorization Criteria (Il) Factorization Criteria (Ill)
Criterion Il: [TMK'07] Criterion IlI: [WBKK'04]
= for square channel matrices, the ZF equalization matrix reads = the MMSE solution can be calculated as ZF solution for the

_ augmented channel matrix Has'00
Figp=C'=(HZ") '—zH! 8 [Has'00]

= factorization task (¢ = o2/0?)
m the squared row norms of F'i g give the noise enhancement H C
[ } = H=CyZy = { 11171} Zy
VI VCZy

= optimum MMSE equalization matrix

= factorization task (XM= (xM) = (xHH
—H H 7—H
H = FpZy

H —1mH
m the column vectors of FH should be as short as possible Frenvsec = [(CIIICIII> CHI]

left K columns

n if Z; is an unimodular integer matrix, ZﬁH has also this property

CHee1y -1
(CHICIH + CZIIPZIHl) CIHH
ZIII(HHH + CI)ilHH = ZmFremvseH

= for non-square channel matrices the left pseudoinverse is used

(H)" = Fjiz;"
. = the column vectors of Cy;; should be as short as possible
(H € CMK N > K)
m as in Criterion |, a substitute measure is optimized

= inalmost all cases Z; = Zy; [Fis'11]
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Factorization Criteria (1V) Factorization Criteria (V)

Criterion IV: [FWSSSA12], [ZNEG'14], [FCS'16] Summary: (in each case Z € GX*K)
= applying MMSE linear equalization, the noise enhancement is given by = the criteria available in the literature can be classified as follows

B = [@.],/0% = [(C'C+cz Mz

; - Y Y = channel matrix H augmented matrix H
= [Z(H H + (I) zZ ]k . = Z (H H + CI) £ based on (“ZF solution”) (“MMSE solution”)
HyrH Ho 2
=z, LL "z, = |L"z]
| H H=CZ H=CZ
with Z7 = [z1,..., zx] [YW02], [WF03] [WBKK'04], [Fis'11]
= L is any square root of (H"H + (I = (H"#)""; we may choose
L-#H (HH)M (H*) = F" Z" (H) = FHz ™
[TMK'07] [ZNEG'14], [FCS'16]
= factorization task (using L"Z" = (7-[*)HZH &t £H)
H —H
(’H+) - T?v Zyy Involved lattices:
H . H: lattice spanned by channel matrix
u the column vectors of Fy; should be as short as possible H
(H™)™ dual lattice [LMG'09]
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Constraint on Z Constraint on Z
Constraint on the Integer Matrix Z ¢ G**X; Visualization: (real-valued example K =2, |A| = 5)
_ . K
= typically, in LRA equalization it has been forced = vectors = Zx, with@ € A"
. . 11
|det(Z)] =1  unimodular matrix = example Z = [ 0 J , det(Z) =1
hence a change of basis is performed
= Lattice Basis Reduction
= in IF equalization, the constraint is relaxed to
rank(Z) = K  full-rank matrix e o o o
(to be precise: rank(Zy) = K) o o : o o
= Shortest Independent Vector Problem ¢ e °

Observation: [FCS'16]
using the LRA equalization structure, unimodularity of Z is not required

= both, LRA and IF, can use the same factorization criterion
and the same constraint on Z!
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Constraint on Z Lattices and Lattice Problems

Visualization: (real-valued example K = 2, |A| = 5) Lattice:
= vectors & = Zx, withx € AX = we deal with complex-valued lattices
1 3 K . ,
= example Z = {_1 1} , det(Z) =2 AG) = {)‘ _ Zk:1 g = G [fl} |2 € G} “ QGH
K.
where

G = [gi.....gx] €CVE
is its generator matrix (basis) consisting of

‘ ‘ K € Nlinearly independent basis vectors g, € C¥, N > K, N € N
° ° ° (N-dimensional lattice of rank K)
L] L] L]
L] L] L] L]
° ° ° Alternative Description:
° ° ° ® instead of dealing with the complex-valued generator matrix G,
° ° one can use the real-valued equivalent [Win'04]
o Q. e Re{G} —-Im{G}
T Im{G} Re{G}
of doubled dimension
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Lattices and Lattice Problems (1) Lattices and Lattice Problems (11])
Gram-Schmidt (GS) Orthogonalization: [Fis'10] Minkowski's Successive Minima:
= any matrix G € CV*" can be decomposed into the form m kM k=1,..., K, successive minimum of A(G)  [Cas97], [LLS90], [DKWZ'15]
G = G°R pr(A(G)) = inf {ry | dim (span (A(G) N By(ry))) = k}
with - G° =g{,...,g%]: Gram-Schmidt orthogonalization of G with - By(r): N-dimensional ball (over C) with radius r centered at the origin
with orthogonal columns g7, .. .. g%

Konk ¢ ) 1> - -1 IK - span(-): linear span
- R= [r,_k.] € C"*": upper triangular with unit main diagonal
= pi(A(Q)) is the norm of the shortest vector of the lattice A(G)

= interpretation:

= successive procedure
71 has to be chosen as the smallest radius such that B y(r};) contains

fork=1,.... K . k linearly independent lattice vectors
—1
gr = 9gi— Zrl,k g
I=1 = Visualization:
o\H o
with Tk = <g] )O gzk y [ = 17 “as ,k’
g7 I3
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Lattices and Lattice Problems (1V)

Given: a complex-valued lattice A(G) of rank K

Shortest Independent Vector Problem (SIVP):

s findset G = {Aq,..., A} of K linearly independent vectors A, € A(G),
such that
s [ = prlAG)

= the largest vector has to be as short as possible;
the norms of all shorter vectors do not matter

Successive Minima Problem (SMP):

s findset G = {A,..., Ax} of K linearly independent vectors A, € A(G),
such that
M = pAG),  k=1,... K

= all lattice vectors in the set G have to be as short as possible;

naturally, SMP is also a solution to SIVP

= efficient strategies for solving the (C)SMP are available [DKWZ'15], [FCS'16]
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Lattices and Lattice Problems (VI)

Lattice Basis Reduction:

= findset G = {Aq,..., A} of K linearly independent vectors A, € A(G),
such that

AG) = A(G)
with GI‘ = [gr‘17"'7gr,K} = [Ah"'aAK]

i.e., G, is a"reduced” basis of the lattice A
(the meaning of “reduced” depends on the criterion/algorithm)

= the generator matrices are related by
G, =GU

or
G=GU!

where U € G**" is unimodular, i.e., | det(U)| = 1;
hence U ™! € G**X

(cf. factorization task H = C'Z)
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Lattices and Lattice Problems (V)

Set of Linearly Independent Vectors:
= the obtained vectors are lattice points A, € A(G), hence

A = Guy, with uy € GK, Vk

= the matrix V= [A;,..., Ag] is related to G via
V =GU

or
G=VvU"'
with U € GE*¥ and | det(U)| € G\ {0}

(cf. factorization task (H ") = F"Z~H)
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Lattices and Lattice Problems (VII)
Lenstra-Lenstra-Lovasz (LLL) Reduction: [LLL'82]
= a generator matrix G = [gy, . .., g ;] € CY*¥ with Gram-Schmidt
orthogonal basis G° = [g}, . . ., g%] and upper triangular matrix R
is called (C)LLL-reduced, if [GLM'09]

1. for1 <1 < k < K, itis size-reduced according to
Re{ris}| <05 and  |Im{r}| <0.5

2. fork=2,..., K and a parameter 0.5 < § < 1

o 2 o
lgzII* > (& — Ire-1.4l) g7 all”

u the parameter § controls the trade-off between “strength” of the
LLL reduction and computational complexity — usually § = 0.75;
the case § = 1 is denoted as optimal LLL reduction [A03]

m for § < 1 the algorithm has polynomial complexity [A03]
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Lattices and Lattice Problems (Vi) Lattices and Lattice Problems (IX)

Hermite-Korkine-Zolotareff (HKZ) Reduction: Minkowski (MK) Reduction:
= a generator matrix G = [gy, . . ., g ] € CV*X with Gram-Schmidt = a generator matrix G = [gy, ..., g,] € CY*! is called (C)MK-reduced,
orthogonal basis G° = [g}, . . ., g%/ and upper triangular matrix R if [Min'1891], [ZQW'12]
is called (C)HKZ-reduced, if [LLS'90], [JD'13]

1. for1l <l < k < K, itis size-reduced according to
- - & VG = (g1, G1-1:G - 9]

|Re{r17k}\ < 0.5 and |Im{r17k.}| < 0.5 with A(G/) — A(G)
2. fork =1,..., K, the columns of Ge fulfill Gis Minkowskifreducgd iffoAr k :11, S K the basis vector g, has minirlnum norm
among all possible lattice points g/, for which the set {g,, g,.....g,_,, 9/} can be
& -
lgsll = p1(A(G( ))) extended to a basis of A(G)
(shortest (non-zero) vector in A(G"))) ® in contrast to the SMP where only the K shortest independent lattice vec-

tors have to be found, here the K shortest vectors have to be obtained

" A(G(k)): sublattice of rank K — k + 1 and dimension N with generator that form a basis of the lattice

matrix G* = [0, . .. 0,97, ....9% R
(A(GM)) is the orth. projection of A(G) onto the orth. complement of {gy,...,g,_1})

= efficient (real-valued) algorithm available [ZQW'12]
= since shortest vectors have to be found, the problem is NP-hard; in the real-valued case, the calculation of a greatest common divisor (gcd) is required;
. . " n ) in the complex-valued case the gcd for Gaussian integers has to be used
efficient (complex-valued) algorithms available D131, [ZQW'12] (calculated via the Euclidean Algorithm)
Fischer: Lattice Reduction and Factorization for Equalization 36 Fischer: Lattice Reduction and Factorization for Equalization 37
Application to Equalization Application to Equalization (1)
Recall: Criterion IV Factorization Problem: Z" =z, ... 2]
fl
= MMSE linear equalization via F"' = ZH " = { : ] u | det(Z™)| = 1 required
fK
. 2
= noise enhancement Z" = argmin - max_||(H)"z|
; ZHegExK k=1,...K
B = (1Tl = [I(H") z/* — min det (2l

with Z" — [z, zi] => shortest basis problem (SBP)
® the MK-reduced basis is directly defined by the length of its basis vectors
A H H > H — it consists of the K shortest lattice vectors that form a basis of the lattice
(H ) = F'Z (not only the maximum norm is minimized)

= factorization task

H ) = Minkowski reduction gives the optimum integer matrix Z
u the column vectors of F"' should be as short as possible

= usually the maximum of the noise enhancement dominates = full-rank matrix Z sufficient

Z" = argmin = max H(’H+)szH2
= 2%

ZHegExK k=1, K
rank(ZH):K

= shortest independent vector problem (SIVP)

B this problem is optimally solved—in a stricter sense—if the K successive minima of
A((H)H) are obtained

= Minkowski's successive minima give the optimum integer matrix Z
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Numerical Results Numerical Results (1l)

Distribution of | det(Z

Obtained Vectors z;: 805) ~08+01) ~01-06) 07— 10j
= factorization of G = { N e Tod 73'21{:2}} = H:i.id. random zero-mean unit-variance complex Gaussian; K = N
70370,@ —1.0+00j 06-04] 02+1.15 5 9 ~
mo?/o2 =20dB
[ ot 3131} [ iifﬁ} [ oo { o] [osu 31?1} { 31?1] [ iigi} [ 313}] { 3131} = criterion IV — SMP [DKWZ'15], [FCS16]
= 0-1j —1+0j =8=1jj A= 0-1j 01 0+0j
3 1-3; 140 140 0+ 0j.
3} 0. 0.2+ 0.1§] [ 0.9 — 0.4] 9
e IR I N
0j[ |-0.2+0.5) N )i 0.9+ 0.4j 0.9 - 0.6j 0.7 - Olj 0.3-0.7j —0.140.2j 0.4+0.1j 01+l)6] 0.
7 0.2 — 0.5]. .5j] L-0.3 + 0.0}, 0.2 4 0.0j. 0.4 —0.5j] 1-0.2 +0.2j. —05 0.3j] L-0.2 — 0.1j] L-0.5+ 0.3}J L-0.2 + 0.5j. .3 —
154 155 | 159 1.64 169 | 1.72 173 174 K = 100 %
K =3 99.8 % 0.2% = =
Lls—m X X X X K=4 99.0 % 1.0% — —
LLLs=1 X X X X K =5 97.5% 2.4% 0.005 % =
HKZ X X X X K =6 95.6 % 45 % 0.03 % 0.003 %
MK XX X X K=1 92.7% 7.1% 0.15% 0.02 %
- K =38 89.3 % 10.2% 0.39 % 0.06 %

= here: det(Zswp) =1+
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Numerical Results (IIl) Numerical Results (1V)
Distribution of | det(Z)|: Bit Error Rate: LRA structure; linear MMSE equalization — different criteria and constraints
= H:i.i.d. random zero-mean unit-variance complex Gaussian = H:i.i.d. random zero-mean unit-variance complex Gaussian; K = N
s K =N=6 ® uncoded transmission; 16QAM signaling; E,/N, = 02/(c2log,(16))
= criterion IV — SMP [DKWZ'15], [FCS'16] 10° :
K =38
--_- |
2/0 =0dB 99.6 % 0.45 % 0.0002 % A
02/0% =10 dB 96.2 % 3.83% 0.02 % 0.002 % T
0202 = 20dB 95.4 % 4.45% 0.03% 0.003 % = MR |
m - = =Cl +SBP
02/o?=30dB 95.5 % 4.48 % 0.03 % 0.003 % 10*H = = =l +sBP R E

= = = C-IV +SBP

5| | m—— C-Il +SMP \\ ]
10 .
—— C-IV + SMP . N
——— ML detection \\ S
10 : i \ A
0 5 10 15 20

101og10(Ey/No) [dB] —
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Numerical Results (V) Numerical Results (VI)

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms
= H:i.i.d. random zero-mean unit-variance complex Gaussian; K = N = H:i.i.d. random zero-mean unit-variance complex Gaussian; K = N
= uncoded transmission; 16QAM signaling; E,/N, = 2/(c2 1og,(16)) = uncoded transmission; 16QAM signaling

10° ; 107 ; ;
K=
4 107°F
1 10"
1 T
o= 3 e 107}
= =
M | T - Lls=s @
10 Bl m = = LLLso1 E 10 F[ = = = LLLs— =
— HKZ == =Llls=1
1075k = = = MK J 107} = HKZ
—— SMP - - - MK
=~ ML detection A —— SMP
10_6 T 1 10_8 1 1 1 1 1
0 5 10 15 20 2 3 4 5 6 7 8 9 10
101log(Ey/No) [dB] — K —
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Numerical Results (VIl) Numerical Results (Vi)

Percentages “MK = SMP” and “MK = SIVP": Distribution of Deviation from Optimum:
= H:i.i.d. random zero-mean unit-variance complex Gaussian = H:i.i.d. random zero-mean unit-variance complex Gaussian
= K = N; criterion IV [DKWZ'15], [FCS'16] =K =N=8 o/c2=20dB

= criterion IV [DKWZ'15], [FCS'16]
_—
K=N=8 03/o2 = 20dB]
a2/o?=15dB 100 % 99.0 % 95.7 % 90.3 % 83.8% 1 —
a2/o? =20dB 100 % 99.0 % 95.6 % 89.8 % 82.3%
0.8
02/c% — oo 100 % 99.0 % 95.5 % 89.4 % 81.5%

0.4}

b 22 () —
o
D

02/0? =15 dB 100%  992%  97.0%  940%  90.6% - - -ULi-7
02l - = =LlLs-1 |
02/0? =20 dB 100%  992%  97.0%  935%  89.3% —— HKz
- MK
02/0? = 0 100%  992%  969%  932%  885% 0 x x x :
0 0.05 0.1 0.15 0.2 0.25 0.3

for the complex case and K’ = N = 2, an MK-reduced basis is always a solution to the SMP d >
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Decision-Feedback Equalization Decision-Feedback Equalization

Decision-Feedback Equalization: aka successive interference cancellation, V-BLAST Decision-Feedback Equalization: aka successive interference cancellation, V-BLAST

a o a
e ENC

q €1 2 "
o= ENC Y
‘ = ] H :g;;:"-ﬂu--u» *
O e P5 e Ol e P5 s |
F,oloC R, lC c v,
= QR decomposition of the channel matrix: = sorted QR decomposition of the channel matrix:
Q: orthogonal matrix; B: upper triangular, unit main diagonal Q: orthogonal matrix; B: upper triangular, unit main diagonal; P: permutation matrix
H = QB HP ¥ Hy = QB
= signal after feedforward processing with F'ppg g = (QHQ)”QH = criterion for sorting required
r = FDFE:Hy = Bx+n
MMSE version of DFE:
- spatially causal signal t[ansmlssmn matrix B . s ZF version for K = N: HP = F—lB
- Gaussian noise vector 7 with correlation matrix a,%gQ Q)
ie, withQ = [q, - gy | noisevariances o2, = o /|Iq;* = MMSE version of DFE: HP = F'B
- decisions are taken successively (order K, ..., 1) with H = [%I}
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Optimum Detection Order: V-BLAST ordering [WFGV'98] LRA Decision-Feedback Equalization: [YW02], [WF03]

= signal-to-noise ratio in component k is proportional to || q;||?

= fork = K, ..., 1:the norm of the vector g, should be the largest Lo e S !
ini y z - ; g
among the remaining components 1, ..., k { o + — P )
= BLAST ordering requires great effort e enc |5 : | !
F, ! c 1 v,
Simpler Strategy: [WBKK'03], [Fis'10]
= instead of maximizing ||q,||* in sequence k = K, K — 1, ..., 1 Strategies:
it is minimized in sequence k =1, 2, ..., K by
= obvious YW02], [WF03
= fork =1, ..., K:the norm of the vector g, should be the smallest . o cz [ 2 :
among the remaining components &, ..., K perform i) factorization H = C'Z;
. . o ii) sorted QR decomposition CP = QB
m Gram-Schmidt procedure with pivoting
imole b . = more efficient [WBKK'04], [Fis'11]
Simple but Optimum Strategy: (LMG09] reuse @ and R anyway calculated within LLL or HKZ
= do not apply Gram-Schmidt procedure with pivoting to H, but to ()"
= use factorization = optimum [LMG'09], [Fis'10], [SF'17]
(7-t+)HP_H = FipH do sorting, Gram-Schmidt procedure, and size reduction jointly

order within GS proc.: k = K, ..., 1;i.e, B " should be lower triangular
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LRA Decision-Feedback Equalization (I1) LRA Decision-Feedback Equalization (11])

Pseudocode of Factorization Approach: [SF17] Recall: Hermite-Korkine-Zolotareff (HKZ) Reduction
= a generator matrix G = [gy, . .., g ;] € C¥*¥ with Gram-Schmidt

(Q, R, T'| = GranSchmidtSort_LRA(G) orthogonal basis G° = [g5, . . ., g5%] and upper triangular matrix R

1 Q=G R=1,T=1 is called (C)HKZ-reduced, if [LLS'90], JD'13]
2 k=1 o .

3 whilek < K { 1. for1 <1 < k < K, itis size-reduced according to

4 g, = shortest vector in A([g,,...,qx]) [Re{rix}] < 0.5 and [T {7y} < 0.5

s ifllg? # el { o

6 a, = q. 2. fork=1,..., K, the columns of G° fulfill

7 update @, R,T such that A(QR)=A(G) lgsll = pl(A(G<k)))

8 }

_ i (k)
9 fori—k+1,... K { (shortest (non-zero) vector in A(G'"))
10 ru = alla;/|lql)? = A(GW): sublattice with generator matrix G* = [0,...,0,g5,..., g% R
" 9, =9q; — T4y
12 }
13 k=k+1
14}
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LRA Decision-Feedback Equalization (IV) LRA Decision-Feedback Equalization (V)
Discussion: LRA Decision-Feedback Equalization:

= the size-reduction step of HKZ is not present; |

as it changes only R it is of no relevance for performance of LRA DFE !

q
= effective HKZ reduction o S "’ ot o z!

s for G = (H )" the algorithms returns Z" = T and F" = Q with

- V-BLAST sorting S8
- the columns of F' have minimum norm ‘
(optimal worst-link performance as in classical V-BLAST but for LRA equalization)

C F,

|
|
|
|
| P
|

. ) ) ) ) ) = redraw to noise-prediction structure [Fis'02]
m this optimum is achieved with an unimodular Z;

a relaxation to rank(Z) = K is not required [OEN'13] = apply modulo reduction w.r.t. A,

® exchange Z ! and demapping/encoder inverse

= successive IF and LRA DFE both can be restricted to unimodular Z = combine to demapping modulo A

= successive IF only works in noise-prediction structure
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Numerical Results

Bit Error Rate: LRA structure; linear MMSE equalization; criterion C-IV — different algorithms

= H:i.i.d. random zero-mean unit-variance complex Gaussian; K = N
= uncoded transmission; 16QAM signaling; E,/N, = 2/(c2 1og,(16))

10 T
K =38

BER —

- = = MK
10 ¢ ——swmp

= = = SMP + unsort.
1078L| =™ SMP + V-BLAST
(eff.) HKZ
——— ML detection

T

10 20
10 logyo(Ey/No) [dB] —+
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Summary

Low-Complexity Equalization Schemes:
= tight relation between LRA and IF equalization
= structure how equalization and decoding are combined

= performance measure for defining the factorization task
= optimization criterion

m constraints on the integer matrix — SBP vs. SIVP
= algorithms for performing the factorization

Optimum Integer Matrix Z:

= linear equalization
- |det(Z)| =1 Minkowski reduction gives the optimum
- rank(Z) = K Minkowski’s successive minima give the optimum

= decision-feedback equalization
(effective) HKZ reduction gives the optimum
(relaxation to | det(Z)| > 1 not required)

Dualization:

= transmitter-side precoding for broadcast channel

(LRA/ IF precoding) [HC13], [HNS14], [SF'15]
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